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Abstract

Due to advanced technologies, the amount of biomedical data has been increasing drastically. Such large data
sets might be obtained from hospitals, medical practices or laboratories and can be used to discover unknown
knowledge and to find and reflect hypotheses. Based on this fact, knowledge discovery systems can support experts
to make further decisions, explore the data or to predict future events. To analyze and communicate such a vast
amount of information to the user, advanced techniques such as knowledge discovery and information visualization
are necessary. Visual analytics combines these fields and supports users to integrate domain knowledge into the
knowledge discovery process.

This article gives a state-of-the-art overview on visual analytics reseach with a focus on the biomedical domain,
systems biology and *omics data.

Categories and Subject Descriptors (according to ACM CCS): H.1.2 [Information Systems]: User/Machine
Systems—Human information processing J.3 [Computer Applications]: Life and Medical Sciences—Biology and

genetics J.3 [Computer Applications]: Life and Medical Sciences—Medical information systems

1. Introduction

Due to the emerging trend towards personalized medicine
(P4: Personalized, Predictive, Preventive, Participatory), Eu-
ropean health systems are challenged by increasingly big
and complex sets of heterogeneous, high-dimensional data
and increasing amounts of unstructured information. Thus,
cognitive complexity and high-level visualizations challenge
the appropriate understanding of information in the clinical
context. User-centered design and the tailoring of informa-
tion representations to the specificity of human information
processing is crucial. This is still more important facing the
increasing diversity of end users in the increasingly complex
biomedical domain, which have to understand and handle
complex information in the medical field for the purpose of
decision making. This challenge is addressed by biomedical
visual analytics [HJ14].

This article reviews and categorizes state-of-the-art ap-
proaches of knowledge discovery and visual analytics for
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Figure 1: The simplified iterative KDD process depicts
how new knowledge can be extracted from multiple data
sources [FPSS96b].

U
g
5

the biomedical domain. It also reviews the novel biomed-
ical approach of systems biology which makes use of so-
called “xomics” data (genomics, proteomics, metabolomics,
transcriptomics, etc.) to analyze biological properties of
genomes, proteins and metabolites and to understand bio-
logical and pathological processes.

The knowledge discovery process — also knwon as knowl-
edge discovery in databases (KDD) —is outlined in Figure 1.
It consists of several important steps:
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Domain Knowledge This step includes understanding of the
domain by gathering necessary state-of-the-art information
and defining a final goal of the process.

Target Data set The creation of a data set by acquainting
data from several sources is vital in order to unify values.
Moreover, the data and variables, which should be used in
the further process, should be selected.

Data Cleaning and Preparation In general, large data sets
are noisy, inconsistent and might come from heterogeneous
sources, so that cleansing of the data is essential. The quality
of a performed knowledge discovery is directly dependent
on the quality of the underlying data set [HKO06]. Clean-
ing includes handling missing values, removing outliers,
smoothing noise and resolving inconsistency. Data cleaning
is an essential element of data mining but experts have to be
aware that each manipulation of the data set might lead to a
different result and interpretation of the data. Therefore, the
final finding might deviate even more from the real model.

Data Reduction The data can be reduced by dimensionality
reduction such as principle component analysis [WEG87],
multi-dimensional scaling [CCO00] and independent compo-
nent analysis [HKOO04]. Furthermore, additional approaches
to reduce the number of variables are specific transforma-
tion methods and the assortment of features that represent
the data set best.

According to FAYYAD ET AL., data mining tasks can be
classified into six different types [FPSS96a], namely cluster-
ing, classification, association rule mining, regression and
summarization. Mostly, these techniques are derived or re-
used from various research fields (e.g., machine learning,
statistics and pattern recognition).

