
WLAN Location Determination without Active
Client Collaboration

Stefan Kraxberger
Graz University of Technology

Graz, Austria
stefan.kraxberger@iaik.tugraz.at

Guenther Lackner
studio78.at

Graz, Austria
guenther.lackner@studio78.at

Udo Payer
University of Applied Sciences

Graz, Austria
udo.payer@campus02.at

Abstract—Location determination of devices in wire-
less networks has been around for some time. Due
to the fact that most approaches are based on client
collaboration, they are not suitable for being integrated
in security related components as intrusion detection
or access control systems. In this paper we propose an
approach that works without any client collaboration
and even awareness by the client. Further on, our
architecture is intended to be deployed on standard
state-of-the-art IEEE 802.11g access points which op-
erate using open source firmware as OpenWRT. We
use these modified access points to collect, process
and relay received signal strength (RSS) values of all
communicating clients. These values are then used for
trilateration using a location determination algorithm
on a centralized server. We also present a working
prototype, its promising results and possible further
enhancements of our approach.

Index Terms—location determination; wireless net-
works, trilateration; intrusion detection; access control

I. Introduction

Due to the nature of free air propagation, which all radio
communication is based on, wireless computer networks
may be easy accessible for potential attackers. Infras-
tructure bound wired solutions do have an advantage in
terms of security over wireless ones, due the inevitable
physical connection to the target network. The possibility
to determine the physical location of any connected client
would result in a significant gain of the achievable security
level.

Manifold location determination methods exist. Unfor-
tunately many of them are not suitable for IEEE 802.11
based networks and their typical field of application [1].
Further on, most of them require special purpose hardware
as for example GPS receivers or cell phones [2]. Other
classical approaches like run-time based triangulation are
very problematic to implement because of the limitations
of timing devices in wireless network hardware, although
it might be possible with future IEEE 802.11n compatible
chipsets. Due to this fact, solutions based on the analysis of
received signal strength (RSS) values are widely regarded
as best practice for WLAN device location determination.
For examples refer to [3] [4].

Further, location determination methods can be dis-
tinguished between client and network based methods.
Client based methods usually require some kind of agent
software installed on the client and a server component
that collects data from these agents. They also calculate
their approximate position [5] directly on the client. The
later work without any collaboration from the clients. This
can be seen as a significant advantage over the client based
methods.

Client based solutions are very well elaborated consid-
ering the accuracy of their positioning algorithms. One
solution was proposed by Robert A. Malaney from the
University of New South Wales [6]. Collected RSS values
from the system are compared with a previously computed
database of RSS fingerprints, in order to get the current
location. However, as mentioned before, client cooperation
is limiting the usage of location determination in a security
system. Attackers would be able to spoof RSS values,
and fake their positions. Therefore, an approach which
isolates the gathered position information completely from
the cooperation of the client is the preferred solution. The
method we present in this paper works absolutely without
any client collaboration and notice, and is therefore well
suited for a security related application like an intrusion
detection or access control system. All data collection tasks
are performed by the network infrastructure itself, which
is achieved by modifying the open source firmware of IEEE
802.11 access points.

This work is organized as follows. First we introduce
the architecture of our solution and how we implemented
the data gathering and distribution process. Thereafter,
we provide some background information on position de-
termination and trilateration. Finally, we present results
obtained from a real-world test environment.

II. Architecture

This section describes the architecture of our approach
and how it can be used to provide valuable information for
intrusion detection systems, access control mechanisms or
any other component which enforces security policies as
proposed by [7]. The idea behind the positioning system is
to detect the location of a possible client within a wireless
network. All higher layer communication with the network



is based on the devices MAC address. All MAC addresses
appearing in the network are placed on a list of connected
devices. This is done by modified access points (AP),
which directly communicate with a centralized component
placed on a server connected to the backbone of the
network. These APs, we call them drones, collect all frame
headers that contain the RSS values of the corresponding
transmission and submit them, together with the MAC
address of the belonging device to the central server. Based
on these values, the server computes a RSS fingerprint of
the devices and compares it against entries from a pre-
calculated database of RSS fingerprints. For an accurate
determination of the client’s position, the server needs RSS
values from at least three drones in communication range
of the client.

