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ABSTRACT

We discuss the use of two algorithms to per-
form shape matching on the boundaries of ice
floes in SAR images in order to produce an
ice motion map. The algorithms match a shape
descriptor known as the psi-s curve. The
first algorithm wuses normalized correlation
to match the psi-s curves, while the second
uses dynamic programming to compute an elas-
tic match that better accommodates deforma-
tion of the ice floe boundary.

I. Introduction

There has been considerable interest in
recent years in the use of SAR imagery to
study movement of arctic ice floes. The
movement of ice floes 1is of interest to
shipping, oil drilling, and military
operations. In addition, the motion of ice
floes plays a large role . in the world’'s
weather, because thils motion exposes large
expanses of unfrozen ocean water to the much
more frigid arctic air, and 1is therefore
responsible for a large amount of heat
transfer between the ocean and the
atmosphere. SAR imagery 1is suited for this
task because it allows continuous coverage
through clouds that prevail in the arctic, as
well as during the dark winter months.

A common approach to the automated tracking
of arctic ice has been to select a patch from
an early image (the source image) and to
cross correlate it with a later image (the
target image) at each position that could
plausibly correspond to the same patch of ice
(Fily, 1986). The position that maximizes
the computed correlation coefficient |is
deemed likely to contain the corresponding
patch of ice. Sometimes consistency checks
between several matches are used to identify
false matches.

This method is known as area correlation.
The problem with it is its computational
expense, especially when ice floes rotate.
To accommodate rotation, the patch must be
rotated and correlated several times at each
potential match position in the target image.
The search space thus becomes very large,
increasing the likelihood of false matches
and increasing enormously the computational
burden.
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As a result, there has been increasing
attention to algorithms for tracking 1ice
floes by matching feature shapes (Vesecky,
1988).

We describe here a set of algorithms
developed at jointly by Vexcel Corporation
and the Jet Propulsion Laboratory (JPL) which
have successfully overcome these obstacles.
Rather than correlating raw pixel values,
these algorithms first extract features from
the images. The shapes of the extracted
features are then compared using shape
descriptors known as psi-s curves. To match
the psi-s curves, the algorithms wuse both
normalized correlation and dynamic
programming. An ice tracking system that
uses these algorithms 1is currently being
developed jointly by Vexcel and JPL under a
grant from NASA. The system, known as the
Geophysical Processing System (GpS), is
scheduled for installation at the Alaska SAR
facility in Fairbanks in April of 1990.

II. Psi-s curves

Suppose f(s) = (x(s),y(s)) is a continuously
differentiable parametric curve such that s
is arc length along the curve. At each
point, the vector £'(s) = (x'(s),y’(s)) gives
the vector that is tangent to the curve.

Let 6(s) be equal to the angular difference
between f£’(s) and the wunit vector (1,0). o
is a real-valued, function of s which is
continuous everywhere, except where phase
wrapping introduces discontinuities, i.e.,
where it wraps around from 2n to 0 or from 0
to 2n. The psi-s curve is derived by adding
or subtracting multiples of 2r to portions of
the ©-s curve as needed to remove these
discontinuities. In the case where the curve
has points where it is not differentlable,
multiples of 2n are added or subtracted in
order to minimize the magnitudes of the
discontinuities.

The boundary of a binary region in a digital
image has a limited number of orientations,
depending on the tesselation, It is
therefore necessary to interpolate a smooth
boundary through the jagged artifacts of
digitization before computing the psi-s
curve.
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One of the methods GPS 1ice tracking system
uses for matching shapes is normalized
correlation of the psi-s curves of the
shapes. The GPS ice tracking system employs
correlation by extracting arbitrary segments
of fixed size from the psi-s curves from the
source image and finding the subsegment of
the same size in the psi-s curves from the
target image that maximizes the correlation
coefficient.

Correlating psi-s curves is an effective
method of matching features that rotate
strongly from one image to another. The
reason is that rotation of a feature causes a
constant to be added to its psi-s curve. The
correlation coefficient between two functions
is invariant to addition of a constant to one
of the functions. Therefore, the ability of
correlation to identify a match is unhampered
by rotation of the features. The rotation
can be estimated at the best match by linear
regression of the psi values from the two
sets.

