
SAT-Based Synthesis Methods for Safety Specs?

Roderick Bloem1, Robert Könighofer1, and Martina Seidl2

1 Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Austria.

2 Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria.

Abstract. Automatic synthesis of hardware components from declara-
tive specifications is an ambitious endeavor in computer aided design.
Existing synthesis algorithms are often implemented with Binary Deci-
sion Diagrams (BDDs), inheriting their scalability limitations. Instead of
BDDs, we propose several new methods to synthesize finite-state systems
from safety specifications using decision procedures for the satisfiability
of quantified and unquantified Boolean formulas (SAT-, QBF- and EPR-
solvers). The presented approaches are based on computational learning,
templates, or reduction to first-order logic. We also present an efficient
parallelization, and optimizations to utilize reachability information and
incremental solving. Finally, we compare all methods in an extensive
case study. Our new methods outperform BDDs and other existing work
on some classes of benchmarks, and our parallelization achieves a super-
linear speedup. This is an extended version of [5], featuring an additional
appendix.

Keywords: Reactive Synthesis, SAT-Solving, Quantified Boolean For-
mulas, Effectively Propositional Logic.

1 Introduction

Automatic synthesis is an appealing approach to construct correct reactive sys-
tems: Instead of manually developing a system and verifying it later against
a formal specification, reactive synthesis algorithms can compute a correct-by-
construction implementation of a formal specification fully automatically. Be-
sides the construction of full systems [4], synthesis algorithms are also used in
automatic debugging to compute corrections of erroneous parts of a design [29],
or in program sketching, where “holes” (parts that are left blank by the designer)
are filled automatically [28].

This work deals with synthesis of hardware systems from safety specifications.
Safety specifications express that certain “bad things” never happen. This is
an important class of specifications for two reasons. First, bounded synthesis

? This work was supported in part by the Austrian Science Fund (FWF) through
projects RiSE (S11406-N23 and S11408-N23) and QUAINT (I774-N23), and by the
European Commission through project STANCE (317753).

approaches [8] can reduce synthesis from richer specifications to safety synthesis
problems. Second, safety properties often make up the bulk of a specification,
and they can be handled in a compositional manner: the safety synthesis problem
can be solved before the other properties are handled [27].

One challenge for reactive synthesis is scalability. To address it, synthesis
algorithms are usually symbolic, i.e., they represent states and transitions using
formulas. The symbolic representations are, in turn, often implemented using
Binary Decision Diagrams (BDDs), because they provide both existential and
universal quantification. However, it is well known that BDDs explode in size
for certain structures [2]. At the same time, algorithms and tools to decide the
satisfiability of formulas became very efficient over the last decade.

In this paper, we thus propose several new approaches to use satisfiability-
based methods for the synthesis of reactive systems from safety specifications.
We focus on the computation of the so-called winning region, i.e., the states from
which the specification can be fulfilled, because extracting an implementation
from this winning region is then conceptually easy (but can be computationally
hard). More specifically, our contributions are as follows.

1. We present a learning-based approach to compute a winning region as a
Conjunctive Normal Form (CNF) formula over the state variables using a
solver for Quantified Boolean Formulas (QBFs) [19].

2. We show how this method can be implemented efficiently using two incre-
mental SAT-solvers instead of a QBF-solver, and how approximate reacha-
bility information can be used to increase the performance. We also present
a parallelization that combines different variants of these learning-based ap-
proaches to achieve a super-linear speedup.

3. We present a template-based approach to compute a winning region that
follows a given structure with one single QBF-solver call.

4. We also show that fixing a structure can be avoided when using a solver for
Effectively Propositional Logic (EPR) [18].

5. We present extensive experimental results to compare all these methods, to
each other and to previous work.

Our experiments do not reveal the new all-purpose synthesis algorithm. We
rather conclude that different methods perform well on different benchmarks,
and that our new approaches outperform existing ones significantly on some
classes of benchmarks.

Related Work. A QBF-based synthesis method for safety specifications was
presented in [29]. Its QBF-encoding can have deep quantifier nestings and many
copies of the transition relation. In contrast, our approach uses more but poten-
tially cheaper QBF-queries. Becker et al. [1] show how to compute all solutions to
a QBF-problem with computational learning, and how to use such an ALLQBF
engine for synthesis. In order to compute all losing states (from which the spec-
ification cannot be enforced) their algorithm analyzes all one-step predecessors
of the unsafe states before turning to the two-step predecessors, an so on. Our
learning-based synthesis method is similar, but applies learning directly to the

2

synthesis problem. As a result, our synthesis algorithm is more “greedy”. Dis-
covered losing states are utilized immediately in the computation of new losing
states, independent of the distance to the unsafe states. Besides the computation
of a winning region, computational learning has also been used for extracting
small circuits from a strategy [9]. The basic idea of substituting a QBF-solver
with two competing SAT-solvers has already been presented in [13] and [21].
We apply this idea to our learning-based synthesis algorithm, and adapt it to
make optimal use of incremental SAT-solving in our setting. Our optimizations
to utilize reachability information in synthesis are based on the concept of in-
cremental induction, as presented by Bradley for the model-checking algorithm
IC3 [6]. These reachability optimizations are completely new in synthesis, to the
best of our knowledge. Recently, Morgenstern et al. [21] proposed a property-
directed synthesis method which is also inspired by IC3 [6]. Roughly speaking,
it computes the rank (the number of steps in which the environment can enforce
to reach an unsafe state) of the initial state in a lazy manner. It maintains over-
approximations of states having (no more than) a certain rank. If the algorithm
cannot decide the rank of a state using this information, it decides the rank
of successors first. This approach is complementary to our learning-based algo-
rithms. One fundamental difference is that [21] explores the state space starting
from the initial state, while our algorithms start at the unsafe states. The main
similarity is that one of our methods also uses two competing SAT-solvers instead
of a QBF-solver. Templates have already been used to synthesize combinational
circuits [15], loop invariants [10], repairs [16], and missing parts in programs [28].
We use this idea for synthesizing a winning region. Reducing the safety synthesis
problem to EPR is also new, to the best of our knowledge.

Outline. The rest of this paper is organized as follows. Section 2 introduces
basic concepts and notation, and Section 3 discusses synthesis from safety spec-
ifications in general. Our new synthesis methods are presented in Sections 4
and 5. Section 6 contains our experimental evaluation, and Section 7 concludes.
This is an extended version of [5], featuring an additional appendix.

2 Preliminaries

We assume familiarity with propositional logic, but repeat the notions important
for this paper. Refer to [3] for a more gentle introduction.

Basic Notation. In propositional logic, a literal is a Boolean variable or
its negation. A cube is a conjunction of literals, and a clause is a disjunction of
literals. A formula in propositional logic is in Conjunctive Normal Form (CNF) if
it is a conjunction of clauses. A cube describes a (potentially partial) assignment
to Boolean variables: unnegated variables are true, negated ones are false. We
denote vectors of variables with overlines, and corresponding cubes in bold. E.g.,
x is a cube over the variable vector x = (x1, . . . , xn). We treat vectors of variables
like sets if the order does not matter. An x-minterm is a cube that contains all
variables of x. Cube x1 is a sub-cube of x2, written x1 ⊆ x2, if the literals of x1

form a subset of the literals in x2. We use the same notation for sub-clauses. Let

3

F (x) be a propositional formula over the variables x, and let x be an x-minterm.
We write x |= F (x) to denote that the assignment x satisfies F (x). We will omit
the brackets listing variable dependencies if they are irrelevant or clear from the
context (i.e., we often write F instead of F (x)).

Decision Procedures. A SAT-solver is a tool that takes a propositional
formula (usually in CNF) and decides its satisfiability. Let F (x, y, . . .) be a propo-
sitional formula over several vectors x, y, . . . of Boolean variables. We write sat :=
PropSat(F) for a SAT-solver call. The variable sat is assigned true if F is satisfi-
able, and false otherwise. We write (sat,x,y, . . .) := PropSatModel(F (x, y, . . .))
to obtain a satisfying assignment in the form of cubes x,y, . . . over the different
variable vectors. Let a be a cube. We write b := PropUnsatCore(a, F) to
denote the extraction of an unsatisfiable core: Given that a∧ F is unsatisfiable,
b ⊆ a will be a sub-cube of a such that b ∧ F is still unsatisfiable. Quanti-
fied Boolean Formulas (QBFs) extend propositional logic with universal (∀) and
existential (∃) quantifiers. A QBF (in Prenex Conjunctive Normal Form) is a
formula Q1x .Q2y F (x, y, . . .), where Qi ∈ {∀,∃} and F is a propositional
formula in CNF. Here, Qix is a shorthand for Qix1 . . . Qixn with x = (x1 . . . xn).
The quantifiers have their expected semantics. A QBF-solver takes a QBF and
decides its satisfiability. We write sat := QbfSat(Q1x .Q2y F (x, y, . . .)) or
(sat,a,b . . .) := QbfSatModel(∃a .∃b . . . Q1x .Q2y . . . F (a, b, . . . , x, y, . . .)) to
denote calls to a QBF-solver. Note that QbfSatModel only extracts assign-
ments for variables that are quantified existentially on the outermost level.

Transition Systems. A controllable finite-state transition system is a tuple
S = (x, i, c, I, T), where x is a vector of Boolean state variables, i is a vector of
uncontrollable input variables, c is a vector of controllable input variables, I(x)
is an initial condition, and T (x, i, c, x′) is a transition relation with x′ denoting
the next-state copy of x. A state of S is an assignment to the x-variables, usually
represented as x-minterm x. A formula F (x) represents the set of all states x
for which x |= F (x). Priming a formula F to obtain F ′ means that all variables
in the formula are primed, i.e., replaced by their next-state copy. An execution
of S is an infinite sequence x0,x1 . . . of states such that x0 |= I and for all pairs
(xj ,xj+1) there exist some input assignment ij , cj such that xj∧ ij∧cj∧x′j+1 |=
T . A state x is reachable in S if there exists an execution x0,x1 . . . and an
index j such that x = xj . The execution of S is controlled by two players:
the protagonist and the antagonist. In every step j, the antagonist first chooses
an assignment ij to the uncontrollable inputs i. Next, the protagonist picks
an assignment cj to the controllable inputs c. The transition relation T then
computes the next state xj+1. This is repeated indefinitely. We assume that T
is complete and deterministic, i.e., for every state and input assignment, there
exists exactly one successor state. More formally, we have that ∀x, i, c .∃x′ . T
and ∀x, i, c, x1′, x2′ .(T (x, i, c, x1

′) ∧ T (x, i, c, x2
′)) ⇒ (x1

′ = x2
′). Let F (x) be a

formula representing a certain set of states. The mixed pre-image Forcep1(F) =
∀i .∃c, x′ . T ∧F ′ represents all states from which the protagonist can enforce to
reach a state of F in exactly one step. Analogously, Forcea1(F) = ∃i .∀c .∃x′ . T ∧
F ′ gives all states from which the antagonist can enforce to visit F in one step.

4

Synthesis Problem. A (memoryless) controller for S is a function f :

2x × 2i → 2c to define the control signals c based on the current state of S
and the uncontrollable inputs i. Let P (x) be a formula characterizing the set of
safe states in a transition system S. An execution x0,x1 . . . is safe if it visits
only safe states, i.e., xj |= P for all j. A controller f for S is safe if all execu-
tions of S are safe, given that the control signals are computed by f . Formally,
f is safe if there exists no sequence of pairs (x0, i0), (x1, i1), . . . such that (a)
x0 |= I, (b) xj ∧ ij ∧ f(xj , ij) ∧ x′j+1 |= T for all j ≥ 0, and (c) xj 6|= P for
some j. The problem addressed in this paper is to synthesize such a safe con-
troller. We call a pair (S, P) a specification of a safety synthesis problem. A
specification is realizable if a safe controller exists. A safe implementation I of
a specification (S, P) with S = (x, i, c, I(x), T (x, i, c, x′)) is a transition system
I = (x, i, ∅, I(x), T (x, i, f(x, i), x′)), where f is a safe controller for S.

3 Synthesis from Safety Specifications

This paper presents several approaches for synthesizing a safe controller for a
fine-state transition system S. The synthesis problem can be seen as a game
between the protagonist controlling the c-variables and the antagonist controlling
the i-variables during an execution [21]. The protagonist wins the game if the
execution never visits an unsafe state x 6|= P . Otherwise, the antagonist wins. A
safe controller for S is now simply a strategy for the protagonist to win the game.
Standard game-based synthesis methods can be used to compute such a winning
strategy [30]. These game-based methods usually work in two steps. First, a so-
called winning region is computed. A winning region is a set of states W (x) from
which a winning strategy for the protagonist exists. Second, a winning strategy
is derived from (intermediate results in the computation of) the winning region.
Most of the synthesis approaches presented in the following implement this two-
step procedure. For safety synthesis problems, the following three conditions are
sufficient for a winning region W (x) to be turned into a winning strategy.

I) Every initial state is in the winning region: I ⇒W .
II) The winning region contains only safe states: W ⇒ P .

III) The protagonist can enforce to stay in the winning region:W ⇒ Forcep1(W).

A specification is realizable if and only if such a winning region exists. Hence, it
suffices to search for a formula that satisfies these three constraints. Deriving a
winning strategy f : 2x×2i → 2c from such a winning region is then conceptually
easy: f must always pick control signal values such that the successor state is
in W again. This is always possible due to (I) and (III). We therefore focus on
approaches to efficiently compute a winning region that satisfies (I)-(III), and
leave an investigation of methods for the extraction of a concrete controller to
future work1. First, we will briefly discuss an attractor-based approach which

1 In our implementation, we currently extract circuits by computing Skolem functions
for the c signals in ∀x, i . ∃c, x′ .(¬W)∨ (T ∧W ′) using the QBFCert [22] framework.
However, there are other options like learning [9], interpolation [14], or templates [15].

5

Fig. 1. LearnQbf: work-
ing principle.

Fig. 2. LearnSat: work-
ing principle.

Fig. 3. LearnSat: Using
F̂ for incremental solving.

is often implemented with BDDs [30]. Then, we will present several new ideas
which are more suitable for an implementation using SAT- and QBF-solvers.

3.1 Standard Attractor-Based Synthesis Approach

The synthesis method presented in this section can be seen as the standard
textbook method for solving safety games [30]. Starting with all safe states P ,

1: procedure SafeSynth(S, P),
returns: W or false

2: F := P
3: while F changes do
4: F := F ∧ Forcep1(F)
5: if I 6⇒ F then
6: return false
7: return F

the SafeSynth algorithm reduces F to
states from which the protagonist can en-
force to go back to F until F does not
change anymore. If an initial state is re-
moved from F , false is returned to signal
unrealizability. Otherwise, F will finally
converge to a fixpoint, which is a proper
winning region W (W = νF.P∧Forcep1(F)
in µ-calculus notation). SafeSynth is
well suited for an implementation using BDDs because the set of all states sat-
isfying Forcep1(F) can be computed with just a few BDD operations, and the
comparison to decide if F changed can be done in constant time. A straightfor-
ward implementation using a QBF-solver maintains a growing quantified formula
to represent F (i.e, F0 = P , F1 = ∃x .∀i .∃c, x′ . P ∧T ∧P ′, and so on), and calls
a QBF-solver to decide if F changed semantically from one iteration to the next
one. This approach is explained in [29]. In iteration n, F contains n copies of
the transition relation and 2n quantifier alternations. This means that the dif-
ficulty of the QBF queries increases significantly with the number of iterations,
which may be prohibitive for large specification. The resulting winning region
W is a quantified formula as well. An alternative QBF-based implementation [1]
eliminates the quantifiers from F in every iteration by computing all satisfying
assignments of F . The next section explains how this idea can be improved.

4 Learning-Based Synthesis Approaches

Becker et al. [1] show how SafeSynth can be implemented with a QBF-solver
by eliminating the quantifiers in F with computational learning. This gives a
CNF representation of every F -iterate. However, we are only interested in the
final value W of F . This allows for a tighter and more efficient integration of the
learning approach with the SafeSynth algorithm.

6

4.1 Learning-Based Synthesis using a QBF-Solver

The following algorithm uses computational learning to compute a winning re-
gion in CNF using a QBF-solver. It returns false in case of unrealizability.

