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Abstract. In 2010, Joye et. al brought the so-called Huff curve model,
which was originally proposed in 1948 for the studies of diophantine
equations, into the context of elliptic curve cryptography. Their initial
work describes Huff curves over fields of large prime characteristic and
details unified addition laws. Devigne and Joye subsequently extended
the model to elliptic curves over binary fields and proposed fast differen-
tial addition formulas that are well-suited for use with the Montgomery
ladder, which is a side-channel attack resistant scalar multiplication algo-
rithm. Moreover, they showed that, in contrast to Huff curves over prime
fields, it is possible to convert (almost) all binary Weierstrass curves into
Huff form.
We have implemented generalized binary Huff curves in software using a
differential Montgomery ladder and detail the implementation as well as
the optimizations to it. We provide timings, which show speed-ups of up
to 7.4% for binary NIST curves in Huff form compared to the reference
implementation on Weierstrass curves. Furthermore, we present fast for-
mulas for mapping between binary Weierstrass and generalized binary
Huff curves and vice versa, where in the back conversion step an implicit
y-coordinate recovery is performed. With these formulas, the implemen-
tation of the differential Montgomery ladder on Huff curves does not re-
quire more effort than its counterpart on Weierstrass curves. Thus, given
the performance gains discussed in this paper, such an implementation
is an interesting alternative to conventional implementations. Finally, we
give a list of Huff curve parameters corresponding to the binary NIST
curves specified in FIPS 186-3.

1 Introduction

In 1985, Neal Koblitz [10] and Victor S. Miller [14] both discovered independently
that elliptic curves over finite fields can be used for public key cryptography.
By now, elliptic curves have become an important concept within public key
cryptography. This is mainly due to small key sizes compared to other public
key cryptosystems, such as RSA, which lower the requirements for CPUs as
well as the memory footprint. Elliptic curves have a group structure and their
cryptographic security relies on the difficulty of solving the elliptic curve discrete
logarithm problem (ECDLP). Traditionally, Weierstrass equations have been



used to describe elliptic curves. Nevertheless, over time, especially in the last
couple of decades, new models to describe elliptic curves have been found, such
as the Montgomery form, the Edwards form [2] and the like.

In 1948, Huff was studying a diophantine problem, for which he introduced
a new elliptic curve model [8]. In 2010, Joye et. al [9], studied Huff’s model over
fields of odd characteristic and introduced formulas for fast point arithmetics.
Each Huff curve defined over Fp contains a subgroup isomorphic to Z4 × Z2

which, unfortunately, implies that there are no standardized prime curves that
can be expressed in Huff form, as all these curves have cofactors equal to one.
The Huff model has subsequently been extended by Devigne and Joye [5] to cover
elliptic curves defined over binary fields F2m . Furthermore, in [5], they present a
unified addition law and give very fast differential addition formulas for binary
Huff curves, which are well-suited for use with the Montgomery ladder, which is
a side-channel attack resistant scalar multiplication algorithm.

For m ≥ 4, every Weierstrass curve over F2m is birationally equivalent to a
generalized Huff curve. Therefore, we are free to convert all standardized binary
curves into corresponding (generalized) binary Huff curves. The authors of [5],
give formulas for mapping points between binary Weierstrass curves and binary
Huff curves, using an intermediate Weierstrass curve isomorphic to the original
curve in short Weierstrass form.

1.1 Contribution

We have implemented generalized binary Huff curves in software, where for scalar
multiplication we use a differential Montgomery ladder, which is a good choice
for software implementations running in server environments, as it is resistant to
remote timing attacks [4, 3, 18]. The differential Montgomery ladder is based on
the differential addition formulas given by Devigne and Joye in [5]. The timings
show that for the binary NIST curves, this implementation is up to 7.4% faster
than the reference implementation of the differential Montgomery ladder on the
original Weierstrass curves, to which we have applied the same optimizations.