Correlation is also invariant to scalar
multiplication of one of the sets of samples
being correlated. This occurs when one of
the psi-s functions can be derived from the
other by scalar multiplication with a factor
other than 1.0. This would mean that the
variation in the orientations of the tangents
to one feature is greater than it is for the
other, and hence, one of the features is a
coiled up version of the other. This does
not correspond to what humans would consider
resemblance, nor are two such curves likely
to represent the same ice floe in two images.
The scalar multiple can be estimated the
linear regressicon slope coefficient, and
matches rejected where this estimate |is
significantly different from 1.0.

The final task is to determine which of the
matches obtained by correlation are false and
which are correct. The solution to this
problem used in the GPS starts with the
observation that most ice floes have at least
two correct matches on them. The features
involved in these matches move as part of a
rigid body. The length of the axis joining
them will be unchanged €£rom one image to the
next, and the estimates of the rotations of
each obtained by their linear regression
intercepts will coincide with each other and
with the rotation of the axis joining the two
features. 1t is unlikely that a pair of
matches that are not both correct will
satisfy these criteria. The GPS examines all
pairs of matches obtained from psi-s
correlation, tests for these criteria, and
keeps all pairs of matches that satisfy them.
This 1is a much more effective way of
separating false matches from correct matches
than is thresholding the correlation
coefficients of the matches.

Figures 1, 2, 3, and 4 depict an ice image
pair, the extracted features from each pair,
and the motion vectors derived using psi-s
correlation followed by the bad match filter.

IVv. Problems with matching psi-s curveg
using correlation

Figure 5 illustrates a pairing between
corresponding elements of two psi-s curves
derived from segmented ice images. It is
clear that the mapping of the elements is not
one-to-one, and the mapping of the elements
cannot be known until the curves are matched

up.

In fact, implicit in correlation is the
assumption that the psi values are disturbed
from one image to the next, but that the
mapping between the s domains remains linear,
However, any disturbance of the psi values
usually results from disturbance of the shape
being matched, and therefore also results in
distortion of arc length over some intervals
of the. boundary. The correlation matching
process is therefore misspecified, and this
can lead to ~failure of correlation matching
to find correct matches when distortion of
arc length is severe.

V. Dynamic Programming

The field of sequence comparison deals with
the comparison of similar sequences, where
the correspondence between the elements is
not one—-to-one and not known in advance. The
technigues developed in this field provide a
way of measuring the similarity between such
sequences, as well as computing the optimal
and most natural mapping between the elements
of one sequence and those of the other. Most
of the techniques in this field are based on
a class of algorithms known as "dynamic
programming". Dynamic  programming is a
process whereby a recursive problem with an
exponential search tree can be solved in
polynomial time by wusing a table to retain
intermediate results that are shared by
different branches of the tree. A survey of
this area can be found in (Sankoff, 1883).

Dynamic programming has been used in the past
for shape comparison in computer vision, but
this has been restricted largely to
handwriting analysis (Burr, 1983).

A. A Dynamic Programming Solution to the
Matching of Psi-s Curves

A procedure known as "dynamic time warping”
is a variant of dynamic programming for
matching real-valued sequences. Dynamic time
warping examines all sets of mappings between
elements of one segquence and those of the
other, subject to the constraints that the
mappings do not cross each others, and that
every element from one sequence IS paired
with at least one element from the other

sequence. It assigns to each of these
mappings the sum of absolute differences of
paired elements. 1t then produces the

mapping with a minimum sum of absolute
differences, or "cost."

This can be computed recursively as follows:

Let x, and y, be two sequences of length m
and n. Then x; and y,; are the prefixes ©
these sequences containing i and j elements,
respectively, and x, and y, are the i‘th an
j'th elements of the respective seguences.

:




rhe distance between the two seguences can be
expressed as follows:

d (x4, ¥a) = I Ix— vl
d (%, Ya) = L ox— Yj'
d (%Xg, Ya) = min (d (Xg_yr Yo!—|%p - v,

(Xp_ys yn-l)_|xm—y |+
d (X., Yn—l)-lxm“ynnl)

The relation maps x, tO ¥, at cost |x; = Yalv
apd_ resorts to recursion to compute the
minimum-cost mappings of the preceeding
elements.