1: procedure LearnQbf((x, i, c, I, T), P), returns: W or false
2: F := P
3: // Check if there exists an x |= F ∧ Forcea1(¬F):
4: while sat with (sat,x):=QbfSatModel(∃x, i .∀c .∃x′ . F ∧ T ∧ ¬F ′) do
5: // Find a sub-cube xg ⊆ x such that (xg ∧ F)⇒ Forcea1(¬F):
6: xg := x
7: for l ∈ literals(x) do
8: xt := xg \ {l}, if optimize then G := F ∧ ¬xg else G := F
9: if ¬QbfSat(∃x .∀i .∃c, x′ .xt ∧G ∧ T ∧G′) then

10: xg := xt

11: if PropSat(xg ∧ I) then return false
12: F := F ∧ ¬xg

13: return F
14: end procedure

The working principle of LearnQbf is illustrated in Figure 1. It starts with the
initial guess F that the winning region contains all safe states P . Line 4 then
checks for a counterexample to the correctness of this guess in form of a state
x |= F ∧ Forcea1(¬F) from which the antagonist can enforce to leave F . Assume
that optimize = false in line 8 for now, i.e., G is always just F . The inner loop
now generalizes the state-cube x to xg ⊆ x by dropping literals as long as xg

does not contain a single state from which the protagonist can enforce to stay in
F . During and after the execution of the inner loop, xg contains only states that
must be removed from F , or have already been removed from F before. Hence,
as an optimization, we can treat the states of xg as if they were removed from
F already during the cube minimization. This is done with optimize = true in
line 8 by setting G = F ∧ ¬xg instead of G = F . This optimization can lead to
smaller cubes and less iterations. If the final cube xg contains an initial state,
the algorithm signals unrealizability by returning false. Otherwise, it removes the
states of xg from F by adding the clause ¬xg, and continues by checking for other
counterexamples. If P is in CNF, then the final result in F will also be in CNF. If
T is also in CNF, then the query of line 9 can be constructed by merging clause
sets. Only for the query in line 4, a CNF encoding of ¬F ′ is necessary. This can
be achieved, e.g., using a Plaisted-Greenbaum transformation [23], which causes
only a linear blow-up of the formula.

Heuristics. We observed that the generalization (the inner loop of Learn-
Qbf) is often fast compared to the computation of counterexamples in Line 4.
As a heuristic, we therefore propose to compute not only one but all (or several)
minimal generalizations xg ⊆ x to every counterexample-state x, e.g., using
a hitting set tree algorithm [24]. Another observation is that newly discovered
clauses can render earlier clauses redundant in F . In every iteration, we therefore
“compress” F by removing clauses that are implied by others. This can be done

7

cheaply with incremental SAT-solving, and simplifies the CNF for ¬F ′ in line 4.
Iterating over existing clauses and trying to minimize them further at a later
point in time did not lead to significant improvements in our experiments.

4.2 Learning-Based Synthesis using SAT-Solvers

LearnQbf can also be implemented with SAT-solving instead of QBF-solving.
The basic idea is to use two competing SAT-solvers for the two different quantifier
types, as done in [13]. However, we interweave this concept with the synthesis al-
gorithm to better utilize incremental solving capabilities of modern SAT-solvers.

1: procedure LearnSat((x, i, c, I, T), P), returns: W or false
2: F := P , F̂ := P , U := true, precise := true
3: while true do
4: (sat,x, i) := PropSatModel(F ∧ U ∧ T ∧ ¬F̂ ′)
5: if ¬sat then
6: if precise then return F
7: U := true, F̂ := F , precise := true
8: else
9: (sat, c) := PropSatModel(F ∧ x ∧ i ∧ T ∧ F ′)

10: if ¬sat then
11: xg := PropUnsatCore(x, F ∧ i ∧ T ∧ F ′)
12: if PropSat(xg ∧ I) then return false
13: F := F ∧ ¬xg

14: if optimize then precise := false else F̂ := F , U := true
15: else
16: U := U ∧ ¬PropUnsatCore(x ∧ i, c ∧ F ∧ U ∧ T ∧ ¬F̂ ′)
17: end procedure

Data Structures. Besides the current guess F of the winning region W ,
LearnSat also maintains a copy F̂ of F that is updated only lazily. This allows
for better utilization of incremental SAT-solving, and will be explained below.
The flag precise indicates if F̂ = F . The variable U stores a CNF formula over
the x and i variables. Intuitively, U contains state-input combinations which are
not useful for the antagonist when trying to break out of F .

Working Principle. The working principle of LearnSat is illustrated in
Figure 2. For the moment, let optimize be false, i.e., F̂ is always F . To deal with
the mixed quantification inherent in synthesis, LearnSat uses two competing
SAT-solvers, s∃ and s∀. In line 4, s∃ tries to find a possibility for the antagonist
to leave F . It is computed as a state-input pair (x, i) for which some c-value leads
to a ¬F successor. Next, in line 9, s∀ searches for a response c of the protagonist
to avoid leaving F . If no such response exists, then x must be excluded from F .
However, instead of excluding this one state only, we generalize the state-cube
x by dropping literals to obtain xg, representing a larger region of states for
which input i can be used by the antagonist to enforce leaving F . This is done
by computing the unsatisfiable core with respect to the literals of x in line 11.
Otherwise, if s∀ finds a response c, then the state-input pair (x, i) is not helpful

8

for the antagonist to break out of F . It must be removed from U to avoid that
the same pair is tried again. Instead of removing just (x, i), we generalize it again
by dropping literals as long as the control value c prevents leaving F . This is
done by computing an unsatisfiable core over the literals in x ∧ i in line 16.
As soon as F changes, U must be reset to true (line 14): even if a state-input
pair is not helpful for breaking out of F , it may be helpful for breaking out of
a smaller F . If line 4 reports unsatisfiability, then the antagonist cannot enforce
to leave F , i.e., F is a winning region (precise = true if optimize = false). If an
initial state is removed from F , then the specification is unrealizable (line 12).

Using F̂ to Support Incremental Solving. Now consider the case where
optimize is true. In line 13, new clauses are added only to F but not to F̂ .
This ensures that F ⇒ F̂ , but F can be strictly stronger. See Figure 3 for
an illustration. Line 4 now searches for a transition (respecting U) from F to
¬F̂ . If such a transition is found, then it also leads from F to ¬F . However,
if no such transition from F to ¬F̂ exists, then this does not mean that there
is no transition from F to ¬F . Hence, in case of unsatisfiability, we update
F̂ to F and store the fact that F̂ is now accurate by setting precise = true.
If the call in line 4 reports unsatisfiability with precise = true, then there is
definitely no way for the antagonist to leave F and the computation of F is
done. The reason for not updating F̂ immediately is that solver s∃ can be used
incrementally until the next update, because new clauses are only added to F
and U . Only when reaching line 7, a new incremental session has to be started.
This optimization proved to be very beneficial in our experiments. Solver s∀ can
be used incrementally throughout the entire algorithm anyway, because F gets
updated with new clauses only.

4.3 Utilizing Unreachable States

This section presents an optimization of LearnQbf to utilize (un)reachability
information. It works analogously for LearnSat, though. Recall that the vari-
able G in LearnQbf stores the current over-approximation of the winning re-
gion W (cf. Section. 4.1). LearnQbf generalizes a counterexample-state x to a
region xg such that G∧xg ⇒ Forcea1(¬G), i.e., G∧xg contains only states from
which the antagonist can enforce to leave G. Let R(x) be an over-approximation
of the states reachable in S. That is, R contains at least all states that could
appear in an execution of S. It is sufficient to ensure G ∧ xg ∧R⇒ Forcea1(¬G)
because unreachable states can be excluded from G even if they are winning for
the protagonist. This can lead to smaller cubes and faster convergence.

There exist various methods to compute reachable states, both precisely and
as over-approximation [20]. The current over-approximation G of the winning
region W can also be used: Given that the specification is realizable (we will dis-
cuss the unrealizable case below), the protagonist will enforce that W is never
left. Hence, at any point in time, G is itself an over-approximation of the reach-
able states, not necessarily in S, but definitely in the final implementation I
(given that I is derived from W and W ⇒ G). Hence, stronger reachability
information can be obtained by considering only transitions that remain in G.

9

In our optimization, we do not explicitly compute an over-approximation of
the reachable states, but rather exploit ideas from the property directed reach-
ability algorithm IC3 [6]: By induction, we know that a state x is definitely
unreachable in I if x 6|= I and ¬x ∧G ∧ T ⇒ ¬x′. Otherwise, x could be reach-
able. The same holds for sets of states. By adding these two constraints, we
modify the generalization check in line 9 of LearnQbf to

QbfSat(∃x∗, i∗, c∗ .∃x .∀i .∃c, x′ .
(I(x) ∨G(x∗) ∧ ¬xg(x∗) ∧ T (x∗, i

∗
, c∗, x))∧ (1)

xg(x) ∧G(x) ∧ T (x, i, c, x′) ∧G(x′)).

We will refer to this modification as optimization RG (which is short for “reach-
ability during generalization”). Only the second line is new. Here, x∗, i

∗
, and c∗

are the previous-state copies of x, i, and c, respectively. Originally, the formula
was true if the region xg ∧G contained a state from which the protagonist could
enforce to stay in G. In this case, the generalization failed, because we cannot
safely remove states that are potentially winning for the protagonist. The new
formula is true only if xg ∧G contains a state xa from which the protagonist can
enforce to stay in G, and this state xa is either initial, or has a predecessor xb in
G ∧ ¬xg. This situation is illustrated in Figure 4. States that are neither initial
nor have a predecessor in G ∧ ¬xg are unreachable and, hence, can safely be
removed. Note that we require xb to be in G∧¬xg, and not just in G and differ-
ent from xa. The intuitive reason is that a predecessor in G∧xg does not count
because this region is going to be removed from G. A more formal argument is
given by the following theorem.

Theorem 1. For a realizable specification, if Eq. 1 is unsatisfiable, then G∧xg

cannot contain a state xa from which (a) the protagonist can enforce to visit G
in one step, and (b) which is reachable in any implementation I derived from a
winning region W ⇒ G with W ⇒ Forcep1(W).

A proof can be found in Appendix A.1. Theorem 1 ensures that the states re-
moved with optimization RG cannot be necessary for the protagonist to win the
game, i.e., that the optimization does not remove “too much”. So far, we as-
sumed realizability. However, optimization RG also cannot make an unrealizable
specification be identified as realizable. It can only remove more states, which
means that unrealizability is detected only earlier.

Similar to improving the generalization of counterexamples using unreacha-
bility information, we can also restrict their computation to potentially reachable
states. This is explained as optimization RC in Appendix A.2. However, while
optimization RG resulted in significant performance gains (more than an order
of magnitude for some benchmarks; see the columns SM and SGM in Table 3),
we could not achieve solid improvements with optimization RC. Sometimes the
computation became slightly faster, sometimes slower.

10

Fig. 4. Optimization RG:
A counterexample to gen-
eralization.

Fig. 5. A CNF template for the winning region.

4.4 Parallelization

The algorithms LearnQbf and LearnSat compute clauses that refine the cur-
rent over-approximation F of the winning region. This can also be done with
multiple threads in parallel using a global clause database F . Different threads
can implement different methods to compute new clauses, or generalize existing
ones. They notify each other whenever they add a (new or smaller) clause to F
so that all other threads can continue to work with the refined F .

In our implementation, we experimented with different thread combinations.
If two threads are available, we let them both execute LearnSat with optimiza-
tion RG but without RC. We keep the LearnSat-threads synchronized in the
sense that they all use the same F̂ . If one thread restarts solver s∃ with a new F̂ ,
then all other LearnSat-threads restart their s∃-solver with the same F̂ as well.
This way, the LearnSat-threads can not only exchange new F -clauses, but also
new U -clauses. We use different SAT-solvers in the different threads (currently
our implementation supports Lingeling, Minisat, and PicoSat). This reduces the
chances that the threads find the same (or similar) counterexamples and gen-
eralizations. Also, the solvers may complement each other: if one gets stuck for
a while on a hard problem, the other one may still achieve significant progress
in the meantime. The stuck solver then benefits from this progress in the next
step. We also let the LearnSat-threads store the computed counterexample-
cubes in a global counterexample-database. If three threads are available, we use
one thread to take counterexample-cubes from this database, and compute all
possible generalizations using a SAT-solver and a hitting set tree algorithm [24].
We also experimentally added threads that minimize existing clauses further us-
ing a QBF-solver, and threads implementing LearnQbf. However, we observed
that threads using QBF-solvers can not quite keep up with the pace of threads
using SAT-solvers. Consequently, they only yield minor speedups.

Our parallelization approach does not only exploit hardware parallelism, it
is also a playground for combining different methods and solvers. We only tried
a few options; a thorough investigation of beneficial combinations remains to be
done.

11

5 Direct Synthesis Methods

This section presents completely different approaches for computing a winning
region. Instead of refining an initial guess in many iterations, we simply assert
the constraints for a proper winning region and compute a solution in one go.

5.1 Template-Based Synthesis Approach

We define a generic template W (x, k) for the winning region W (x), where k is a
vector of Boolean variables acting as template parameters. Concrete values k for
the parameters k instantiate a concrete formula W (x) over the state variables x.
This reduces the search for a Boolean formula (the winning region) to a search
for Boolean parameter values. We can now find a winning region that satisfies
the three desired properties (I)-(III) with a single QBF-solver call:

(sat,k) = QbfSatModel(∃k . ∀x, i .∃c, x′ . (I ⇒W (x, k)) ∧
(W (x, k)⇒ P) ∧ (2)

(W (x, k)⇒ (T ∧W (x′, k)))

The challenge in this approach is to define a generic template W (x, k) for the
winning region. Figure 5 illustrates how a CNF template could look like. Here,
W (x) is a conjunction of clauses over the state variables x. Template parameters
k define the shape of the clauses. First, we fix a maximum number N of clauses
in the CNF. Then, we introduce three vectors of template parameters: kc, kv,
and kn. We denote their union by k. If parameter kci with 1 ≤ i ≤ N is true, then
clause i is used in W (x), otherwise not. If parameter kvi,j with 1 ≤ i ≤ N and
1 ≤ j ≤ |x| is true, then the state variable xj ∈ x appears in clause i of W (x),
otherwise not. Finally, if parameter kni,j is true, then xj can appear in clause i
only negated, otherwise only unnegated. If kvi,j is false, then kni,j is irrelevant.

This gives |k| = 2 · N · |x| + N template parameters. Figure 5 illustrates this
definition of W (x, k) as a circuit. A CNF encoding of this circuit to be used in
the QBF query shown in Eq. 2 is straightforward. Choosing N is delicate. If N
is too low, we will not find a solution, even if one exists. If it is too high, we
waste computational resources and may find an unnecessarily complex winning
region. In our implementation, we solve this dilemma by starting with N = 1
and doubling it upon failure. We stop if we get a negative answer for N ≥ 2|x|

(because any Boolean formula over x can be represented in a CNF with < 2|x|

clauses). The CNF template explained in this paragraph is just an example.
Other ideas include And-Inverter Graphs with parameterized interconnects, or
other parameterized circuits [15].

The template-based approach can be good at finding simple winning regions
quickly. There may be many different winning regions that satisfy the conditions
(I)-(III). The algorithms SafeSynth, LearnQbf and LearnSat will always
find the largest of these sets (modulo unreachable states, if used with optimiza-
tion RG or RC). The template-based approach is more flexible. As an extreme

12

example, suppose that there is only one initial state, it is safe, and the protag-
onist can enforce to stay in this state. Suppose further that the largest winning
region is complicated. The template-based approach may find W = I quickly,
while the other approaches may take ages to compute the largest winning re-
gion. On the other hand, the template-based approach can be expected to scale
poorly if no simple winning region exists, or if the synthesis problem is even
unrealizable. The issue of detecting unrealizability can be tackled just like in
bounded synthesis [11]: in parallel to searching for a winning region for the pro-
tagonist, one can also try to find a winning region for the antagonist (a set of
states from which the antagonist can enforce to leave the safe states in some
number of steps). If a winning region for the antagonist contains an initial state,
unrealizability is detected.

5.2 EPR Reduction Approach

The EPR approach is based on the observation that a winning region W (x)
satisfying the three requirements (I)-(III) can also be computed as a Skolem
function, without a need to fix a template. However, the requirement (III) con-
cerns not only W but also its next-state copy W ′. Hence, we need a Skolem
function for the winning region and its next-state copy, and the two functions
must be consistent. This cannot be formulated as a QBF problem with a linear
quantifier structure, but only using so-called Henkin Quantifiers2 [12], or in the
Effectively Propositional Logic (EPR) [18] fragment of first-order logic. Deciding
the satisfiability of formulas with Henkin Quantifiers is NEXPTIME-complete,
and only a few tools exist to tackle the problem [12]. Hence, we focus on reduc-
tions to EPR. EPR is a subset of first-order logic that contains formulas of the
form ∃A .∀B .ϕ, where A and B are disjoint vectors of variables ranging over
some domain D, and ϕ is a function-free first-order formula in CNF. The formula
ϕ can contain predicates, which are (implicitly) existentially quantified.

Recall that we need to find a formula W (x) such that ∀x, i .∃c, x′ .(I ⇒
W)∧ (W ⇒ P)∧ (W ⇒ T ∧W ′). In order to get a corresponding EPR formula,
we must (a) encode the Boolean variables using first-order domain variables, (b)
eliminate the existential quantification inside the universal one, and (c) encode
the body of the formula in CNF. Just like [26], we can address (a) by introducing
a new domain variable Y for every Boolean variable y, a unary predicate p
to encode the truth value of variables, constants > and ⊥ to encode true and
false, and the axioms p(>) and ¬p(⊥). The existential quantification of the x′

variables can be turned into a universal one by turning the conjunction with T
into an implication, i.e., re-write ∀x, i .∃c, x′ .W (x) ⇒ T (x, i, c, x′) ∧W (x′) to
∀x, i .∃c .∀x′ .W (x)∧T (x, i, c, x′)⇒W (x′). This works because we assume that
T is both deterministic and complete. We Skolemize the c-variables c1, . . . , cn by
introducing new predicates C1(X, I), . . . , Cn(X, I). For W , we also introduce a

2 A winning region is a Skolem function for the Boolean variable w in the formula
∀x . ∃w . ∀i . ∃c .
∀x′ . ∃w′ .

(I ⇒ w) ∧ (w ⇒ P) ∧ ((x = x′) ⇒ (w = w′)) ∧ (w ∧ T ⇒ w′) .

13

new predicate W (X). This gives

∀X, I,X ′ . (I(X)⇒W (X)) ∧ (W (X)⇒ P (X)) ∧
(W (X) ∧ T (X, I, C(X, I), X

′
)⇒W (X ′))

The body of this formula has to be encoded in CNF, but many first-order the-
orem provers and EPR solvers can do this internally. If temporary variables are
introduced in the course of a CNF encoding, then they have to be Skolemized
with corresponding predicates. Instantiation-based EPR-solvers like iProver [17]
can not only decide the satisfiability of EPR formulas, but also compute models
in form of concrete formulas for the predicates. For our problem, this means that
we cannot only directly extract a winning region but also implementations for
the control signals from the Cj(X, I)-predicates. iProver also won the EPR track
of the Automated Theorem Proving System Competition in the last years.

6 Experimental Results

This section presents our implementation, benchmarks and experimental results.

6.1 Implementation

We implemented the synthesis methods presented in this paper in a prototype
tool. The source code (written in C++), more extensive experimental results,
and the scripts to reproduce them are available for download3. Our tool takes
as input an AIGER4 file, defined as for the safety track of the hardware synthesis
competition, but with the inputs separated into controllable and uncontrollable
ones. It outputs the synthesized implementation in AIGER format as well. Sev-
eral back-ends implement different methods to compute a winning region. At
the moment, they all use QBFCert [22] to extract the final implementation. How-
ever, in this paper, we evaluate the winning region computation only. Table 1
describes some of our implementations. Results for more configurations (with
different optimizations, solvers, etc.) can be found in the downloadable archive.
The BDD-based method is actually implemented in a separate tool5. It uses dy-
namic variable reordering, forced re-orderings at certain points, and a cache to
speedup the construction of the transition relation. PDM is a re-implementation
of [21]. These two implementations serve as baseline for our comparison. The
other methods are implemented as described above. BloqqerM refers to an ex-
tension of the QBF-preprocessor Bloqqer to preserve satisfying assignments. This
extension is presented in [25].

3 www.iaik.tugraz.at/content/research/design_verification/demiurge/.
4 See http://fmv.jku.at/aiger/.
5 Is was created by students and won a competition in a lecture on synthesis.

14

www.iaik.tugraz.at/content/research/design_verification/demiurge/
http://fmv.jku.at/aiger/

Table 1. Overview of our Implementations

Name Techn. Solver Description

BDD BDDs CuDD SafeSynth (Sect. 3.1)
PDM SAT Minisat Property directed method [21]
QAGB QBF BloqqerM + DepQBF LearnQbf + opt. RG + comp. of all

counterexample generalizations (Sect. 4.1)
SM SAT Minisat LearnSat (Sect. 4.2)
SGM SAT Minisat Like SM but with optimization RG
Pi SAT various Multi-threaded with i threads (Sect. 4.4)
TB QBF BloqqerM + DepQBF CNF-template-based (Sect. 3.1)
EPR EPR iProver EPR-based (Sect. 5.2)

6.2 Benchmarks

We evaluate the methods on several parametrized specifications. The first one
defines an arbiter for ARM’s AMBA AHB bus [4]. It is parametrized with the
number of masters it can handle. These specifications are denoted as ambaij,
where i is the number of masters, and j ∈ {c, b} indicates how the fairness prop-
erties in the original formulation of the specification were transformed into safety
properties (see Appendix B.1 for details). The second specification is denoted
by genbufij, with j ∈ {c, b}, and defines a generalized buffer [4] connecting
i senders to two receivers. Also here, liveness properties have been reduced to
safety properties. Both of these specifications can be considered as “control-
intensive”, i.e., contain complicated constraints on few signals. In contrast to
that, the following specifications are more “data-intensive”, and do not contain
transformed liveness properties. The specification addio with o ∈ {y, n} denotes
a combinational i-bit adder. Here o=y indicates that the AIGER file was opti-
mized with ABC [7], and o=n means that this optimization was skipped. Next,
multi denotes a combinational i-bit multiplier. The benchmark cntio denotes
an i-bit counter that must not reach its maximum value, which can be prevented
by setting the control signals correctly at some other counter value. Finally, bsio
denotes an i-bit barrel shifter that is controlled by some signals. The tables 2
and 3 in Appendix B.2 list the size of these benchmarks.

6.3 Results

Figure 6 summarizes the performance results of our synthesis methods on the
different parameterized specifications with cactus plots. The vertical axis shows
the execution time for computing a winning region using a logarithmic scale.
The horizontal axis gives the number of benchmark instances that can be solved
within this time limit (per instance). Roughly speaking this means that the
steeper a line rises, the worse is the scalability of this method. In order to make
the charts more legible, we sometimes “zoomed” in on the interesting parts.
That is, in some charts we omitted the leftmost part were all methods terminate
within fractions of a second, as well as the rightmost part where (almost) all

15

(a) Results for amba (b) Results for genbuf

(c) Results for add (d) Results for mult

(e) Results for cnt (f) Results for bs

Fig. 6. Cactus plots summarizing our performance evaluation.

methods timeout. We set a timeout of 10 000 seconds, and a memory limit of
4 GB. The memory limit was only exceeded by the EPR approach. The EPR
approach did so for quite small instances already, so we did not include it in
Figure 6. The detailed execution times can be found in the tables 2 and 3 of
Appendix B.2. All experiments were performed on an Intel Xeon E5430 CPU
with 4 cores running at 2.66 GHz, and a 64 bit Linux. Figure 7 illustrates the

16

speedup achieved by our parallelization (see Section 4.4) on the amba and genbuf

benchmarks in a scatter plot. The x-axis carries the computation time with one
thread. The y-axis shows the corresponding execution time with two and three
threads. Note that the scale on both axes is logarithmic.

6.4 Discussion

Fig. 7. Parallelization speedup.

Figure 7 illustrates a parallelization
speedup mostly between a factor of
2 and 37, with a tendency to greater
improvements for larger benchmarks.
Only part of the speedup is due to the
exploitation of hardware parallelism.
Most of the speedup actually stems
from the fact that the threads in our
parallelization execute different meth-
ods and use different solvers that com-
plement each other. Even if executed
on a single CPU core in a pseudo-
parallel manner, a significant speedup
can be observed. In our paralleliza-
tion, we experimented with only a
few combinations of solvers and algo-
rithms. We think that there is still a lot of room for improvements, requiring a
more extensive investigation of beneficial algorithm and solver combinations.

For the amba benchmarks, our parallelization P3 slightly outperforms BDDs
(Figure 6(a)). For genbuf, BDDs are significantly faster (Figure 6(b)). The
template-based approach does not scale at all for these benchmarks. The reason
is that, most likely, no simple CNF representation of a winning region exists for
these benchmarks. For instance, for the smallest genbuf instance, P3 computes
a winning region as a CNF formula with 124 clauses and 995 literal occurrences.
By dropping literals and clauses as long as this does not change the shape of the
winning region, we can simplify this CNF to 111 clauses and 849 literal occur-
rences. These numbers indicates that no winning region for these benchmarks
can be described with only a few clauses. Instantiating a CNF template with
more than 100 clauses is far beyond the capabilities of the solver, because the
number of template parameters grows so large (e.g., 4300 template parameters
for the smallest genbuf instance with a template of 100 clauses for the winning
region). The situation is different for add and mult. These designs are mostly
combinational (with a few states to track if an error occurred). A simple CNF-
representation of the winning region (with no more than 2 clauses) exists, and
the template-based approach finds it quickly (Figure 6(c) and 6(d)).

In Figure 6(b), we observe a great improvement due to the reachability opti-
mization RG (SM vs. SGM). In some plots, this improvement is not so significant,
but optimization RG never slows down the computation significantly. Similar ob-

17

servations can be made for QAGB (but this is not shown in the plots to keep
them simple).

The SAT-based back-end SGM outperforms the QBF-based back-end QAGB
on most benchmark classes (all except for add and mult). It has already been
observed before that solving QBF-problems with plain SAT-solvers can be ben-
eficial [13, 21]. Our experiments confirm these observations. One possible reason
is that SAT-solvers can be used incrementally, and they can compute unsatis-
fiable cores. These features are missing in modern QBF-solvers. However, this
situation may change in the future.