The conversion between binary Weierstrass and generalized binary Huff curves
requires two steps. As generalized binary Huff curves are birationally equivalent
to a class of Weierstrass curves, which are themselves isomorphic to curves in
short Weierstrass form, it is necessary to apply a birational equivalence as well as
an isomorphism for the conversion. Additionally, after applying the differential
Montgomery ladder on binary Huff curves and mapping the result back to the
corresponding Weierstrass curve, a y-coordinate recovery is necessary. We ad-
dress this issue by providing fast all-in-one, back-and-forth conversion formulas.
These back-and-forth conversions turn out to be almost as efficient as the y-
coordinate recovery on Weierstrass curves, which is required anyway after using
the differential Montgomery ladder on Weierstrass curves, which preserves most
of the savings obtained through the faster differential addition formulas. When
using the formulas presented in this paper, the implementation of the differential
Montgomery ladder on Huff curves does not require more effort than its coun-
terpart on Weierstrass curves. Thus, given the performance gains discussed in



this paper such an implementation is an interesting alternative to conventional
implementations.

Finally, we present curve parameters for Huff curves, which are birationally
equivalent to the NIST-recommended binary Weierstrass curves specified in FIPS
186-3 [6].

1.2 Outline

In Section 2 and 3 we are going to talk about elliptic curves in general and the
Huff curve model in particular. Section 4 gives the Huff curve parameters we
have derived for the NIST-recommended curves. It details the implementation,
the improvements we have achieved, shows the benchmark results and draws a
comparison to the reference implementation. At last, Section 5 concludes the
paper.

2 Preliminaries

An elliptic curve over the field K is a plane, smooth curve described by the
Weierstrass equation:

E : Y 2 + a′1XY + a′3Y = X3 + a′2X
2 + a′4X + a′6, (1)

where a′1, a
′
2, a
′
3, a
′
4, a
′
6 ∈ K. The set E(K) of points (x, y) ∈ K2 satisfying Equa-

tion (1) plus the point at infinity O = (0 : 1 : 0), which is the neutral element,
forms an additive Abelian group. The addition of points on an elliptic curve is
achieved using the chord-and-tangent method [16].

For cryptographic purposes, we are interested in elliptic curves over finite
fields Fq, especially in curves over fields F2m and Fp with p being a large prime
number. The security of elliptic curve cryptography is based on the assumption
that in general there is no subexponential-time algorithm to solve the discrete
logarithm problem in elliptic curve groups (ECDLP). Given Q,P ∈ E(Fq) the
ECDLP constitutes the problem of finding a scalar k ∈ Z such that Q = k · P .

In cryptography, usually non-supersingular curves are being used, as super-
singular curves turned out to be susceptible to the MOV attack [13], which re-
duces the ECDLP to the DLP on finite fields, for which an efficient subexponential-
time algorithm is known. Non-supersingular curves defined over F2m , are de-
scribed using the following short form of Equation (1):

Y 2 +XY = X3 + a2X
2 + a6, (2)

where a2, a6 ∈ F2m and a6 6= 0.
For binary field multiplications we are using the windowed left-to-right comb

multiplier as detailed in [7]. This algorithm uses lookup-tables, which can be
cached and reused to speed up multiplications with frequently used values, such
as curve parameters. In the following, let M and S denote the costs of one field
multiplication and one field squaring, respectively. Moreover, let mw stand for
the cost of the multiplication with some value, for which the lookup table of
window size w has already been calculated.



2.1 Differential Addition and the Montgomery Ladder

Scalar multiplication is the most crucial and at the same time the most costly op-
eration on elliptic curves and there are many ways to perform elliptic curve scalar
multiplications. One way to do so is the so-called Montgomery ladder, which is
both side-channel resistant and reasonably fast. Its side-channel resistance is due
to the fact that at each ladder step, regardless of the currently processed bit of
the scalar k, one point doubling operation as well as one point addition opera-
tion are performed and only the order of execution is changed. Thus, in order
to mitigate side-channel attacks, the Montgomery ladder is widely used, espe-
cially in hardware implementations. In the context of software implementations,
side-channel resistance is less important. Still, there are scenarios, such as cryp-
tographic implementations running on servers, where remote timing attacks can
be performed (cf. [4, 3, 18]) and, therefore, timing-attack proof implementations
are required. This issue can again be addressed with the use of the Montgomery
ladder, as its execution time is constant for fixed scalar lengths.

For the fast application of the Montgomery ladder, differential addition and
doubling formulas are necessary. Luckily, these two operations can be performed
very efficiently on Huff curves. By differential point addition, we mean the com-
putation of w(P + Q) from w(P ), w(Q), and w(P − Q), where w(·) is a coor-
dinate function for which typically w(P ) = w(−P ) is demanded. Note that the
difference w(P −Q) required for the differential addition steps within the Mont-
gomery ladder is fixed, i.e., the difference of the resulting points stays invariant
throughout the whole process. For differential addition on Weierstrass curves,
the knowledge of y-coordinates is irrelevant, as the computation of x-coordinates
does not involve them, which is reflected in the definition of w(·). Clearly, this
saves computational effort, as the y-coordinate of intermediate results is not
computed. Analogously, we mean by differential doubling the computation of
w(2P ) from w(P ).

On Weierstrass curves, the fastest differential addition formulas are due to
Bernstein and Lange (see [1]). From the results of Stam [17], they derive a
representation, called XZ-coordinates, featuring fast differential addition and
doubling formulas. Per bit of scalar k, these formulas require 5M + 1m8 + 4S
for P known a priori and 6M + 2m8 + 5S otherwise.

The Montgomery ladder for projective differential addition formulas is shown
in Algorithm 1. Here, the addition and the doubling steps are carried out using
differential addition and differential doubling formulas, where in the former case
the input is W (2P ), W (P ) and the invariant, consequently, is W (P ). Note that
W (·) stands for the projective version of the coordinate function w(·).

After application of the Montgomery ladder, the y-coordinate of the product
k ·P = (x1, y1) can be restored efficiently and, hence, there is no need to compute
it in the intermediate steps. Restoring the y-coordinate for affine coordinates,
also means simultaneously scaling the x-coordinate, in order to avoid multiple



Algorithm 1 Differential Montgomery Ladder

Require: A point P on E and a scalar k = (kl−1, . . . , k0)2 ∈ Z
Ensure: W (k · P ) = (X1 : Z1)

(X1 : Z1) = W (P ) and (X2 : Z2) = W (2P )
for i = l − 2 downto 0 do

if ki = 0 then
(X1 : Z1) = 2(X1 : Z1), and
(X2 : Z2) = (X1 : Z1) + (X2 : Z2)

else
(X1 : Z1) = (X1 : Z1) + (X2 : Z2), and
(X2 : Z2) = 2(X2 : Z2)

end if
end for

inversions. It works in the following way, as detailed in [11] and in [17]:

x1 =
Z̄X̄Z2X1

Z̄X̄Z2Z1
and y1 = Ȳ +

γ((X1Z̄ + X̄Z1)γ + Z1Z2X̄
2 + Z1Z2Z̄Ȳ )

Z̄X̄Z2Z1
,

where γ = X2Z̄+ X̄Z2 and P = (X̄ : Ȳ : Z̄) 6= O. There are two special cases to
check, see [11] for more details on that. Using these formulas requires 1I+10M,
when assuming Z̄ = 1, i.e., P to be scaled.

3 The Binary Huff Curve Model

This section is mainly a recapitulation of the research done by Joye et. al in
[5] and [9], since we need these facts in Section 4 in order to derive compact
formulas for mapping between binary Weierstrass and binary Huff curves.