Clustering Clustering algorithms assign every data item to
one class of a predefined set of classes to describe the data.
In other words, such algorithms determine a set of categories
or clusters to distinguish and to heap together data points.
Depending on the algorithm, clusters can be mutually ex-
haustive, hierarchical or overlapping [FPSS96a]. k-means,
hierarchical clustering or clique are just a few examples of
clustering algorithms. Basically, clustering algorithms need
a similarity and dissimilarity function, also known as dis-
tance function, to distinguish data points. Examples of dis-
tance functions are Euclidean distance or Minkowski dis-
tance [XW*05].

Classification Classification is about learning a function
(classifier) which assigns new data items into one of the
predefined classes. The decision is based on the learned
knowledge from a labeled past data set. Thus, classification
algorithms are trained by supervised learning techniques.
There exist many applications of classification in various
domains. Basically, algorithms are subdivided into binary
classifications (positive and negative outcome) and multi
class classifications [Alp04]. Some examples of commonly
accepted techniques are Neural Networks [Gro88], Naive

Bayes Classifier [Ris01], Decision Trees [SL91], K-nearest
Neighbor [CH67] and Support Vector Machines [HDO*98].

Association Rule Mining Association rule mining (also
known as Dependency modeling) intends to find a model
which represents major dependencies between variables in
large databases. Two levels of dependency models can be
distinguished: the structural model shows local dependen-
cies of variables while quantitative models describe the
strength of dependency as a numerical value [FPSS96a,
LHMO98].

Regression Regression involves the search of a linear and
higher dimensional function, which approximates the given
data with a minimal distance error (e.g., mean square error).
A so-called regression function models the relation between
one or several predictor variables (multiple regression) and
a single dependent response variable. Regressions are usu-
ally used for prediction tasks. However, a low-dimensional
regression function can also represent the dependency in a
human-understandable way (e.g, plot) [FPSS96a, Alp04].

Summarization Summarization aims to find a short descrip-
tion of the data which is commonly used for interactive ex-
ploratory data analysis and report generations [FPSS96a].
CHANDOLA ET AL. describe summarization as follows:

“Summarization is a key data mining concept
which involves techniques for finding a compact
description of a dataset. Simple summarization
methods such as tabulating the mean and stan-
dard deviations are often applied for data analy-
sis, data visualization and automated report gener-
ation.” [CKO07]

For summarization, various values can be representative
while preserving the most information. For example the cen-
troid of a cluster of documents is a good representative of all
items within the cluster. Another summarization approach
uses aggregation functions (calculation of maximum, aver-
age, etc.) [AKO06].

Sequential Patterns The search for sequential patterns aims
to find trends or to analyze the process generating patterns in
time-dependent data sets [FPSS96b].

2. Visual Analytics

A novel approach combines and emphases the research fields
human computer interaction (HCI) and Knowledge discov-
ery in databases. The ultimate goal of this approach is to
enhance human intelligence by computational power and in-
telligence [Hol13] — the visual analytics process.

The visual analytics process implies the selection of auto-
mated data mining algorithms combined with an appropriate
visual presentation [KAF*08, KKEM10]. Therefore, it is a
combination of traditional data mining and information vi-
sualization (see Figure 2).
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Figure 2: A comparison of analytic prosesses between con-
ventional data mining (top) and information visualization
(bottom) [KKEM10].

To emphasize the process, KEIM extended SCHNEIDER-
MAN’s mantra as follows:

“Analyse First — Show the Important — Zoom,
Filter and Analyse Further — Details on De-
mand.” [KMS*08]

Moreover, an essential part of the overall visual analytics
process is the sense-making loop [KAF*08]: the visualiza-
tion process is iterative, where the user interface acts as link
between data and user.

Visual analytics techniques can be categorized in several
ways. The categorization used by BERTINI ET AL. [BL10]
emphasizes whether the visualization or the analytical part
plays the major role. For that, they used three categories,
namely: computationally enhanced visualization, visually
enhanced mining and integrated visualization and mining.
TURKAY ET AL. [TJHH14] presented a 2-dimensional clas-
sification scheme. The first categorization distinguishes the
type of analytical task which is classified in summarizing
information, finding groups & classification and investigat-
ing relations & prediction. The second one categorizes the
applied visualization technique according to its integration
level of analytical and computational tools: visualization as
a presentation medium, semi-interactive use of computa-
tional methods and tight integration of interactive visual and
computational tools.