The barrel shifters bs are intractable for BDDs, even for rather small sizes.
Already when building the BDD for the transition relation, the approach times
out because of many and long reordering phases, or runs out of memory if re-
ordering is disabled. In contrast, almost all our SAT- and QBF-based approaches
are done within fractions of a second on these examples. We can consider the bs-
benchmark as an example of a design with complex data-path elements. BDDs
often fail to represent such elements efficiently. In contrast, the SAT- and QBF-
based methods can represent them easily in CNF. At the same time, the SAT-
and QBF-solvers seem to be smart enough to consider the complex data-path
elements only as far as they are relevant for the synthesis problem.

On most of the benchmarks, especially amba and genbuf, our new synthesis
methods outperform our re-implementation of [21] (PDM in Figure 6) by orders
of magnitude. Yet, [21] reports impressive results for these benchmarks: the
synthesis time is below 10 seconds even for amba16 and genbuf16. We believe
that this is due to a different formulation of the benchmarks. We translated the
benchmarks, exactly as used in [21], into our input language manually, at least
for amba16 and genbuf16. Our PDM back-end, as well as most of the other back-
ends, solve them in a second. This suggests that the enormous runtime differences
stem from differences in the benchmarks, and not in the implementation. An
investigation of the exact differences in the benchmarks remains to be done.

In summary, none of the approaches is consistently superior. Instead, the dif-
ferent benchmark classes favor different methods. BDDs perform well on many
benchmarks, but are outperformed by our new methods on some classes. The
template-based approach and the parallelization of the SAT-based approach
seem particularly promising. The reduction to EPR turned out to scale poorly.

7 Summary and Conclusion

In this paper, we presented various novel SAT- and QBF-based methods to syn-
thesize finite-state systems from safety specifications. We started with a learning-
based method that can be implemented with a QBF-solver. Next, we proposed
an efficient implementation using a SAT-solver, an optimization using reacha-
bility information, and an efficient parallelization that achieves a super-linear
speedup by combining different methods and solvers. Complementary to that,
we also presented synthesis methods based on templates or reduction to EPR.
From our extensive case study, we conclude that these new methods can comple-

18

ment BDD-based approaches, and outperform other existing work [21] by orders
of magnitude.

In the future, we plan to fine-tune our optimizations and heuristics using
larger benchmark sets. We also plan to research and compare different methods
for the extraction of circuits from the winning region.

Acknowledgments

We thank Aaron R. Bradley for fruitful discussions about using IC3-concepts
in synthesis, Andreas Morgenstern for his support in re-implementing [21] and
translating benchmarks, Bettina Könighofer also for providing benchmarks, and
Fabian Tschiatschek and Mario Werner for their BDD-based synthesis tool.

References

1. B. Becker, R. Ehlers, M. D. T. Lewis, and P. Marin. ALLQBF solving by compu-
tational learning. In ATVA’12, LNCS 7561, pages 370–384. Springer, 2012.

2. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In TACAS’99, LNCS 1579, pages 193–207. Springer, 1999.

3. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfia-
bility, FAIA 185. IOS Press, 2009.

4. R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weigl-
hofer. Specify, compile, run: Hardware from PSL. Electronic Notes in Theoretical
Computer Science, 190(4):3–16, 2007.

5. R. Bloem, R. Könighofer, and M. Seidl. Sat-based synthesis methods for safety
specs. In VMCAI’14. Springer, 2014. To appear.

6. A. R. Bradley. SAT-based model checking without unrolling. In VMCAI’11, LNCS
6538, pages 70–87. Springer, 2011.

7. R. K. Brayton and A. Mishchenko. ABC: An academic industrial-strength verifi-
cation tool. In CAV’10, LNCS 6174, pages 24–40. Springer, 2010.

8. R. Ehlers. Symbolic bounded synthesis. In CAV’10, LNCS 6174, pages 365–379.
Springer, 2010.

9. R. Ehlers, R. Könighofer, and G. Hofferek. Symbolically synthesizing small circuits.
In FMCAD’12, pages 91–100. IEEE, 2012.

10. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The Daikon system for dynamic detection of likely invariants. Sci.
Comput. Program., 69(1-3):35–45, 2007.

11. E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for LTL realizability.
In CAV’09, LNCS 5643, pages 263–277. Springer, 2009.

12. A. Fröhlich, G. Kovasznai, and A. Biere. A DPLL algorithm for solving DQBF.
In Pragmatics of SAT (PoS’12, aff. to SAT’12), 2012.

13. M. Janota and J. P. Marques Silva. Abstraction-based algorithm for 2QBF. In
SAT’11, LNCS 6695, pages 230–244. Springer, 2011.

14. J.-H. R. Jiang, H.-P. Lin, and W.-L. Hung. Interpolating functions from large
boolean relations. In International Conference on Computer-Aided Design (IC-
CAD’09), pages 779–784. IEEE, 2009.

15. A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev. Finding efficient circuits using
SAT-solvers. In SAT’09, LNCS 5584, pages 32–44. Springer, 2009.

19

16. R. Könighofer and R. Bloem. Automated error localization and correction for
imperative programs. In FMCAD’11, pages 91–100. IEEE, 2011.

17. K. Korovin. iProver - An instantiation-based theorem prover for first-order logic
(system description). In IJCAR’08, LNCS 5195, pages 292–298. Springer, 2008.

18. Harry R. Lewis. Complexity results for classes of quantificational formulas. J.
Comput. Syst. Sci., 21(3):317–353, 1980.

19. F. Lonsing and A. Biere. DepQBF: A dependency-aware QBF solver. JSAT,
7(2-3):71–76, 2010.

20. I. Moon, J. H. Kukula, T. R. Shiple, and F. Somenzi. Least fixpoint approximations
for reachability analysis. In ICCAD’99, pages 41–44. IEEE, 1999.

21. A. Morgenstern, M. Gesell, and K. Schneider. Solving games using incremental
induction. In IFM’13, LNCS 7940, pages 177–191. Springer, 2013.

22. A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, and A. Biere. Resolution-based
certificate extraction for QBF (tool presentation). In SAT’12, LNCS 7317, pages
430–435. Springer, 2012.

23. D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation.
J. Symb. Comput., 2(3):293–304, 1986.

24. R. Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95,
1987.

25. M. Seidl and R. Könighofer. Partial witnesses from preprocessed quantified Boolean
formulas. In DATE’14, 2014. To appear.

26. M. Seidl, F. Lonsing, and A. Biere. qbf2epr: A tool for generating EPR formulas
from QBF. In Workshop on Practical Aspects of Automated Reasoning, 2012.

27. S. Sohail and F. Somenzi. Safety first: A two-stage algorithm for LTL games. In
FMCAD’09, pages 77–84. IEEE, 2009.

28. A. Solar-Lezama. The sketching approach to program synthesis. In APLAS 2009,
LNCS 5904, pages 4–13. Springer, 2009.

29. S. Staber and R. Bloem. Fault localization and correction with QBF. In SAT’07,
LNCS 4501, pages 355–368. Springer, 2007.

30. W. Thomas. On the synthesis of strategies in infinite games. In STACS’95, LNCS
900, pages 1–13, 1995.

20

A Utilizing Unreachable States

A.1 Proof of Theorem 1

Theorem 1 (cf. Section. 4.3) can be proven as follows.

Proof. By contradiction, assume that there exists such as state xa. Any imple-
mentation I derived from W will only visit states in W . Hence, there must exist
a finite prefix x0, . . .xn of an execution of S with x0 |= I, xn = xa, n ≥ 1 (xa

cannot be initial because this would satisfy Eq. 1), and xj |= W for all 0 ≤ j ≤ n.
Such a trace is illustrated in Figure 8. Since xa |= G ∧ xg, there must exist a
smallest k ≤ n such that xj |= G ∧ xg for all k ≤ j ≤ n. Now, xk is either
initial or has a predecessor xk−1 in G ∧ ¬xg (because xk−1 |= W,W ⇒ G, and
xk−1 6|= G ∧ xg). Since Eq. 1 is unsatisfiable, the protagonist cannot enforce to
go from xk to G. Hence, xk is not winning for the protagonist and cannot be
part of W . This contradiction means that such a path of reachable states ending
in xa cannot exist if Eq. 1 is unsatisfiable.

Fig. 8. Optimization RG: Proof Illustration.

A.2 Optimization RC.

For LearnQbf to find only counterexample-states that could be reachable in
the implementation I, we modify the QBF-call in line 4 to

(sat,x) := QbfSatModel(∃x∗, i∗, c∗ .∃x, i .∀c .∃x′ .
(I(x) ∨ (x∗ 6= x) ∧ F (x∗) ∧ T (x∗, i

∗
, c∗, x))∧ (3)

F (x) ∧ T (x, i, c, x′) ∧ ¬F (x′).