As defined in [5], binary Huff curves are a new class of elliptic curves. For
every Weierstrass curve defined over F2m with m ≥ 4, there is a birationally
equivalent generalized binary Huff curve. A generalized binary Huff curve is given
by the set of projective points (X : Y : Z) over F2m satisfying the subsequent
equation:

EH : aX(Y 2 + fY Z + Z2) = bY (X2 + fXZ + Z2) (3)

with a, b, f ∈ F∗2m and a 6= b. Three points at infinity, i.e., (1 : 0 : 0), (0 : 1 :
0), and (a : b : 0), satisfy Equation (3). The affine version of Equation (3) is
birationally equivalent to the subsequent binary Weierstrass curve:

EW ′ : v(v + (a+ b)fu) = u(u+ a2)(u+ b2), (4)

which itself is isomorphic to the short Weierstrass form through the following
isomorphism:

Θ : EW (F2m) −→ EW ′(F2m)

(u, v) 7−→
(
µ2u, µ3 (v + su+

√
a6)
)
,



and its inverse:

Ω : EW ′(F2m) −→ EW (F2m)

(u′, v′) 7−→
(
ν2u′, ν3v′ + sν2u′ +

√
a6

)
with µ = (a+ b) f , ν = µ−1, and s ∈ F2m satisfying s2 + s = a2 + f−2. The
birational equivalence

Φ : EW ′ (F2m) −→ EH (F2m) ,

(u, v) 7−→

(
b
(
u+ a2

)
v

,
a
(
u+ b2

)
v + (a+ b) fu

)
,

maps from the Weierstrass curve EW ′ onto the Huff curve EH . Its inverse looks
as follows:

Ψ : EH (F2m) −→ EW ′ (F2m) ,

(x, y) 7−→
(
ab

xy
,
ab (axy + b)

x2y

)
The neutral element is (0, 0) and the group law is based on the chord-and-tangent
rule. Note, however, that the birational equivalences are not line-preserving. The
inverse of some affine point P = (x1, y1) ∈ EH is

−P =

(
y1

(αx1 + 1)

(βy1 + 1)
, x1

(βx1 + 1)

(αx1 + 1)

)
, (5)

with α = a+b
b·f and β = a+b

a·f . The projective homogenization of Equation (5) can
be evaluated using 4M + 4m8. Furthermore, there are four exceptional cases,
which have to be dealt with separately. We refer the reader to [5] for more details
on that. Compared to binary Weierstrass curves, where point inversion costs at
most one field addition and, hence, is negligible, this operation is very expensive
on binary Huff curves.

Projective point doubling, and point addition take 6M + 2m8 + 6S and
15M + 3S, respectively. The affine doubling formula looks as follows:

2P =


(1 : 0 : 0) if x1 = 1,

(0 : 1 : 0) if y1 = 1,

(a : b : 0) if x1y1 = 1, and(
f(a+b)x2

1(1+y1)2

b(1+x1)2(1+x1y1)2
,
f(a+b)y21(1+x1)2

a(1+y1)2(1+x1y1)2

)
otherwise.

(6)

where P = (x1, y1) ∈ EH . Also note that for subgroups not including the points
at infinity a complete addition law exists, i.e., it can also be used for point
doublings.



3.1 Differential Addition

For Huff curves, the authors of [5] give differential addition formulas for use
with the Montgomery ladder. To do so, they introduce the coordinate function
w(x, y) = xy, which fulfills the condition w(P ) = w(−P ). From Formula (6),
they derive the following differential doubling formula:

w(2P ) =

{
γ · w2

1

(1+w1)4 if w1 6= 1, and

(1 : 0) otherwise.
(7)

where γ = (a+b)2

ab and w1 = w(P ). Using the birational equivalence Φ and the
multiplicative differential addition formula from [17], the authors of [5] obtain
the subsequent addition formula:

w(P +Q) =

{
(w1+w2)2

w̄(1+w1w2)2
if w1w2 6= 1, and

(1 : 0) otherwise.
(8)

where P 6= Q, w1 = w(P ), w2 = w(Q), and w̄ = w(P −Q).
Working with affine coordinates is less satisfying due to the costly inver-

sion required in each step. Hence, Devigne and Joye introduce projective WZ-
coordinates. A point P = (X1

Z1
, Y1

Z1
) ∈ EH in WZ-coordinates, is represented by

the tuple

(W : Z) =

{
(θw(P ) : θ) = (θX1Y1 : θZ2

1 ) if P 6= (a : b : 0), and

(θ : 0) otherwise.

for some θ ∈ F∗2m . Now, when given P = (W1 : Z1) and Q = (W2 : Z2), the
projective differential addition formulas look as follows:{

W (2P ) = γ · (W1Z1)2

Z(2P ) = (W1 + Z1)4
and

{
W (P +Q) = Z̄ (W1Z2 +W2Z1)

2

Z(P +Q) = W̄ (W1W2 + Z1Z2)2,

where W (P − Q) = (W̄ , Z̄) are the WZ-coordinates of P − Q. Obviously, the
first requires 1M + 1m8 + 3S, whereas the latter requires 6M + 2S, which can
be improved to 4M + 2S by computing W1Z2 +W2Z1 as (W1 +Z1)(W2 +Z2) +
(W1W2 + Z1Z2) and scaling the coordinate (W̄ : Z̄), since it remains constant
throughout the whole Montgomery ladder process.

4 Contribution

In this section we are going to describe a Huff curve implementation and the
optimizations we have applied to it. Furthermore, we contrast its performance
with a reference implementation that is based on Weierstrass curves, to which
we have applied the same set of optimizations. Then, we present timings of both



implementations, which show that for the binary NIST curves, the Huff curve
implementation is up to 7.4% faster than the reference implementation.

We also present the curve parameters for the binary Huff curves correspond-
ing to the binary NIST curves and give formulas for back-and-forth conversion
between binary Huff curves and binary curves in short Weierstrass form.

4.1 Deriving Curve Parameters

Deriving curve parameters a, b, f ∈ F2m from a given binary Weierstrass curve
with parameters a2, a6 ∈ F2m , works as follows [5, Proof of Proposition 2]:

1. Select an arbitrary f ∈ F2m so that Tr(f−1) = Tr(a2) and Tr(f8a6) = 0,

2. find a solution t ∈ F2m to the equation t2 +
(
f4√a6

)−1
t+ 1 = 0, and

3. determine a, b ∈ F2m such that
√
t = ab−1,

where Tr(·) is the trace function Tr : F2m → F2, x 7→
∑m−1
i=0 x2i

. The parameters
we have obtained for the NIST-recommended curves [6] plus the value s needed
for Ω and Θ are listed in Table 1 and in Table 2, respectively.

4.2 Mapping between Huff and Weierstrass Curves

Let PW = (u, v) be a point on EW (F2m), PW ′ = (u′, v′) = Θ (PW ) ∈ EW ′(F2m)
and P = Ω (PW ′) be the corresponding point on EH(F2m).

Weierstrass to Huff Curve: From the birational equivalence Φ ◦Θ, we derive
the following formula for directly mapping PW to WZ-coordinates:

(W :Z)=
(
ab
(
µ2u+a2

)(
µ2u+b2

)
:µ6 (v+su+

√
a6)((v+su+

√
a6)+u)

)
Through decomposition we get:

– A = µ2u,

– B = (A+ a2), C = (A+ b2),

– D = v1 + su+
√
a6, E = D + u,

– W = ab ·B · C, and

– Z = µ6 ·D · E.

The values a2, b2, and
√
a6 as well as the multiplication lookup tables for the

values µ2, µ6, s, and ab can be determined a priori. For this setting, we get a
total of 2M + 4m8 for obtaining the WZ-coordinates of PW . Of course, if PW
is fixed, one can precompute its scaled WZ-coordinates.