The mapping can pe computed cheaply by

keeping a table, where element (i,3) of the

table contains d (x4, ¥Yyq)° py starting with
element (1,1) the table can be built up
inductively without resorting to recursion.

when the table is completed, element (X%,¢ ¥.)
contr 's the cost of matching the twe
sequ. €8. Backtracking in the array from
element (Xg. ¥u! through the elements giving
rise to che "minimum at each step of the
recurrence relation gives the mapping petween
the elements. The time and space required to
complete the table is p:uportional to its

size, or m X M.

The GPS uses a variant of this approach. The
following recurrence relation is used:

a (%, y,) = L lxi—'Y1|
4 (xys ¥a) = I 1= Vsl

d (xn' yn') - min (d (x__i,yn)—r*|x“ = Yn|
d (xn-lfyn-l)—|xm—yn‘l
d (x_.yn-l)—r*lxm-—yn|)
where r is arameter that penalizes
excessive arc-length warping.

completed, the pottom LOW

after the table is
minimum yalue.

is gsearched for a
packtracking from this location gives the
interval over X, that matches ¥, the best.
When y, is & fragment of 2 psi-s curve from
one ’mage, and X, is the set of psi-s curves
fro. he other, this procedure finds the best
matcn.

use of the table on

Figures 7 and 8 show
results on ice

Figure 6 illustrates the
a small example, while
dynamic programming match
image data.

B. problems with the pynamic Time Warping
approach

As explained above, the primary advantage of
the dynamic time warping approach over the
correlation approach is that it is not
blinded to 2 match by distortion of the s
dimension of the psi-s curve. The chief
disadvantage of the approach is that the
underlying similarity measure is based on the
sum of differences. unlike correlation, the
sum of differences measure Of cimilarity is
sensitive to the addition of a constant to

one

matech
there
image
appro

g dimension of the
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of the sets of samples. in psi-s
ing, this is exactly what happens when

is rotation of the features from one
to the next. Therefore, although the
ach is not blinded by distortion in the
psi-s curves, it can be

plinded by strong rotation of the features to

be ma

To remedy this

descr
psi-s
from

match

vI.

Two methods of tracking

image
metho
The
corre
the
match

The
warpi

rotat

tched.

problem, 2 rotation-invariant

iptor of 2 curve can be derived from the
curves Dy subtracting
them Dbefore the dynamic
is performed.

Conclusion

arctic ice floes SAR
been presented. poth of the
shape matching on psi-s curves.
method, based on normalized
lation, is indifferent to rotation of
jce floes, and therefore excels in
ing features whose rotation is unknown.

s have
ds do
first

second method, based on dynamic time

ng, excels in matching features that
resemble each other less closely, but whose
jon can be estimated.
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psi-s features
extracted from the images in Figures 1 and

of

curves

Correct matches obtained by corre-
the

of

Figure 4.
lation

ice

same

Seasat SAR image of the

three days later.

Figure 2.



Figure 5. Two matching segments of sea ice
feature boundaries and their psi-s curves.
The matches of the psi values were produced
using the GPS’s dynamic programming algo-
rithm. Deformation of the axis along which
the curves match frequently inhibits a
correct match when <correlation of psi-s
curves is used.

1 2 1 2 3 3 2 5 0 1 1

2 1 0 1 0 1 1 0 3 2 1 1

3 3 1 1 1 0=-~0 1 2 5 3 3
N

2 4 1 2 1 1 1 0 3 4 4 4

N
4 7 3 4 3 2 2 2 1 5 7 7
|
4 10 5 6 6 3 3 4 2 5 8 10
N\
0 11 7 6 8 6 6 5 2 2 3 4
Implied mapping:
121 2 3 3 2 5 0 11

L7 7 71 |
| VARV ARV A B |
2 3 2 4 4 0

Figure 6. 1Illustration of the table produced
by a dynamic programming match of the
seguence 232440 against the sequence
12123325011, which produces the best-match
subsequence 233250. The table is filled in
row-by-row using the recurrence relation used
by the GPS and a value of 1.0 for r. When the
table is completed, the bottom row is scanned
for a minimum valvue. Scanning vertically
from the minimum value of 2, one finds the
ocation of the end of the best-match subse-
Jjuence. By Dbacktracking from that location
chrough the ‘elements giving rise to the
2inimum in the recurrence relation, one finds
the beginning of the best-match subsequence,
2s well as the mapping between the elements.
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Figure 7. Matches produced by anamic pro-
gramming from the data used in Figure 4.