3. Systems Biology and xomics Data

Concerning visual analytics techniques the bio-medical do-
main is faced with various challenges.

The combination of multiple data sets is often necessary
and the data formats tend to be as diverse as its sources.
Therefore, data pre-processing is needed to obtain a uni-
formly structured data set for performing further analysis.
Each data source is likely to contain different records or
some sources might be incomplete. Values may be contin-
uous or discrete, stored in varied dimensions or even be ac-
quainted under different measurement standards and condi-
tions. Such conditions imply technical and environmental as-
pects (e.g., used equipment, ambient temperature, etc.) and
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require particular data transformations [Kobl14, HK06]. If
these influences are not considered carefully, the combined
data set might lead to harmful divergences of values and fur-
thermore to distorted results of the performed analysis.

In fact, the integration and linking of medical data from
different temporal and observation scales is a huge chal-
lenge. For example, in “Image Analysis in Epidemiological
Applications” [TGR*15] the challenges of visual feature ex-
traction and comparison from a given scale (e.g., a given pa-
tient organ) in long-term studies are laid out. Similarity, link-
ing data from different observation scales like the molecular
scale, protein scale, and metabolism scale potentially needed
for a given patient, remains complex (cf. Figure 6 and be-
low).

Biomedical data sets usually contain personal informa-
tion which has to be protected by applying to ethical poli-
cies. Third parties must not be able to identify patients in a
single data set or even by linking multiple accessible data
sets combined with potential background knowledge (link-
age attack). To emphasize sensitivity, linkage-relevant at-
tributes are divided into identifiers and so-called quasi iden-
tifiers (QI) [KHS™ 14]. While pure identifiers uniquely iden-
tify a person, a combination of QIs is needed for a confident
identification. There exist multiple approaches to achieve
anonymity like anonymization and pseudonymization.

Anonymization describes, besides the removal of per-
sonal information, the fragmentation of attributes and addi-
tion of ambiguity to protect privacy while retaining the data’s
quality for performing knowledge discovery.

Pseudonymization replaces all identifiers with non-
related pseudonyms or hashes. Another approach is the gen-
eralization of values (e.g., usage of the birth year instead
of the exact date) which weakens identifiers efficiently but
might influence the data quality for further research as well.

Data cleansing includes removing noise, handling and
mapping missing values within the data set to achieve better
quality in knowledge discovery. Therefore, data cleansing is
an essential step and it might take up to 80% of the time
of the overall process [DND*02, MM 10]. Besides the gen-
eral data cleansing tasks of the KDD process, missing data
fields can be filled by performing further additional infor-
mation acquisitions. As data cleansing modifies the original
data set, experts need to be aware of the fact, that any modi-
fication leads to a deviated interpretation of the data set.

Knowledge discovery implies the selection and applica-
tion of data mining and machine learning algorithms to
search for new patterns. Such patterns support experts to
discover new knowledge and unknown relations within the
data set. The result of the applied algorithm has to be vi-
sualized in a comprehensible way to allow experts to inves-
tigate the discovered knowledge. The visualization system
should offer sophisticated interaction methods to explore the
data set and adjust granularity. The biomedical domain chal-
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Systems Biology - OMICS

Genomics Transcriptomics Proteomics Metabolomics
(gene) (RNA) (protein) (metabolite)

Figure 3: This figure illustrates relations between different
types of *omics-data. Gene data (genomics) is transcribed
to transcriptomics (RNA). RNA can be broken down to all
proteins it consists of (proteomics) and each protein can
be described by motabolites and its corresponding chemical
process (metabolomics).

lenges visualizations in multiple ways. First, because of the
trend to data-centric medicine, systems have to cope with
huge, complex and multidimensional volumes, which are
likely to include unstructured and noisy data. Furthermore,
precision medicine aims to integrate multiple data sources
(e.g, xomics-data, etc.) [TJTHH14]. This fact dramatically in-
creases complexity of the data set and adds an additional
challenge for data analysts and appropriate visualizations.