Huff to Weierstrass Curves: In order to convert the result W (k ·P ) = (W1 :
Z1), obtained from applying the differential Montgomery ladder on EH , back to
EW , we need to evaluate the birational equivalence Ω ◦ Ψ . The naive approach
would be to, firstly, compute the x-coordinate of the corresponding point on EW ′



Curve a b f

B-163 0x1 0x253f3c45a6d779b47e63758c35336f0679b42f4c0 0x6

K-163 0x1 0x20000000000000000000000000000000000000033 0x6

B-233 0x1 0x115b7c737bec7a5cc19212911c2bd03cadb9a29ddf9b1dc64b\ 0x3
8b3550fb3

K-233 0x1 0x1e5ff5c884156aaebbd38370425882dff04f04ba05a7f40740\ 0x2
82385c149

B-283 0x1 0x6a263cdd28c309d3d3068046747abe51375b0d763dccc64868\ 0x3
251918d59c21842dd4fe1

K-283 0x1 0x7a0fa1ffdaf44208a4efb593c405714e0fbc4423dd0db57384\ 0x2
89cb583073c2cae153d0d

B-409 0x1 0x3f2918c0e689aca093d4cf5a389aeda96eb5cdcb930617991d\ 0x9
09111a3f91dc7283123ef8ab912744e193c34c9bd3cd532e17b7

K-409 0x1 0x846538361ed11b7c42b9e302169a3ea16009df82f80a155d56\ 0x2
39d78d4ba8dd02284110d6b3fbc05dda9c0ed1c0d6316c72d676

B-571 0x1 0x3c0904534c17c94a947b971ee5e6a3f3fb917dd3b57d7ad1f6\ 0xf
ea35ec2593bae024934b8efe08d2a5bb97c4286665408d50f80c\
afc8dfbee0011c03e785fe39c94c977d5e3a7f065

K-571 0x1 0x6a28a2cf6fb77a9485f438a79f8832d86c465b689fd80b3d9c\ 0x2
4b1ef40380b5d92f85044e450336618a69b209eb37ecdd23da7b\
f7ee9e0fc1e98248edb0dc92f3510027be50cd2bb

Table 1: Generalized Huff curve parameters for NIST-recommended binary
curves (cf. [6]).

Curve s

B-163 0x4058c6f9ae170f30f3ec9def6b2ddf2a28f0c0872

K-163 0x4058c6f9ae170f30f3ec9def6b2ddf2a28f0c0872

B-233 0xe7b4bcdb4af3163783507af91971d49927298e32e548d55b3a0b602a42

K-233 0xb1ce7164613a37fed984a32b18d265ada947ed207757d373d4e139835a

B-283 0x21b24c4336e195a894fc9021fabac4e6988ff780c29522af3261508be\
fb321108eda3fa

K-283 0x387fd1da986a7fa48458bf27d26d9162d60c2f7f6e3da61f30d215c6b\
193e73f223326e

B-409 0x106176448c66d8e7d0ddc074d76277a7ac8093ee53499d108099266d9\
82c68dae5cb61d5054b30ecfce3c3beebc8cbecb904fd0

K-409 0x15dedff38eafec7e43a277eea795fbb1d52e6075a8bfe6a275be0dcba\
f6b781f8c9d37e4f414e8de3634d946434d9b6a6d62e20

B-571 0x12007d9377488ff6122ccce941d1cef856279188c8e82a6696a918b2f\
ccd78353385beb5e972f83d491d22db627117ab1580dabd23c6e8adeb99\
d3bdbc95d6fb645833ba6b4f182

K-571 0x2780c6d786569591600518d211a5d6fbd900d9b44a1e4e65016d2331d\
d243a6b31db129832a46326c7e3fd9b43f900ee58ed165e550a3cc3a41f\
b88b001fa79f398351bb7c35dea

Table 2: Auxiliary parameter s for mapping between NIST-recommended binary
Weierstrass curves (cf. [6]) and the corresponding binary Huff curves.



as u1 = ab
w(k·P ) then, secondly, to map the result from EW ′ to EW , and, finally,

to recover its y-coordinate v1 using the formula from [11]:

v1 =
(u1 + u)

