
From NLP (Natural Language Processing)
to MLP (Machine Language Processing)

Peter Teufl (peter.teufl@iaik.tugraz.at)1 and
Udo Payer (udo.payer@campus02.at)2 and

Guenter Lackner (guenther.lackner@studio78.at)3

1 Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology

2 CAMPUS02, Graz University of Applied Science
3 Studio78, Graz

Abstract. Natural Language Processing (NLP) in combination with
Machine Learning techniques plays an important role in the field of au-
tomatic text analysis. Motivated by the successful use of NLP in solving
text classification problems in the area of e-Participation and inspired
by our prior work in the field of polymorphic shellcode detection we gave
classical NLP-processes a trial in the special case of malicious code anal-
ysis. Any malicious program is based on some kind of machine language,
ranging from manually crafted assembler code that exploits a buffer over-
flow to high level languages such as Javascript used in web-based attacks.
We argue that well known NLP analysis processes can be modified and
applied to the malware analysis domain. Similar to the NLP process we
call this process Machine Language Processing (MLP). In this paper, we
use our e-Participation analysis architecture, extract the various NLP
techniques and adopt them for the malware analysis process. As proof-
of-concept we apply the adopted framework to malicious code examples
from Metasploit.

Key words: Natural Language Processing, Malware Analysis, Seman-
tic Networks, Machine Language Processing, Machine Learning, Knowl-
edge Mining

1 Introduction

Natural Language Processing (NLP) involves a wide range of techniques that
enable the automated parsing and processing of natural language. In the case
of written text, this automated processing ranges from the lexical parsing of
sentences to applying sophisticated methods from machine learning and artificial
intelligence in order to gain insight on the covered topics. Although NLP is a
complex and computationally intensive task, it gains more and more importance
due to the need to automatically analyze large amounts of information stored
within arbitrary text sources on the Internet. For such large text corpora it is
not feasible for human experts to read, to understand and to draw conclusions
in a complete manual way.



An example for such a domain is the electronic participation (further denoted
as e-Participation) of citizens within a governmental decision process. Typically,
this process involves citizens that express their opinion on certain topics and
domain experts that analyze these opinions and extract important concepts and
ideas. In order to speed up the process and improve the results it makes sense
to apply NLP techniques that support the domain experts. Therefore, we have
implemented and employed an e-Participation analysis framework [1].

Due to previous work in the field of malicious code detection—especially in
the field of polymorphic shellcode detection [2], [3] — we realized that the analysis
of natural languages is somewhat similar to the analysis of machine languages.
Malware, regardless of its nature, is always based on some kind of programming
language used to encode the commands that an attacker wants to execute on
a victim’s machine. This can be raw assembler code or a high level scripting
language such as Javascript. The process of detecting malware is to identify
malicious code within large amounts of regular code. There are a wide range
of malware detection methods ranging from simple signature detection methods
to highly sophisticated methods based on machine learning. However, before
such methods can be deployed for malware detection we need to analyze and
understand the underlying code itself. Due to self mutating code, encryption,
metamorphic and polymorphic engines, and other methods designed to camou-
flage the malware itself, it is not possible to create simple signatures anymore.
Therefore, we need to extract other more complex relations within the machine
language that allow us to devise more robust detection methods.

In this paper, we argue that the same NLP processes and techniques used
for the analysis of natural language can be mapped and applied to machine
language. Analog to the NLP process we introduce the concept of Machine Lan-
guage Processing (MLP). In order to find relevant MLP processes, we extract
the various analysis steps of our e-Participation analysis framework and define
corresponding MLP steps. In order to test the implementability of this approach
we finally apply the modified framework to real assembler code extracted from
various decoding engines generated by the Metasploit framework.

Although the proof-of-concept and the NLP-to-MLP transformations focus
on assembler code, the discussed techniques could easily be extended to arbitrary
machine languages.

2 Related Work

Malware is defined as some piece of software with the only intention to perform
some harmful actions on a device, which is already under control or is intended
to be under control of an attacker. Malware analysis—on the contrary—is the
process of re-engineering these pieces of software or to analyze the behavior for
the only purpose to identify or demonstrate the harmfulness of these pieces of
software (such as a virus, worm, or Trojan horses). Actually, malware analysis
can be divided into

– behavior analysis (dynamic analysis) and



– code analysis (static analysis)

Since no generic tool exists to perform this analysis automatically, the process of
malware analysis is a manual one, which can fortunately fall back on a rich set of
efficient but simple tools. A tricky part in malware analysis is to detect pieces of
code, which are only triggered under some specific conditions (day, time, etc. ...).
In such cases, it is essential to disassemble the whole executable and to analyze
all possible execution pathes. Finding and watching such execution pathes (e.g.
by the help of a disassembler) is forming the core mechanism of a sophisticated
code analysis process.