Users and experts may use the discovered knowledge
to make decisions for further actions or document the re-
sult. Generally, decision support systems represent extracted
knowledge from the analyzed data, so it does not offer a
complete solution for a given problem. The main expertise
for making further decisions and solving problems is still the
experts experience and knowledge [HJ14,SGG*01].

Within this article, we will focus on the visualization of
*omics-data. The term ‘“>komics” describes the combination
of several research fields which are called genomics, tran-
scriptomics, proteomics and metabolomics [HK11]. Lately,
these research fields have advanced significantly due to
high-throughput technologies such as microarray technol-
ogy [Hel02], Next-Generation Sequencing (NGS) [Mar(08]
and mass spectrometry [AMO3]. Due to these techniques, a
vast amount of data has been generated and enables experts
to perform detailed research. As depicted in Figure 3, all
mentioned types of *omics-data depend on each other in a
sequential manner. The most important *omics-data types
(in terms of data volume) are genomics, proteomics, and
metabolomics.

Genomics In general terms, genomics is the research field of
genes and gene expressions (DNA). Microarray techniques
are one of the key technologies which significantly advanced
genomics. Microarray data sets usually are of high dimen-
sionality, so that dimensionality reduction may be applied
to simplify the data set before using it for further analy-
sis [WvdL11]. The most common visualization techniques
are scatter plots, parallel coordinates plots [Ins85] and heat
maps [GOB*10].

Parallel coordinate plots are a flexible way to analyze mul-
tivariate gene data. It supports users to find correlations be-
tween samples and expression levels. Conditions (brushes)

are used to highlight a specific subset of the data. A disad-
vantage of the parallel coordinate plots is that the order of the
axes influences the graphical representation significantly. To
avoid too many intersections, a limited amount of samples
may be used. Moreover, quality metrics can support the sys-
tem to find a more preferred order.

Figure 4 shows various examples of using heat maps to
analyze microarray gene expression data. A clustering of
rows and columns leads to an ordered matrix, which sim-
plifies the investigation of relations and values. In addition
to that, threshold values can be used to hide uninteresting
values and highlight a specific range of values [KPH"12].

Proteomics An understanding of relations between proteins
is essential in systems biology as biological processes of a
cell are controlled by protein interactions. Data sets contain-
ing information about protein interactions are usually large
and complex because a single protein can interact with up to
several dozens proteins [RP12, SMM*14]. BU ET AL. state:

“It is believed that all biological processes are es-
sentially and accurately carried out through pro-
tein—protein interactions.” [BZC*03]

As protein—protein interactions are usually visualized by
graphs, a complete representation of all interactions is over-
whelming for users. Therefore, tools try to visualize spe-
cific proteins or important subsets at a time (see Figure 5).
Due to its high complexity, common tools use very dif-
ferent methods to visually represent such graphs (no stan-
dard method has been recognized yet) [BZC*03, SMM* 14].
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Figure 4: Illlustration of heat maps depicting microarray
data for 12 genes and 5 cancer samples. Up-regulated gene
expressions are shown in red and down-regulated ones in
green. (a) The input data is shown as a standard heat map.
(b) Cancer samples (rows) and genes (columns) have been
reordered by clustering. Adjacent dendrograms represent the
cluster result. (c) Selective depiction of high and low expres-
sions. (d) Selected depiction of genes controlled by a thresh-
old value. (Image source: KIM ET AL. [KPH*12]).
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Figure 5: Examples of visualized protein interaction net-
works. (a) A protein interaction network with more than
400 proteins placed by using a force-directed algorithm.
(b) Simplified graph by removing unimportant nodes. (c)
Manual replacement of nodes of the network to emphasize
structure and interactions. (d) All core nodes of one type
have been collapsed to a single meta node to simplify the
network. (e) A representation of stages in deadenylation-
dependent mRNA degradation. (Image source: GEHLEN-
BORG ET AL. [GOB*10]).

A drawback of visualized protein interactions is the fact,
that only already-known interactions can be visualized. If
the underlying protein complex purification techniques (e.g.,
mass spectrometry [AMO3], correlated messenger RNA ex-
pression profiles [HMJ*00]) does not detect any interaction,
it will not be visualized afterwards. However, protein net-
works can still be used to understand and to find biologi-
cal functions by graph mining. For example, finding quasi-
cliques or quasi-bipartites might reveal unknown knowl-
edge [BZC*03].

Metabolomics Metabolomics is about analyzing metabo-
lites and their associated chemical reactions within a cell. To
represent such chemical chain reactions, metabolic pathways
are used. Such pathways are usually represented as acyclic
graphs.

There exist many stand-alone tools to explore a specific
type of data but it does not support the user to link the
gained knowledge to other data sets [Lin11]. Therefore, the
ultimate goal of systems biology is to support biologists to
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gain insight into whole organisms by linking all abstraction
levels to a single system (e.g., from organs to molecules).
This can only be achieved by an integrative framework
which combines several visualizations of interlinked hetero-
geneous data sets (see Figure 6). Currently, this goal remains
a considerable way off. The first steps have been done and
already show the high potential for visual analytics appli-
cations [BSM*15], but in order to reach the ultimate goal
several political and social hurdles have to be surmounted:
questions of standardization, data access, data security and
privacy have to be answered.

Tissue level Cellular level

sell]]

Molecular level

T (NN N 11 N TR T

Figure 6: The ultimate goal of systems biology is to link het-
erogeneous data sets to support biologists and bio-medical
experts to gain insight into the whole biological system. Such
visualizations might depict X-ray scans, tissues, cellular and
molecular data, genomes and metabolic pathways. (Image
source: O’DONOGHUE ET AL. [0GG*10]).

4. Visual Analytics in Biomedical Domain

We performed an analysis of 73 recent visual analytics pa-
pers. Our review is based on the state-of-the-art report of
TURKAY ET AL. [TJHHI14] and it extends the given anal-
ysis by classifying all scientific papers into the categoriza-
tions data type and visualization techniques. Moreover, sev-
eral additional visual analytics papers are included.

All papers are categorized into four dimensions, where
the first two are inherited from the analysis of TURKAY ET
AL. [TJHH14]:

e type of analysis

e level of integration

e visualization technique
e data type

Each dimension is divided into the following subcategories:

Type of analysis: Summarizing information, groups & clas-
sification, dependence & prediction.

As discussed in Section 2, the type of analysis categorizes
papers according to analytical task which the presented ap-
proach is supposed to carry out.

Level of integration: Visualization as presentation, semi-
interactive methods, tight integration.
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The level of integration describes how tightly computa-
tional tools and algorithms are integrated into the visual an-
alytics system to enable the user to steer the automated ana-
Iytical process (see Section 2).

Visualization  technique: = Geometric, table-based,

icon/glyph-based, pixel-based, graph.

Visualization techniques are categorized according to
KEIM ET AL. [KK96, KeiO1] and in addition to that, the
category table-based has been added to emphasize common
table-based visualizations, such as table lens and heat maps.

Data type: Genomics, proteomics, metabolomics, text,
graph, image, multivariate data.

Besides common data types in the bio-medical domain
(text, image), the category data type contains all main
*omics-data types (genomics, proteomics, metabolomics).
For general and novel visual analytic approaches, which do
not target the bio-medical domain in particular, the general
categories multivariate data and graph analysis were used.