Only the second line of the formula is new. Here, x∗, i
∗
, and c∗ are the previous-

state copies of x, i, and c, respectively. The additional constraint requires that
the counterexample-state x is either initial, or it has a predecessor in F that is
different from x. Otherwise it must be unreachable and can be ignored. A state
x 6|= I that has itself as the only predecessor in F is, of course, unreachable as
well. When using optimization RC, the resulting winning regionW of LearnQbf
may not satisfy condition (III), i.e., W ⇒ Forcep1(W), but only the negation of
Eq. 3. Still, a safe controller can easily be extracted, e.g., by computing Skolem
functions for the c-signals in this negation of Eq. 3.

21

In case of unrealizability, optimization RC cannot make an unrealizable spec-
ification be identified as realizable. This also holds in combination with opti-
mization RG and is argued by the following theorem.

Theorem 2. For an unrealizable specification, when using optimization RC,
LearnQbf will always find Eq. 3 satisfiable.

Proof. By contradiction, assume that Eq. 3 is unsatisfiable. We have that I ⇒ F
(otherwise LearnQbf would already have terminated signaling unrealizability)
and F ⇒ P . Since the specification is unrealizable, there must exist a state
xa |= F which is reachable from within F and from which the antagonist can
enforce to leave F . That is, ∃x, i .∀c .∃x′ .xa ∧T ∧¬F ′, and there exists a prefix
x0, . . .xn of an execution of S with x0 |= I, xn = xa, and xj |= F for all
0 ≤ j ≤ n. If xa |= I, then Eq. 3 is satisfied. If xa 6|= I, then there must exist a
maximum k such that xk 6= xa. Since xk |= F , this would also satisfy Eq. 3. This
contradiction implies that LearnQbf cannot find Eq. 3 unsatisfiable in case of
unrealizability.

B More Detailed Experimental Results

B.1 Benchmark Creation

Most of the benchmarks were created as follows. First, we created a declarative
system description in Verilog (i.e., stated which behavior is allowed/not allowed).
Second, the Verilog file was translated into the BLIF-MV format using vl2mv6.
Third, the BLIF-MV file was translated into AIGER format using ABC [7].

The amba and genbuf benchmarks are translations of RATSY’s input files7

into AIGER using the flow described above. RATSY takes as input specifications
in so-called “Generalized Reactivity(1)” format. Such specifications consist of
two parts: assumptions and guarantees. Both parts consist of safety and fairness
properties. We used two different methods to reduce these Generalized Reac-
tivity(1) specifications into pure safety specification: j = c in the benchmark
name ambaij or genbufij means that all fairness assumptions are compressed
into one fairness assumption X using a counting construction. The same is done
for the fairness guarantees. Finally, an additional counter is introduced. It is
incremented whenever X is satisfied, it is reset whenever the counting construc-
tion for the fairness guarantees switches to the next guarantee, and it must never
reach a given value N . This enforces a certain ratio between the progress in the
fairness assumptions and guarantees. We set N to be the minimal value for which
the resulting safety specification is realizable. The value j = b in the benchmark
name refers to the same construction, but using a special counting construction.
It has one bit per fairness assumption and guarantee. This bit tracks if the prop-
erty has already been satisfied or not. Hence, j = b allows the implementation
to satisfy guarantees in arbitrary order, while j = c enforces a certain order
between the fairness properties, but uses less state bits.

6 http://vlsi.colorado.edu/~vis/
7 http://rat.fbk.eu/ratsy/

22

http://vlsi.colorado.edu/~vis/
http://rat.fbk.eu/ratsy/

B.2 More Performance Results

Table 2 and Table 3 summarize the size of the benchmarks, as well as the time
needed by the different synthesis methods to compute the winning region. The
circuit extraction time is not included. The suffix “k” stands for a multiplication
of the respective number by 1000. The entries “>10k” mark a time-out with a
limit of 10 000 seconds. The entries “>4GB” indicate that the memory limit of
4 GB was exceeded. More detailed performance data (more different configura-
tions of the implementations, more benchmarks, and more detailed statistics like
numbers of iterations, solving times for different kinds of queries, etc.) can be
found in the downloadable archive8.

8 www.iaik.tugraz.at/content/research/design_verification/demiurge/

23

 www.iaik.tugraz.at/content/research/design_verification/demiurge/

Table 2. More extensive performance results, part 1.

Size Execution Time
|i| |c| |x| G BDD PDM QAGB SM SGM P1 P2 P3 TB EPR

[-] [-] [-] [-] [sec] [sec] [sec] [sec] [sec] [sec] [sec] [sec] [sec] [sec]

add2n 4 2 2 23 0.1 0.1 0.1 0.1 0.1 1 1 1 0.1 1.0
add2y 4 2 2 17 0.1 0.1 0.1 0.1 0.1 1 1 1 0.1 0.1
add4n 8 4 2 61 0.1 0.1 0.1 0.1 0.1 1 1 1 0.1 125
add4y 8 4 2 45 0.1 0.1 0.1 0.1 0.1 1 1 1 0.1 120
add6n 12 6 2 99 0.1 3.1 0.2 1.6 1.2 2 1 1 0.1 >4GB
add6y 12 6 2 73 0.1 2.7 0.3 1.3 1.0 3 1 1 0.1 >4GB
add8n 16 8 2 137 0.1 126 3.2 111 102 329 71 86 0.1 >4GB
add8y 16 8 2 101 0.1 87 2.3 124 95 318 81 79 0.1 >4GB
add10n 20 10 2 175 0.1 >10k 163 >10k >10k >10k >10k >10k 0.1 >4GB
add10y 20 10 2 129 0.1 >10k 41 >10k >10k >10k >10k >10k 0.1 >4GB
add12n 24 12 2 213 0.1 >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
add12y 24 12 2 157 0.1 >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
add14n 28 14 2 251 0.1 >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
add14y 28 14 2 185 0.1 >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
add16n 32 16 2 289 0.1 >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
add16y 32 16 2 213 0.1 >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
add18n 36 18 2 327 0.1 >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
add18y 36 18 2 241 0.1 >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
add20n 40 20 2 365 0.1 >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
add20y 40 20 2 269 0.1 >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB

cnt4n 1 1 5 60 0.1 0.1 0.1 0.1 0.1 1 1 1 0.1 5.0
cnt4y 1 1 5 23 0.1 0.1 0.1 0.1 0.1 1 1 1 0.1 2.0
cnt5n 1 1 6 75 0.1 0.1 0.5 0.1 0.1 1 1 1 0.2 40
cnt5y 1 1 6 29 0.1 0.1 0.1 0.1 0.1 1 1 1 0.2 14
cnt6n 1 1 7 90 0.1 0.1 1.6 0.1 0.1 1 1 1 0.1 >4GB
cnt6y 1 1 7 35 0.1 0.1 0.4 0.1 0.1 1 1 1 0.1 81
cnt7n 1 1 8 105 0.1 0.6 4.6 0.1 0.1 1 1 1 0.1 >4GB
cnt7y 1 1 8 41 0.1 0.4 1.2 0.1 0.1 1 1 1 0.1 >4GB
cnt8n 1 1 9 120 0.1 3.9 13 0.1 0.2 1 1 1 0.2 >4GB
cnt8y 1 1 9 47 0.1 3.1 3.2 0.1 0.1 1 1 1 0.2 >4GB
cnt9n 1 1 10 135 0.1 27 34 0.2 0.6 1 1 1 0.2 >4GB
cnt9y 1 1 10 53 0.1 24 8.5 0.1 0.3 1 1 1 0.2 >4GB
cnt10n 1 1 11 150 0.2 213 87 0.4 1.5 1 1 1 0.2 >4GB
cnt10y 1 1 11 59 0.2 208 22 0.2 0.9 1 1 1 0.2 >4GB
cnt11n 1 1 12 165 0.4 1.8k 220 1.0 4.2 2 3 3 0.6 >4GB
cnt11y 1 1 12 65 0.4 1.8k 56 0.5 2.8 1 1 1 0.3 >4GB
cnt15n 1 1 16 225 7.2 >10k 7.4k 55 621 232 554 369 0.4 >4GB
cnt15y 1 1 16 89 7.1 >10k 2.0k 38 576 205 620 386 0.4 >4GB
cnt20n 1 1 21 300 276 >10k >10k >10k >10k >10k >10k >10k 2.4 >4GB
cnt20y 1 1 21 119 275 >10k >10k >10k >10k >10k >10k >10k 1.8 >4GB
cnt25n 1 1 26 375 >10k >10k >10k >10k >10k >10k >10k >10k 1.0k >4GB
cnt25y 1 1 26 149 >10k >10k >10k >10k >10k >10k >10k >10k >10k >4GB
cnt30n 1 1 31 450 >10k >10k >10k >10k >10k >10k >10k >10k >10k >4GB
cnt30y 1 1 31 179 >10k >10k >10k >10k >10k >10k >10k >10k 0.7 >4GB