The server can now inform the security systems of the
location of all clients in order to allow them to enforce se-
curity policies regarding the location of accessing systems.

A. Positioning

Figure 1 shows an example network consisting of three
APs and one client. This represents the minimal configura-
tion to get accurate information to determine the client’s
location. An easy way to collect the RSS values would be
to execute a iwlist (in case of a Linux operating system)
scan on the client. But since we don’t have collaborating
clients, this approach is not possible. Thus, we use the
drones to obtain the signal strength values which can
be used to determine the location of the client. For this
purpose all drones need to be in a listening mode and
collect all received frames.

Fig. 1. Wireless network configuration

B. Obtaining signal information

As a first step, it is necessary to capture transmissions
from the communicating client and store them for later
analysis. This is done through the use of the tcpdump tool,

which is based on the pcap library. We capture the data
frames from the client with the following command.

tcpdump -i network-interface -s 1500 -w out.pcap

Due to the fact of memory limitations on the drones, it
is necessary to filter the captured information. tcpdump

allows to filter the received packets using combinations of
various criteria so that only relevant parts are captured
and stored for further processing. In figure 2 we can see
the RSS value and the location in the frame.

Fig. 2. Received signal strength on different routers obtained via
Wireshark

The stored packets are thereafter sorted by their source
MAC address using tcpdump in order to enable further
processing of the data with custom perl scripts. The
relevant fields of the stored packet information are the
source MAC address, the MAC timestamp and the RSS
value.

tcpdump -e -c 1 -i prism0 -xx -s 1500 ether

src XX:XX:XX:XX:XX:XX

The time and signal strength values are translated into
the decimal system. Because the RSS values can strongly
variate, we calculate an average over every 10 samples.
This in addition reduces the amount of data transmitted
and reduces the chance of traffic congestions. After calcu-
lating these average values, they are sent to the server. A
major challenge, was to balance the memory consumption
of the framework due to the limited resources on the
drones. Simultaneous data collection and processing was
not possible, hence after receiving a packet it is processed
directly and all other incoming packets during the time
needed for processing are dropped. The results obtained
within our testbed show that this method has adequate
performance.

C. Router-Drone communication

To perform the trilateration, we need to transmit in-
formation gathered at the drones to the central server. In
our prototype we used the UNIX tool netcat to perform
this task. The server listens on an open port for any
incoming data from the drones. All communication can be
regarded as one-way since there is no need for the server
to send anything to the drones but transmission protocol



Fig. 3. Server-Drone Communication

related data for netcat. Due to the fact, that the traffic
between the drones and the server is at a very low level,
no sophisticated collision control mechanisms need to be
applied.

Figure 3 shows the schematic layout of the server-
drone communication. Due to the fact that there are
many interferences like signal reflections from walls and
attenuation caused by moving objects, we need to compare
measurements of the same timestamps from the same
clients collected by the different drones. Without synchro-
nization, the time deviation is to large to find packages
that belong to the same transmission. Therefore, a method
to synchronize the clocks on the drones is absolutely
necessary. For this task we used the openntpd tool.

Fig. 4. Intersection of two circles

D. Trilateration

As said before, we apply the method of trilateration
for position determination. To calculate the position of a
wireless network client we intersect three circles with the
signal power as radius. The computation itself is done in
two steps. For the intersection, we first need the distance to
the center of two circles. The values defining the position

of the first center is given as x1 and y1. The second center
is defined with x2 and y2. In the next step we use formula
1 to calculate the distance.

d =
√

(x1 − x2)2 + (y1 − y2)2 (1)

In figure 4 the intersections of two circles are shown
graphically. The two triangles are defined in equation 2
and 3.

r1
2 = a2 + h2 (2)

r1
2 = b2 + h2 (3)

With the distance d and the two radii, the value a can
be calculated in equation 4.

a =
(r1

2 − r2
2 + d2)

2d
(4)

With the value a, the value for h can be easily computed
with formula 5.

h =
√

r12 − a2 (5)

This is repeated three times, so we get the 6 different
intersections as shown in figure 5. The dotted line shows
the circle, which is ignored at each step. Unfortunately, in
common wireless networks with standard hardware only
very noisy signal strength measurements can be obtained.
As we can see in figure 6 there are positions where the
distance has no relation to the measured values. This two-
way-ground propagation model was obtained by Appel et
al. and presented in [8]. Additionally, due to disturbing
sources like walking humans and walls that attenuate the
signal, we cannot get a signal that has full relation to the
distance.