Integration

pres semi tight

sum 4 21 6
Analysis class 3 18 8
pred 3 7 4

Figure 7: Integration level vs. type of analysis: Most visual
analytics systems are of the integration level semi-interactive
methods for both analysis task (summarizing information
and groups & classification). There is still a lack of predic-
tion systems that tightly integrate the user.

Table 1 summarizes the surveyed works across the level of
integration and type of analysis dimensions. It appears that
a majority of techniques integrates analysis and visualiza-
tion to some degree, with a good amount of works even with
higher levels of integration.

If we look at the level of integration by visualization type
according to Table 2, we find that a majority of methods are
in the class of geometric transform-based and table-based
techniques, and for these works, also semi- or tight integra-
tion levels are observed.

This indicates to us a trend towards higher levels of in-
tegration of visualization, interaction and data analysis, a
trend which appears natural in face of growing data vol-
umes. We also observe that there are rather few works in

icon-based techniques and with tight integration. Generally,
icon- and pixel-oriented techniques realize high-dense infor-
mation displays, eventually utilizing every pixel to represent
a data record or dimension. One explanation for the lower
level of integration could be, that pixel and some icon dis-
plays are hard to interact with directly, as precise selection
may be more difficult than with other, less dense visual rep-
resentations.

We point out that while we have done this selection and
categorization of works to the best of our knowledge, there
are of course many cases where one could argue for one cat-
egory instead of the other. As this is a difficult task, and as
demonstration videos are not available for all of the works,
it remains challenging to assess e.g., the level of integration.
Also, while we aimed for a representative literature selection
in the field, we may well have missed relevant works of re-
searchers. Therefore, the given categorization represents our
understanding, but may be subject to further refinement, re-
organization, and extension by dimensions and approaches
in future work.

5. Open Problems

There is still a huge demand for specialized and highly in-
tegrative visual analytics approaches in the biomedical do-
main. Many highly integrative approaches are general ap-
proaches, but it can also be applied on particular sub-fields of
bio-medicine. Therefore, there is a need of further research
on specialized applications that integrate the users’ knowl-
edge to the analytical process.

As many approaches support a single data type, there is
an even larger lack of solutions, which integrate multiple
data sets to analyze them in parallel. Based on this analysis,
an even broader and more detailed investigation of current
research would reveal, how many systems already support
multiple data sets.

As therapy outcomes as natural text and a lot of medi-
cal knowledge is located in books, the automated analysis
of text is still a hot topic and needs further research. In ad-
dition to that, new approaches for graph analysis and graph
mining are needed to analyze complex graphs (hairballs) in
a comprehensible way.

However, systems biology aims to combine multiple data
sets to analyze multiple layers of a biological system at once.
The ultimate goal of such biomedical systems is to under-
stand biological or pathological processes as a whole. Such
a system would interlink all related data sets (e.g., images,
text, measured values, scans) and offer visual analytics to
support experts to explore the data while integrating personal
domain knowledge. Such sophisticated visual analytics sys-
tems will boost evidence-based medicine to a new level.

(© The Eurographics Association 2015.
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Visualization as Pr ion Semi-interactive Methods

Tight Integration
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Presentation
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Table-based [KHK12], [NCD* 10]

[YNM*13]

[CHB* 12], [DGNO6], [HMI*00], [KPH* 12], [KKM13], [KHK12], [LSP* 10],

[LSS*12], [MBD*11], [MMP09], [RKO04], [SS02], [TRMI2], [Wea04],

[CLKP10], [DWHMI4], [EBNI3],
[MME* 12], [RWH* 10], [TPRH]11a]

Icon- & Pixel- «
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based L 1. [KSB09] VLKO09], [TRM12], [YHW*07]
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[EBN13], [NM13]

[DCP*10],  [DLZ07],
[KSM*12],  [KBHOG],

[BZC*03], [DGNO6], [FSF*13], [HMJ*00], [KKM13], [LSP* 10], [LSS™*12],

[AWI2], [DWHMI4], [GKN*15],
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Table 2: Level of integration vs. visualization technique
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