mult2 4 4 0 24 0.1 0.1 0.1 0.1 0.1 1 1 1 0.1 0.1
mult4 8 8 0 128 0.1 0.1 0.1 0.1 0.1 1 1 1 0.1 30
mult5 10 10 0 217 0.1 0.9 0.3 0.4 0.4 1 1 1 0.1 >4GB
mult6 12 12 0 322 0.5 6.7 0.7 3.3 3.0 5 2 2 0.1 >4GB
mult7 14 14 0 455 1.4 45 3.6 25 22 33 16 13 0.1 >4GB
mult8 16 16 0 604 48 284 17 264 182 519 172 140 0.1 >4GB
mult9 18 18 0 759 762 1.6k 309 4.1k 2.0k >10k 2.7k 2.5k 0.1 >4GB
mult10 20 20 0 964 5.4k >10k 1.9k >10k >10k >10k >10k >10k 0.1 >4GB
mult11 22 22 0 1.1k >10k >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
mult12 24 24 0 1.4k >10k >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
mult13 26 26 0 1.5k >10k >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
mult14 28 28 0 1.8k >10k >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
mult15 30 30 0 2.0k >10k >10k >10k >10k >10k >10k >10k >10k 0.1 >4GB
mult16 32 32 0 2.5k >10k >10k >10k >10k >10k >10k >10k >10k 0.3 >4GB

24

Table 3. More extensive performance results, part 2.

Size Execution Time
|i| |c| |x| G BDD PDM QAGB SM SGM P1 P2 P3 TB EPR

[-] [-] [-] [-] [sec] [sec] [sec] [sec] [sec] [sec] [sec] [sec] [sec] [sec]

bs08n 2 1 9 82 0.1 0.1 0.3 0.1 0.1 1 1 1 0.1 >4GB
bs08y 2 1 9 80 0.1 0.1 0.3 0.1 0.1 1 1 1 0.1 >4GB
bs16n 4 1 17 258 2.0 0.1 3.0 0.1 0.1 1 1 1 0.5 >4GB
bs16y 4 1 17 256 2.0 0.1 2.9 0.1 0.1 1 1 1 0.4 >4GB
bs32n 5 1 33 610 >10k 0.1 15 0.1 0.1 1 1 1 >10k >4GB
bs32y 5 1 33 608 >10k 0.1 14 0.1 0.1 1 1 1 >10k >4GB
bs64n 6 1 65 1.4k >10k 0.1 93 0.1 0.1 1 1 1 >10k >4GB
bs64y 6 1 65 1.4k >10k 0.1 93 0.1 0.1 1 1 1 >10k >4GB
bs128n 7 1 129 3.2k >10k 0.1 707 0.1 0.1 1 1 1 >10k >4GB
bs128y 7 1 129 3.2k >10k 0.1 706 0.1 0.1 1 1 1 >10k >4GB

genbuf01c 5 6 21 134 0.2 11 105 2.4 5.5 2 1 1 >10k >4GB
genbuf02c 6 7 24 169 0.4 605 555 32 50 16 9 7 >10k >4GB
genbuf03c 7 9 27 202 0.7 3.8k 2.1k 159 109 43 14 15 >10k >4GB
genbuf04c 8 10 30 242 2.9 >10k 4.7k 2.1k 892 270 257 53 >10k >4GB
genbuf05c 9 12 33 284 2.7 >10k >10k 5.7k 1.5k 1.2k 421 95 >10k >4GB
genbuf06c 10 13 35 323 2.2 >10k >10k >10k 3.9k 921 852 201 >10k >4GB
genbuf07c 11 14 37 361 6.2 >10k >10k >10k 3.3k 2.1k 314 201 >10k >4GB
genbuf08c 12 15 40 406 8.4 >10k >10k >10k >10k >10k 6.5k 2.4k >10k >4GB
genbuf09c 13 17 43 463 13 >10k >10k >10k >10k >10k >10k 2.0k >10k >4GB
genbuf10c 14 18 45 494 9.1 >10k >10k >10k >10k >10k >10k 2.0k >10k >4GB
genbuf11c 15 19 47 531 33 >10k >10k >10k >10k >10k >10k 2.3k >10k >4GB
genbuf12c 16 20 49 561 34 >10k >10k >10k >10k >10k >10k >10k >10k >4GB
genbuf13c 17 21 51 602 49 >10k >10k >10k >10k >10k >10k >10k >10k >4GB
genbuf14c 18 22 53 639 101 >10k >10k >10k >10k >10k >10k >10k >10k >4GB

genbuf01b 5 6 23 141 0.2 6.7 146 2.7 2.9 2 1 1 >10k >4GB
genbuf02b 6 7 26 174 0.5 1.1k 640 54 9.6 7 3 3 >10k >4GB
genbuf03b 7 9 30 208 1.2 >10k 1.2k 845 26 23 8 8 >10k >4GB
genbuf04b 8 10 33 245 1.1 >10k 8.1k 6.2k 48 48 17 14 >10k >4GB
genbuf05b 9 12 37 282 4.7 >10k >10k >10k 90 123 33 18 >10k >4GB
genbuf06b 10 13 40 322 3.1 >10k >10k >10k 171 194 48 49 >10k >4GB
genbuf07b 11 14 43 358 3.5 >10k >10k >10k 263 326 84 95 >10k >4GB
genbuf08b 12 15 46 395 2.8 >10k >10k >10k 396 391 176 106 >10k >4GB
genbuf09b 13 17 50 443 4.1 >10k >10k >10k 895 1.7k 302 534 >10k >4GB
genbuf10b 14 18 53 475 17 >10k >10k >10k 1.2k >10k 660 538 >10k >4GB
genbuf11b 15 19 56 510 6.3 >10k >10k >10k 1.2k 7.2k 1.3k 1.5k >10k >4GB
genbuf12b 16 20 59 547 3.7 >10k >10k >10k 2.1k 4.6k 1.7k 1.0k >10k >4GB
genbuf13b 17 21 62 582 4.1 >10k >10k >10k 1.9k >10k 2.4k 1.6k >10k >4GB
genbuf14b 18 22 65 617 6.0 >10k >10k >10k 2.9k >10k 4.1k 2.1k >10k >4GB
genbuf15b 19 23 68 652 5.4 >10k >10k >10k 4.1k >10k 9.8k 6.7k >10k >4GB
genbuf16b 20 24 71 687 5.5 >10k >10k >10k 4.6k >10k 7.8k 3.9k >10k >4GB

amba02c 7 8 28 177 0.6 647 2.4k 20 21 44 10 10 >10k >4GB
amba03c 9 10 34 237 3.5 >10k >10k 228 91 153 60 33 >10k >4GB
amba04c 11 11 38 279 22 >10k >10k 898 619 1.7k 312 206 >10k >4GB
amba05c 13 13 43 345 439 >10k >10k 1.2k 431 4.1k 574 230 >10k >4GB
amba06c 15 14 47 395 204 >10k >10k 2.1k 704 5.0k 674 314 >10k >4GB
amba07c 17 15 52 449 397 >10k >10k 4.2k 1.2k >10k 1.1k 458 >10k >4GB
amba08c 19 16 56 511 667 >10k >10k >10k >10k >10k >10k >10k >10k >4GB
amba09c 21 18 61 583 9.3k >10k >10k >10k 2.8k >10k 3.9k 1.0k >10k >4GB
amba10c 23 19 65 630 271 >10k >10k >10k 3.4k >10k 3.6k 1.6k >10k >4GB

amba02b 7 8 31 189 1.7 1.2k 8.3k 23 24 57 20 15 >10k >4GB
amba03b 9 10 36 231 13 >10k >10k 207 70 131 29 30 >10k >4GB
amba04b 11 11 42 286 84 >10k >10k 3.8k 761 4.2k 831 504 >10k >4GB
amba05b 13 13 47 344 403 >10k >10k 2.5k 278 2.0k 210 216 >10k >4GB
amba06b 15 14 52 391 903 >10k >10k 3.2k 394 7.8k 366 209 >10k >4GB
amba07b 17 15 57 438 1.5k >10k >10k 7.3k 1.1k >10k 502 634 >10k >4GB
amba08b 19 16 62 486 >10k >10k >10k >10k >10k >10k >10k >10k >10k >4GB
amba09b 21 18 68 558 >10k >10k >10k >10k 4.9k >10k 1.2k 1.9k >10k >4GB
amba10b 23 19 73 606 3.7k >10k >10k >10k 6.4k >10k 3.0k 5.8k >10k >4GB

25

	SAT-Based Synthesis Methods for Safety Specs

