

Validation data for reactive human body models in the pre-collision phase

Authors:

Dipl.-Ing. S. Kirschbichler, Institut für Fahrzeugsicherheit der TU Graz, stefan.kirschbichler@tugraz.at
Dipl.-Ing. Dr. techn. W. Sinz, Institut für Fahrzeugsicherheit der TU Graz, wolfgang.sinz@tugraz.at
Dipl.-Ing. (FH) A. Prüggler, Virtual Vehicle, Graz, adrian.prueggler@v2c2.at
Dr. rer.nat. P. Huber, Virtual Vehicle, Graz; philipp.huber@v2c2.at
T. Steidl, Virtual Vehicle, Graz; thomas.steidl@v2c2.at
Dipl.-Ing. Dr. techn. K. Steiner, Virtual Vehicle, Graz; kurt.steiner@v2c2.at

General information

Content

- General information
- Project task
- > Testing
 - Sled tests
 - Vehicle tests
- > Simulation
- Conclusions / Outlook

General information

Strategic focus: Pre-crash time window (~2s) and reactive human patterns

General information

Objectives

- > Testing:
 - Different load cases
 - Significant number of volunteer
 - Accurate kinematic information
 - Danger for volunteer

- Simulation: Several FE/MBS models on the market
 - Marginal possibility to modify the control system of the existing models
 - Marginal information about the validation of the models

> Project tasks

- Development and improvement of models and methods for the representation of reactive behavior in numeric human body models
- Characterization of reactive behavior in low load pre-crash phase
- Specification of behavior patterns based on existing and new experimental methods and integration into a numeric human body model

Sled test set up

Reference seat (only lap belt)

VICON Camera system

Crash track

Cable guided sled

Sled Testing

Video high speed camera

For detailed information refer to: Detailed Analysis of 3D Occupant Kinematics and Muscle Activity during the Pre-crash Phase as Basis for Human Modeling Based on sled tests 13.06.2011 ESV Washington DC

Video infrared camera

Analyses:

- Large inter-subject variability
- Large intra-subject variability (less movement upon repeated trial)

1. Case: Front braking maneuver 10 km/h

2. Case: Lane change 50 km/h

> Two different seats

- I. Production-model seat
- II. Reference seat OM4IS

> 3 possibilities for belt system (front and side):

A.) Belt 3 point safety belt

B.) Active belt belt retractor

C.) Lap beltonly lap belt

> Six different maneuvers

- 1a.) Front **unaware**: the volunteer does not know the maneuver or the location
- 1b.) Front **anticipated**: the volunteer can anticipate the maneuver and the location
- 1c.) Front **informed**: the volunteer is told where and when the maneuver happens
- 2a.) Side **unaware**: the volunteer does not know the maneuver or the location
- 2b.) Side **anticipated**: the volunteer can anticipate the maneuver and location
- 2c.) Side **informed**: the volunteer is told where and when the maneuver happens

30 volunteers according to 50% male HIII dummy

Measurement systems

- Vehicle data
- Kinematic volunteer (Vicon)
- Surface EMG

Video Front unaware ~10km/h, peak acceleration ~ 1g

Video Front unaware ~10km/h, peak acceleration ~ 1g

Comparison Front Braking Maneuver

THUMS and belt
Result: X:\scratch\FE_VD_V027_FA_human_lap_belt_ridgidcon2_201_120112\d3plot
Loadcase 1: Time = 0.000000

- Code-independent controller
- