Common normals of two ellipses/ellipsoids and the 'one hand clapping problem'

P. J. Zsombor-Murray* A. Gfrerrer ${ }^{\dagger}$

May 15, 2019

In the case of collision prediction for moving objects complicated shapes are often replaced by geometrically simplier ones like quadrics or, more specifically, ellipses and ellipsoids. In particular, we discuss the following tasks:

1. Given two ellipses k_{1} and k_{2} in a common plane or two ellipsoids Φ_{1} and Φ_{2} in 3 -space find all common normals of k_{1} and k_{2} or Φ_{1} and Φ_{2}, respectively.
2. 'One hand clapping'; 2-dimensional case: Let k_{1} and k_{2} be ellipses in a common plane ε and let $O \in \varepsilon$ be a point. If the second ellipse k_{2} is rotated about O find all instances of k_{2} which are tangent to k_{1}.
3. 'One hand clapping'; 3-dimensional case: Let Φ_{1} and Φ_{2} be ellipsoids and let a be a straight line. Find all instances of the second ellipsoid Φ_{2} tangent to Φ_{1} if Φ_{2} is rotated about the axis a.

Those kinds of problems always lead to a set of algebraic equations whose solutions can be found by Groebner bases methods. But it turns out that by investing appropriate geometric considerations those Groebner bases methods can either be completely avoided or at least the number of variables and the degrees of the occurring polynomials can be reduced.

[^0]
[^0]: *McGill University, Canada
 ${ }^{\dagger}$ Graz University of Technology, Austria