(
(u1 + u) (u2 + u) + u2 + v

)
u

+ v, (9)

which requires the additional value u2 = ab
w((k+1)·P ) , which can be computed

using the point W ((k+ 1)P ) = (W2 : Z2) from the last step of the Montgomery
ladder. All in all, this would require several inversions, which can be saved by
combining the formulas. To do so, one can replace u1 = ab

w(k·P ) with u1 = δ·Z1

W1
,

where w(k · P ) = W1

Z1
as W (k · P ) = (W1 : Z1), δ = ab

µ2 and µ = (a+ b)f , and so

implicitly apply Ω. By inserting it into Equation (9), one derives the following
formula:

v1 =
(δZ1 +uW1)

(
(δZ1 +uW1)(δZ2 +uW2)+

(
u2 +v

)
W1W2

)
uW 2

1W2
+v,

Now, one can compute

U1 = δZ1uW1W2 and V1 = β
(
β (δZ2 + uW2) +

(
u2 + v

)
W1W2

)
+ uvW 2

1W2

with β = δZ1 + uW1 and obtain (u1, v1) =
(

U1

uW 2
1W2

, V1

uW 2
1W2

)
. Common sub-

expression elimination yields the following relations:

– A = δZ1, B = δZ2,
– C = uW1, D = uW2,
– E = A+ C, F = B +D,
– G = W1W2, H = (u2 + v),

– I = (C ·G)
−1

, J = A ·G,
– K = J · I, L = E · I,
– u1 = uK, and
– v1 = L · (E · F +H ·G) + v.

During the computation one can save the lookup tables of the intermediate values
I and G, replacing 4M by 2M + 2m4. Moreover, δ is constant and multiplica-
tions with it require 1m8. Finally, we recycle the lookup table of u1, exchanging
3M for 1M + 2m4. In case the point PW = (u, v) is fixed, one can precompute
the lookup tables of u and H using w = 8. Thus, one can trade 1M + 3m4 + 1S
for 4m8. To sum this up, the back-conversion including the y-coordinate recov-
ery costs 1I + 6M + 5m4 + 2m8 + 1S in general, and 1I + 5M + 2m4 + 6m8

for PW fixed.

Implications: If the point PW is not fixed, in which case one needs both back
and forth conversions including a y-coordinate recovery, one obtains total costs
of at most 1I + 8M + 5m4 + 6m8 + 1S. Using XZ-coordinates on short Weier-
strass curves, the formulas for restoring the y-coordinate turn out to be faster
by only 2m8 and, hence, this difference is negligible. Taking the conversion to



WZ-coordinates into account, one gets a small difference of 2M + 6m8, which
only becomes significant if PW is not known a priori. This minimal overhead for
the conversion pays off, as for the scalar multiplication using WZ-coordinates
one has 4M + 2m8 + 5S contrary to 5M + 1m8 + 4S per bit of the scalar k
when using XZ-coordinates.

4.3 Implementation Details and Optimizations

The implementation is written in Java and is based on the NIST recommended
elliptic curves B-163, B-233, B-283, B-409 and B-571 [6]. We are using fast
reductions for the underlying binary fields and long-arrays for values thereof,
which are in polynomial representation. Furthermore, we perform squarings in
linear time using table lookups [15] and multiplications using the windowed
left-to-right comb multiplier. The latter works with precomputed multiplication
lookup tables and is due to Lim and Lee (cf. [12, 7]). For ordinary binary field
multiplications we use windows of size w = 4 and for multiplications with values
known beforehand, such as curve parameters and combinations thereof, we use
windows of size w = 8. Additionally, we cache these lookup tables for curve
parameters and recurring intermediate values in the addition/doubling formulas
resulting in a quite reasonable speedup. We point out that both implementa-
tions only restore the y-coordinates without scaling the result and, thus, return
projective coordinates. The coordinate W (2P − P ) = W (P ) =

(
W̄ : Z̄

)
gets

scaled and, thus, one can ignore Z̄. Furthermore, W̄ is either fixed because of
P being the base point, or fixed throughout the whole ladder steps as the point
difference stays the same. In both cases one can store the multiplication lookup
tables for w = 8. Hence, the costs of the differential addition drop from 4M + 2S
to 3M + 1m8 + 2S. With differential doubling requiring 1M + 1m8 + 3S, one
gets an overall of 4M + 2m8 + 5S per bit of scalar k. In case P is not fixed, one
has additional one-time costs for scaling

(
W̄ : Z̄

)
, that is 1I+1M, and one-time

costs for assembling its lookup tables with window size w = 8.
Finally, we emphasize that the implementation of the differential Mont-

gomery ladder on Huff curves is straight-forward and does not require more
effort than its counterpart on Weierstrass curves, especially when the all-in-one
formulas presented in this paper are being used.

Timings: All benchmarks were carried out on an Intel Core i5-2540M running
Ubuntu Linux 12.10/amd64 and OpenJDK 7u15/amd64 in server mode. Table 3
shows the timings of one application of the Montgomery ladder on the test plat-
form using both WZ and XZ-coordinates on the binary NIST curves, where in
the former case we present the timings for both cases, i.e., for fixed P fixed and
random P . The performance gains achieved through precomputations, which are
possible in case of fixed P , are reflected in the timings. Furthermore, all timings
include the recovery of the y-coordinate as well as in case of WZ-coordinates
the back-and-forth conversion between Weierstrass and Huff curves.

In Table 4, one can see the relative costs of one squaring and one multiplica-
tion with a curve parameter compared to an ordinary field multiplication. This



Coordinates B-163 [ms] B-233 [ms] B-283 [ms] B-409 [ms] B-571 [ms]

XZ 0.709 1.315 1.896 4.203 8.403

WZ 0.692 1.251 1.826 4.040 8.143
Speedup 2.46% 5.12% 3.83% 4.03% 3.19%

WZ (P fixed) 0.662 1.224 1.778 3.928 8.039
Speedup 7.10% 7.43% 6.64% 7.00% 4.53%

Table 3: Timings of the Montgomery ladder for WZ and XZ coordinates using
binary NIST curves.

analysis shows that trading 1M for 1m8 + 1S per ladder iteration, as done by
using WZ instead of XZ-coordinates, saves up to 0.54M per ladder step on the
test platform.

F2163 F2233 F2283 F2409 F2571

1S = 0.094M 0.080M 0.077M 0.061M 0.055M

1m8 = 0.369M 0.411M 0.387M 0.418M 0.430M

Table 4: Costs of squarings and multiplications with curve parameters in relation
to ordinary multiplications.

5 Conclusions

We have implemented binary Huff curves in software. For scalar multiplication,
we were using a differential Montgomery ladder, based on the differential ad-
dition formulas given by Devigne and Joye in [5]. The timings show that for
the binary NIST curves, this implementation is up to 7.4% faster than the refer-
ence implementation of the differential Montgomery ladder on the corresponding
Weierstrass curves, to which we have applied the same set of optimizations.

We have presented fast all-in-one back-and-forth conversion formulas, which
implicitly include the recovery of the y-coordinate. These conversions turn out to
be almost as efficient as the y-coordinate recovery on Weierstrass curves, which is
required anyway after using the Montgomery ladder on Weierstrass curves. This
preserves most of the savings obtained through the faster differential addition
formulas. Furthermore, we have presented curve parameters for Huff curves,
which are birationally equivalent to the NIST-recommended binary Weierstrass
curves.

Finally, we emphasize that when using the formulas presented in this paper,
the implementation of the differential Montgomery ladder on Huff curves does
not require more effort than its counterpart on Weierstrass curves. Thus, given
the performance gains discussed in this paper such an implementation is an
interesting alternative to conventional implementations.
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