Fig. 5. Three different-intersections

For the trilateration algorithm, we create three circles
withs radii representing the RSS values from at least
three drones belonging to the same client transmission.
Figure 7a shows the trilateration approach based on signal
strength values. These circles will intersect only if the
values measured at the different drones do not deviate
from each other. For example, if we measure a wrong value
for RSS 1 this system will not intersect and will return a
failure. In figure 7b the doted circle is drawn with the
wrong signal strength. As one can easily see there is no
intersection which covers all three RSS values. Due to the



fact that these errors occur frequently, another way needed
to be found to calculate the location correctly. For that
reason we use and iterative process. We divide the radius
of each circle by a special ratio, the so called signal ratio.

Fig. 6. Signal Strength calculated with Two-Way-Ground Propaga-
tion Model

Figure 7c shows the three growing circles. As one can
easily see, there exists a small triangle in the middle where
all three circles intersect. We have introduced a specific
variable which is responsible for the width, each circle is
increased at each iterative step. If this value is to big, the
computation will lead to a large triangle. If it is to small,
there will be a large number of iterations necessary.

Fig. 7. (a) Optimal trilateration (b) With one noisy signal (c)
Interactive trilateration

Within each iteration, we get 6 different intersection
points as shown in figure 5. Without noise, three of this
points would be at the same position. Unfortunately, this
is not possible in the system as each intersection has a
correct and an erroneous point. We define the result of
each intersection with the variables x, y and z and their
possible values as 0 for the erroneous and 1 for the correct
position. Now, the possible combination can be calculated
with formula 6.

Possiblecombinations = 2Numberofintersections (6)

With each combination, we draw a triangle and obtain
seven wrong and one correct arrangement. To find the
correct triangle, we compare the distance between the
points of the different intersections. Looking at figure 5, we
can see that the distance between x1 and y1 is smaller than
the distance between x2 and y1. Therefore, we calculate:

abs(x1 − y1), abs(x1 − y2), abs(x2 − y1), abs(x2 − y2)

The smallest distance of these four calculations returns
the two correct points. In the given example, these points
are x1 and y1. The same procedure is then repeated for the
z values. To achieve a certain level of redundancy, this is
also done with the x and y values. The area in the middle is
no triangle with straight lines. To use a standard formula
to find the balance point and minimize the failure, we try
minimize the area in the center. Therefore, the iteration
will repeated until a certain threshold is reached.

In our prototype, the results are displayed on the server
(which can also be installed on one of the drones) via a
web interface. For the web server, the lighttpd package
was used, because it uses less than 100 kB of memory
on the router. The used working version is 1.4.11-1 and
it is enhanced with the lighttpd-mod-cgi module. For
the visualization, we use a small PHP function which
allows the user to insert a target client’s MAC address to
determine its location. This address is than written to a
text file which is used by the server script. The script sends
this address to the different drones and waits until enough
signal strength values are received. After the trilateration
of this data, the server stores the position information
into another text file. The PHP processor then takes the
information and creates a image file which contains the
position of the client in relation to a specified layout of
the building in which the wireless routers reside. Further
on, this information can be used to decide if the location
of the client is within the required area in order to get
access to specific services.

III. Results

In figure 8 the resulting relation between the measured
received signal strength and the calculated distance for
one specific indoor configuration is outlined. We have
done several measurements with the client at different
locations. The resulting relation between signal strength
and distance is exponential as one can easily see from the
figure, a fact that is not surprising. Using this relation we
can calculate the position of the client in relation to the
known positions of the drones.

A. Hardware and Tools

There are two different devices used in our test en-
vironment. The first one are the drones, which collect
the signal values at different locations. The second one
is a more powerful device (i.e. a server), which combines
the collected information and calculates the position. The



Fig. 8. Measurements of a wireless device with the framework

presentation of the results is handled by a web server able
to execute PHP scripts.

For the drones three Linksys WRT54GL v1.1 have been
used which are shown in figure 9. The total memory of
each router is 4 MB NAND flash memory on a single
chip and 16 MB of RAM memory. The CPU runs at 200
MHz. These devices are used to collect the RSS values at
different locations. The server runs on an ASUS WL-500G
Premium Router. This device operates with a 8 MB Flash
storage, 32 MB of RAM memory and runs a CPU with
266 MHz. The router collects the different values from the
drones and calculates the position. Additionally, it runs a
web server to show the position in a web interface.

The standard firmware of the router does not support
the necessary functionality needed for the application.
Therefore, an OpenWRT OS is installed. Because we need
additional software on each of the Linksys Router, we
used the OpenWrt White Russian 0.9 Micro Firmware.
The software can be found on the OpenWRT web site.
There are different versions for the ASUS and the Linksys
routers available.

The used tools are lighttpd as web server, lipcap,
wl and the tcpdump for the signal gathering and the
microperl package to execute the source code.

IV. Conclusion

In this paper we propose a position determination
framework for wireless networks which can be used with
standard state-of-the art wireless routers. Contrary to
other approaches, our framework does not require any
active collaboration of the client. In these other methods,
the client is usually performing the data collection of
the signal strength values and is transmitting them to a
centralized server. An attacking clients is obviously able
to alternate the values and pretend to be at a different
location. Our proposed approach is measuring the RSS
values directly at the network infrastructure without any
interaction of the client. The clear advantage is that the

Fig. 9. Linksys WRT54GL

client cannot easily fake the values. As already mentioned,
in the current state of development, our approach lacks of
accuracy due to the effects of signal propagation. But it is
possible to improve the accuracy using statistical methods
and artificial intelligence mechanisms like self-organizing
maps or neural networks.

V. Acknowledgements

The work reported in this article was supported by the
European Commission through project SECRICOM, FP7,
contract no. FP7-SEC-218123.

References

[1] L. F. M. de Moraes and B. A. A. Nunes, “Calibration-free wlan
location system based on dynamic mapping of signal strength,”
New York, NY, USA, pp. 92–99, 2006.

[2] A. Smailagic and D. Kogan, “Location sensing and privacy in
a context-aware computing environment,”Wireless Communica-
tions, IEEE, vol. 9, no. 5, pp. 10–17, Oct. 2002.

[3] P. Bahl and V. N. Padmanabhan,“Radar: An in-building rf-based
user location and tracking system,” in IEEE INFOCOM, Mar
2000, pp. 2:775–784.

[4] A. Taheri, A. Singh, and E. Agu, “Location fingerprinting on
infrastructure 802.11 wireless local area networks location finger-
printing on infrastructure 802.11 wireless local area networks,”
in LCN ’04: Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 676–683.

[5] M. Youssef and A. Agrawala, “Small-scale compensation for wlan
location determination systems,” in Wireless Communications
and Networking, 2003. WCNC 2003. 2003 IEEE, vol. 3, March
2003, pp. 1974–1978 vol.3.

[6] R. A. Malaney, “Securing wi&#45;fi networks with position
verification&#58; extended version,” Int. J. Secur. Netw., vol. 2,
no. 1/2, pp. 27–36, 2007.

[7] A. Peres, R. F. Weber, P. A. R. Torres, and R. D. Vecchia, “Ieee
802.11 wireless location and network security mechanism through
fingerprint, triangulation and dynamic obstacle identification,” in
IWCMC ’09: Proceedings of the 2009 International Conference
onWireless Communications and Mobile Computing. New York,
NY, USA: ACM, 2009, pp. 1459–1463.

[8] P. Appel and P. Ebinger, “Entfernungsschätzungen basierend auf
funksignalstärkemessungen für die angriffserkennung in manets,”
in D-A-CH Security 2008. Proceedings : Bestandsaufnahme,
Konzepte, Anwendungen, Perspektiven, 2008, pp. 249–261.


	Introduction
	Architecture
	Positioning
	Obtaining signal information
	Router-Drone communication
	Trilateration

	Results
	Hardware and Tools

	Conclusion
	Acknowledgements
	References