As ”dynamic” approach to detect execution chains within a piece of soft-
ware is to execute and analyze its behavior in a restricted environment. Such
an environment can be a debugger, which is controlled by a human analyst, to
step through each single line of code to see the code-execution happening and
to understand the ”meaning” of the code. Examples of such ”sandbox”- tech-
niques are CWSandbox [4], the Norman SandBox [5], TTAnalyze and Cobra [6].
Common to all these examples is that code is automatically loaded and analyzed
in a virtual machine environment to find out the basic behavior and execution
pathes. A special dynamic sandbox-method is the so called black box analysis.
In this case, the system is studied without any knowledge about its internal con-
struction. Observable during the analysis are only external in- and outputs as
well as their timing relationships. After a successful simulation, a post mortem
analysis will show effects of the malware execution. This post mortem analysis
can be done by standard computer forensic tool chains.

In the case of malicious code analysis, the common idea is to use analysis
archtitectures to make use of the huge number of useful tools in a controlled
way. BitBlaze [7] for instance even tries to combine static- and dynamic analysis
tools. The BitBlaze framework actually consists of three components: Vine, the
static analysis tool, TEMU, the dynamic analysis component, and Rudder, a
separate tool to combine dynamic and static analysis results.

NLP is a huge field in computer science about language- based interactions
between computers and humans. It can basically be divided in the following two
major areas:

– Natural language generation systems (LGS), which convert information from
computer databases into readable human language and

– Natural language understanding systems (LUS), which are designed to con-
vert samples of human language into a formal representation. Such a repre-
sentation can be used to find out what concepts a word or phrase stands for
and how these concepts fit together in a meaningful way.

Related to the content of this paper, we always think about NLP as an ap-
plication that can deal with text in the sense of classification, automatic trans-
lations, knowledge acquisition or the extraction of useful information. In this
paper, we will not link NLP to the generation of natural languages. Especially
in the case of LUS, a lot of prior work exists, which was carried out by many
different research groups (e.g. [8],[9]). Machine learning techniques have been



applied to the natural language problem, statistical analysis has been performed
and large text corpora have been generated and have been used successfully in
the field of NLP. Thus, several projects—about innovative ways to run and im-
prove NLP-methods—have already been finished or are still ongoing - and we
are quite sure that there will be many more.

3 Methods

3.1 NLP:

All NLP components of the platform are based on the lingpipe NLP API [10]. It
is a Java API that covers a wide range of algorithms and techniques important
for NLP: Examples are Part-of-Speech (POS) tagging, the detection of sentences,
spelling correction, handling of text corpora, language identification, word sense
disambiguation (e.g. [11]), etc. The techniques that are relevant for our text-
analysis architecture will be shortly discussed in the subsequent sections. For a
good overview of all these techniques we refer to the tutorials that come with
the lingpipe package4.

3.2 Semantic/Associative Networks and Spreading Activation (SA)

Associative networks [12] are directed or undirected graphs that store informa-
tion in the network nodes and use edges (links) to present the relation between
these nodes. Typically, these links are weighted according to a weighting scheme.
Spreading activation (SA) algorithms [13] can be used to extract information
from associative networks. Associative networks and SA algorithms play an im-
portant role within Information Retrieval (IR) systems such as [14], [15] and
[11]. By applying SA algorithms we are able to extract Activation Patterns from
trained associative networks. These Activation Patterns can then be analyzed
by arbitrary supervised and unsupervised machine learning algorithms.

3.3 Machine Learning (ML)

For the supervised or unsupervised analysis of the activation patterns – the
patterns generated by applying SA to the semantic/associative network – stan-
dard machine learning algorithms can be applied. Examples for supervised algo-
rithms are the widely used Support Vector Machines (SVM), Neural Networks
and Bayesian Networks. The family of unsupervised algorithms has an impor-
tant role, since such techniques allow us to extract relations between features,
to detect anomalies and to find similarities between patterns without having an
a-priori knowledge about the analyzed data. Examples for such algorithms are
Neural Gas based algorithms [16], Self Organizing Maps (SOM), Hierachical Ag-
glomerative Clustering (HAC), or Expectation Maximation (EM). In this work
we employ the Robust Growing Neural Gas algorithm (RGNG) [16].
4 http://alias-i.com/lingpipe/demos/tutorial/read-me.html



Lexical Parser

POS Tagging

POS Filter

Lemmatization

Semantic Network Generation

Activation Pattern Generation

Unsupervised Analysis Semantic Search

NLP

Semantic Relations

External Knowledge

Emulator/Disassembler

POC Tagging

POC Filter

Lemmatization

MLP

NLP/MLP Processing

Semantic Processing

Analysis

Supervised Analysis

Fig. 1: MLP vs. NLP Processing

4 From NLP to MLP

In [1] we present an automated text-analysis architecture that is used for the
analysis of various e-Participation related data-sets. The basic modules of this
architecture are depicted in Figure 1. The remaining part of this section describes
the various NLP and ML related submodules of this architecture and how they
can be applied or transformed to MLP modules for malware analysis.

4.1 Lexical Parser/Emulator/Disassembler

NLP: For NLP, we need to convert a sequence of characters into a sequence of
tokens. These tokens represent the terms of the underlying text. The conversion
process is called lexical analysis. By using lexical parsers such as the Stanford
Parser [17], we are able to extract the roles of terms within a sentence and the
relations between these terms. Depending on the subsequent processing steps,
this could range from a superficial analysis identifying some key grammatical
concepts to a deep analysis that is able to extract fine details.

MLP: Raw machine code is a byte sequence that contains instructions that are
executed by the processor. In addition, most of the available instructions have



parameters that are also encoded in the byte sequence. In order to extract infor-
mation for further analysis, we need to process this byte sequence and extract
the instructions and the parameters. In a simple scenario this could be done
with a disassembler that extracts instructions from a given byte sequence. How-
ever, due to branch operations such as jmp or call these byte sequence is not
processed by the CPU in a linear way. Thus, in order to extract the instruction
chain the way it is executed on a CPU, we need to employ emulators or execute
the code directly on the CPU. For the example presented later in this work, we
utilize the PTRACE system call5 on linux to execute code directly on the CPU
(see Section 5.1 for a more detailed description). By applying such methods to
the raw byte sequence, we are able to extract and inspect the instructions chains
executed on the CPU. In analogy to NLP these instruction chains represent the
written text, which needs to be analyzed. Similar to NLP the deepness of the
analysis depends on the applied method. These methods range from extracting
the instructions and their execution order to more complicated methods capable
of identifying more complex structures: constructs such as loops, the necessary
preparation for executing interrupts, branching etc.

4.2 POS (Part-of-Speech) Tagging, POC (Part-of-Code) Tagging

NLP: POS tagging can also be seen as part of the lexical analysis described in
the previous section. However, since it plays an important role for text analysis,
we describe it as separate process. In NLP, Part-of-Speech tagging is the process
of identifying the role of each term in a sentence. The following example shows
the POS tags for a given sentence: Hello RB I PRP am VBP a DT little JJ
sentence NN trying VBG to TO find VB my PRP place NN within IN this DT
text NN . . The tags were obtained by using the online interface of the Stanford
parser6, where for example NN indicates nouns and VB* identifies verbs and
their different modes. POS tags are used for subsequent processing steps, which
include the filtering of terms according to their tags and establishing relations
between terms in a semantic network according to these tags.

MLP: Obviously, there are no nouns, verbs or related concepts in machine code,
but there are similar concepts that could be used to tag single instructions. We
call these tags Part-Of-Code (POC) tags. For the example presented in Section
5 we tag the instructions according to their functionality which results in the fol-
lowing categories: control flow, arithmetic, logic, stack, comparison, move, string,
bit manipulation, flag manipulation, floating point unit instructions, other.

4.3 POS/POC Filtering

NLP: Depending on the subsequent analysis, it makes sense to keep only terms
with certain POS tags. For the e-Participation related text analysis, we only
5 http://linux.die.net/man/2/ptrace
6 http://nlp.stanford.edu:8080/parser/



keep nouns, verbs and adjectives since the already convey a large part of the
information within the text.

MLP: According to the determined POC tags, we can easily define filters that
allow us to focus on branching behavior, arithmetic operations, logical operations
etc.

4.4 Lemmatization

NLP: Before proceeding with the NLP analysis of POS tagged text, it makes
sense to derive the lemmas of the remaining terms. By doing so we avoid the
ambiguity of different forms such as inflected terms or plural forms. For example
the term bought would be mapped to its lemma buy for further analysis.

MLP: When applying this process to machine code, we need to ask ”What is
the lemma of an assembler instruction?”. There is not a single answer to this
question, but there are several concepts that could be used for lemmatization:

– Instruction without parameters: In this case we strip away the param-
eters of an instruction and use the instruction as lemma.

– Mapping of instructions: Instructions that belong to the same family
could be mapped to one instruction. An example would be the mapping of
all mov derivates to one instruction.

– High level interpretation: In this case we focus on the operations per-
formed by the instructions and not the instructions themselves. E.g. the
instructions and their parameters xor eax,eax or mov eax,0 or the chain
mov eax,5; sub eax,5 all have the same effect – the eax register con-
tains the value 0. As we see, this effect can be achieved by using various
instructions or instruction chains. Such techniques are typically employed
by polymorphic and metamorphic engines trying to camouflage their real
purpose by changing the signature of each generated instance.

4.5 Creation of the Associative/Semantic Network

In this step we create the semantic or associative network that stores the in-
formation on how different features are related. In case of NLP, the terms of a
text are the features and the relations are defined by the co-occurence of terms
within sentences. For MLP, the features are represented by instructions and the
relations between instructions are based on the co-occurence of these instruc-
tions within chains. We note that although these relations are rather simple
they already convey important information for further analysis (see Section 6
for possible improvements). The semantic network is generated in the following
way:



NLP: For each sentence, we apply the following procedure: For each different
term (sense) within the analyzed text corpus we create a node within the as-
sociative network. The edges between nodes and their weights are determined
in the following way: All senses within a sentence are linked within the asso-
ciative network. Newly generated edges get an initial weight of 1. Every time
senses co-occur together, we increase the weight of their edges by 1. In addi-
tion, we store the type of connection for each edge. Examples for these types
are noun-to-noun links, noun-to-verb links or adjective-to-adverb links. By us-
ing this information when applying SA algorithms, we are able to constrain the
spreading of activation values to certain types of relations.

MLP: In machine code, sentences as we know them from text, do not ex-
ist. However we can find other techniques that separate instruction chains in a
meaningful way:

– Using branch operations to limit instruction chains: For this method,
we use branch operations such as jmp, call to identify the start/end of an
instruction chain. We have already sucessfully applied this method in prior
work ([3]).

– Number of instructions: We could simply define a window with size n
that take n instructions from the instruction chains.

Regardless of the method for the extraction of instruction chains, the network
is generated in the same way as for the text data.

4.6 Generation of Activation Patterns

Information about the relations between terms/instructions can be extracted
by applying the SA-algorithm to the network. For each sentence/instruction
chain, we can determine the corresponding nodes in the network representing
the values stored in the data vector. By activating these nodes and applying SA,
we can spread the activation according to the links and their associated weights
for a predefined number of iterations. After this process, we can determine the
activation value for each node in the network and represent this information
in a vector - the Activation Pattern. The areas of the associative network that
are activated and the strength of the activation gives information about which
terms/instructions occurred and which nodes are strongly related.

4.7 Analysis of Activation Patterns

The activation patterns generated in the previous layers are the basis for applying
supervised and unsupervised Machine Learning algorithms. Furthermore, we can
implement semantic aware search algorithms based on SA.

Unsupervised Analysis: Unsupervised analysis plays an important role for
the analysis of text, since it allows us to automatically cluster documents or
instruction chains according to their similarity.



Search with Spreading Activation (SA): In order to search for related con-
cepts within the analyzed text sources/instruction chains, we apply the following
procedures:

1. The user enters the search query, which could be a combination of terms or
instructions, a complete sentence or instruction chain or even a document
containing multiple sentences or instruction chains.

2. We determine the POS/POC tags for every term/instruction within the
search query.

3. Optionally, we now make use of an external knowledge source to find related
terms/instructions and concepts for the terms/instructions in the query. For
NLP such an external source could be WordNet [14] or Wikipedia. For MLP
we could use reference documentation that describes all available instruc-
tions, their parameters and how these are related. An example for such a
source is the Instruction Set Reference for Intel CPUs7.

4. We activate the nodes corresponding to the terms/instructions of the search
query and use the SA algorithm to spread the activation over the associative
network.

5. We extract the activation pattern of the associative network and compare it
to the document, sentence or instruction chain patterns that were extracted
during the training process. The patterns are sorted according to their sim-
ilarity with the search pattern.

External knowledges sources such as Wordnet can be quite useful for improving
the quality of the search results. In order to highlight some of the benefits, we
have the following example for text-analysis. Assuming, we execute a search
query that contains the term fruit. After applying SA, we get the relations that
were generated during the analysis of the text. However, these relations only
represent the information stored within the text. The text itself does not explain
that apples, bananas and oranges are instances of the term fruit. Therefore when
searching for fruit we will not find a sentence that contains the term apple if
the relation between these two terms is not established within the text. Thus, it
makes sense to include external knowledge sources that contain such information.
For NLP we can simply use Wordnet to find the instances of fruit and activate
these instances in the associative network before applying SA. For MLP, such
information could also provide vital information about the relations between
instructions. In a similar way we could issue a search query that extends the
search to all branch or arithmetic instructions.

Relations between Terms/Instructions: The trained associative network
contains information about relations between terms/instructions that co-occur
within sentences/instruction chains. By activating one or more nodes within
this network and applying the SA algorithm, we are able to retrieve related
terms/instructions.

7 http://www.intel.com/products/processor/manuals/



5 The Real World – Example

In order to show the benefits of a possible malware analysis architecture based
on MLP, we transform the existing NLP framework and apply it to payloads
and shellcode encoders generated by the Metasploit framework. The Metasploit
project is described in this way on the project website8: Metasploit provides
useful information to people who perform penetration testing, IDS signature de-
velopment, and exploit research. This project was created to provide information
on exploit techniques and to create a useful resource for exploit developers and
security professionals. The tools and information on this site are provided for
legal security research and testing purposes only.

5.1 PTRACE Utility

For the lexical analysis of an arbitrary byte sequence we have developed a simple
tool based on the PTRACE system call9 on Linux.

– Single stepping: By utilizing PTRACE we are able to instruct the pro-
cessor to perform single stepping. This enables us to inspect each executed
instruction, its parameters and the CPU registers.

– Execution of arbitrary byte sequences: The utility follows each instruc-
tion chain until the bounds of the byte sequence are reached, the maximum
number of loops is reached or a fault occurs. Whenever one of these condi-
tions is fulfilled, the tool searches for a new entry point that has not already
been executed. By applying these technique we are able to find executable
instruction chains even if they are embedded in other data (e.g. images,
network traffic).

– Blocking of interrupts: The analysis of the payloads and encoders gener-
ated by Metasploit is rather simple. In order to keep payloads from writing
on the harddrive, we simple block all interrupts encountered by the tool.

– Detection of self modifying code: Such behavior is typical for a wide
range of encoders/decoders that encode the actual payload in order to hide
it from IDS systems. Typically the actual payload is decoded (or decrypted)
by a small decoder. After this process the plain payload is executed. Since
this decoding process changes the byte sequence, it is easy to detect when
the decoder has finished and jumps into the decoded payload.

– Dumping of instructions: The tool makes use of the libdisasm library 10

to disassemble instructions. For each CPU step, we dump the instruction,
its parameters and the category it belongs to.

5.2 Metasploit Data

Metasploit offers a command line interface to generate and encode payloads.
We have used this interface to extract various payloads. Furthermore, we have
8 http://www.metasploit.com/
9 http://linux.die.net/man/2/ptrace

10 http://bastard.sourceforge.net/libdisasm.html



encoded a payload with different shellcode encoders including the polymorphic
shellcode encoder shikata-ga-nai. As dump format we have used the unsigned
char buffer format. In order to apply MLP techniques we use the existing NLP
architecture as basis and add or modify existing plugins for MLP processing:

– Lexical Analysis: For the extraction of the instruction chain we use our
ptrace utility. The extracted chains contain the executed instructions, their
parameters and the instruction category. We do not consider the parame-
ters for further processing. The instruction chains are seperated into smaller
chains by using control flow instructions (e.g. jmp, call, loop) as separator.
In analogy to NLP, these sub instruction chains are considered as ”sentences”
whereas the whole payload/encoded payload is considered as ”document”.

– Tagging: Similar to a POS tagger, we can use a POC tagger for MLP. In
this case this tagger uses the instruction category as tag. We consider all
tags for further analysis and do not apply a filter.

– Lemmatization: Except for dropping the parameters, we do not employ
further lemmatization operations.

– Semantic network generation: We apply the same semantic network gen-
eration process as used in the NLP architecture.

– Activation pattern generation: This is also based on the same process
that is used for the NLP architecture. For each sub instruction chain (sen-
tence), we activate the nodes corresponding to the instructions within the
chain and spread the activation over the semantic network. We do not make
use of any external knowledge source.

– Analysis: We show some examples for the analysis of the extracted/encoded
payloads: Unsupervised clustering, finding relations between instructions and
semantic search.

5.3 Relations

For text-analysis we often need to find terms that are closely related to a given
term. An example from the e-Participation data analysis is shown in Figure 2(a).
We use the term vehicle and extract the related terms from the the semantic
network. Some examples for related terms are: pollution, climate change,
car, pedestrian and pedestrian crossing. These relations are stored in the
semantic network that was generated during the analysis of the text data. In
MLP, we can apply exactly the same procedure. For the following example we
want to find instructions that are related to XOR within the dataset consisting
of subchains. In this case relation means that the instructions co-occur within
the same chain. By issuing the query for xor, we get the following related in-
structions: push, pop, inc, add, dec, loop. These results can be explained
by having a closer look on the decoding loops of various decoders (shikata-ga-
nai, countdown, alpha-mixed) shown in Table 1. The utilitzation of these other
instructions is necessary for reading the encoded/encoded shellcode, performing
the actual decoding and writing the decoded shellcode back onto the stack. Due
to the unsupervised analysis and the semantic network we are able to find these
relations without knowing details about the underlying concepts.



(a) (b)

Fig. 2: NLP - Relation between terms (a) and MLP - relations between instruc-
tions (b)

5.4 Semantic Search

The previous example shows that due to the semantic network and the links
within this network we are able to find relations between terms/instructions.
These relations can also be used for executing semantic aware search queries.
In order to highlight the benefits, we first present a simple example taken from
text-analysis. Assuming we have two sentences11A and B: A: ”Evidence suggests
flowing water formed the rivers and gullies on the Mars surface, even though
surface temperatures were below freezing” and B: ”Dissolved minerals in liquid
water may be the reason”. When we search for the term Mars we obviously
are able to retrieve sentence A. However, since sentence A talks about water on
Mars, we also want to find sentence B that adds further details concerning the
term water. Since the term Mars is not in sentence B we need to make use of
the relations stored in the semantic network in order to include sentence B in the
search results. The same procedure can be applied to MLP. For the following
example we search for instruction chains that are related to the instruction
add, which plays a role in various shellcode decoders. The results are shown
in Table 1. Obviously, the algorithm returns decoders with an add instruction
first, since these have the best matching pattern. However, at position 4 and 5
we also retrieve decoding loops of other decoders that do not make use of the
add instruction. We are able to find these decoding loops since they use other
instructions that are typical for such loops: xor, sub, loop. Due to the relations
created by the decoding loops of shikata-ga-nai, add is linked with those and
similar instructions. Thus, we are able to retrieve these other decoder loops that
do not contain the add instruction, but have similar tasks.

5.5 Clustering

By clustering whole execution chains or sub chains (e.g. loops) into clusters, we
are able to categorize different execution chains automatically. For unsupervised
11 Take from the article: NASA Scientists Find Evidence for Liquid Water on a Frozen

Early Mars, May 28th, http://spacefellowship.com



Result Decoder Instruction chain Description

1 shikata-ga-nai xor add add loop Decoder

2 shikata-ga-nai xor mov fnstenv pop mov xor add add loop Decoder setup

3 nonalpha pop mov add mov cmp jge Decoder setup

4 fnstenv-mov xor sub loop Decoder

5 countdown xor loop Decoder

Table 1: Semantic search results for instruction add

clustering we apply the RGNG [16] cluster algorithm to the activation patterns of
the subchain dataset. By choosing a rather simple model complexity, we retrieve
4 clusters: Cluster 1 primarily consists of the decoding loops of alpha-upper
and alpha-mixed. Since both decoders have similar tasks (but not the same
instruction chains), they are categorized within the same cluster. Cluster 2 and
Cluster 4 contain the polymorphic decoding engines of shikata-ga-nai. By ob-
serving the instruction chains of those both clusters we see that Cluster 2 has
chains based on add instructions whereas Cluster 4 consists of those chains that
employ sub instructions. This is a perfect example why it could make sense to
employ external knowledge to gain additional information about the analyzed
instructions. In this case, add and sub could be mapped to arithmetic instruc-
tions which would result in the categorization within the same cluster. Cluster 3
contains chains related to decoding engine setup and the necessary preparations
for calling an interrupt (typically the payload itself).

6 Conclusions and Outlook

In this paper we present a MLP architecture for malware analysis. This archi-
tecture is the result of adopting an existing NLP architecture to the analysis
of machine code. We map existing NLP modules to MLP modules and describe
how established NLP processes can be transferred to malware analysis. In order
to show some of the possible applications for such an MLP architecture, we ana-
lyze different shellcode engines and payloads from the Metasploit framework. The
presented malware architecture can be seen as the first step in this direction.
There are further promising techniques, which would increase the capabilities
and the quality of the analysis process:

– Improved lexical parsing in order to allow the identification of more complex
structures such as loops, preparations for interrupts, etc.

– Due to improved lexical parsing, more relations could be stored in the seman-
tic network, which would enable more detailed or focused analysis processes.

– High level interpretation of the underlying machine code.
– Extending the MLP framework to high level languages such as Javascript.

All of these suggested improvements have corresponding elements within
NLP and are partly already solved there. This means, that we might be able
to apply some of these techniques directly in MLP or adapt them for MLP. As
next step we will identify more suitable NLP techniques and adopt them to MLP



modules. Finally, we especially want to thank P. N. Suganthan for providing the
Matlab sources of RGNG [16].

References

1. Teufl, P., Payer, U., Parycek, P.: Automated analysis of e-participation data by uti-
lizing associative networks, spreading activation and unsupervised learning. (2009)
139–150

2. Payer, U., Teufl, P., Kraxberger, S., Lamberger, M.: Massive data mining for
polymorphic code detection. In Vladimir Gorodetsky, Igor Kotenko, V.S., ed.:
Computer Network Security. Volume 3685 of Lecture notes im computer science.,
Springer (2005) 448 – 453

3. Payer, U., Teufl, P., Lamberger, M.: Hybrid engine for polymorphic code detection.
In Klaus Julisch, C.K., ed.: Detection of intrusions and malware, and vulnerability
assessment. Volume 3548 of Lecture notes im computer science., Springer (2005)
19 – 31

4. SunbeltSoftware: (Cwsandbox - automatic behavior analysis of malware)
5. Norman: (Norman sandbox: A virtual environment where programs may perform

in safe surroundings)
6. Vasudevan, A., Yerraballi, R.: Cobra: Fine-grained malware analysis using stealth

localized-executions. Security and Privacy, IEEE Symposium on 0 (2006) 264–279
7. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,

Newsome, J., Poosankam, P., Saxena, P.: Bitblaze: A new approach to computer
security via binary analysis. In: ICISS ’08: Proceedings of the 4th International
Conference on Information Systems Security, Berlin, Heidelberg, Springer-Verlag
(2008) 1–25

8. Microsoft: (Natural language processing group: Redmond-based natural language
processing group)

9. Stanford: (Natural language processing group: Natural language processing group
at stanford university.)

10. Alias-i: (Lingpipe: A suite of java libraries for the linguistic analysis of human
language)

11. Tsatsaronis, G., Vazirgiannis, M., Androutsopoulos, I.: Word sense disambiguation
with spreading activation networks generated from thesauri. In Veloso, M.M., ed.:
IJCAI 2007. (2007)

12. Quillian, M.R.: Semantic memory. MIT Press, Cambridge, MA (1968)
13. Crestani, F.: Application of spreading activation techniques in information re-

trieval. Artificial Intelligence Review 11 (1997) 453–482
14. Fellbaum, C.: WordNet: An Electronic Lexical Database (Language, Speech, and

Communication). The MIT Press (1998)
15. Kozima, H.: Similarity between words computed by spreading activation on an

english dictionary. In: EACL. (1993) 232–239
16. Qin, A.K., Suganthan, P.N.: Robust growing neural gas algorithm with application

in cluster analysis. Neural Netw. 17 (2004) 1135–1148
17. Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural

language parsing. In: In Advances in Neural Information Processing Systems 15
(NIPS, MIT Press (2002) 3–10


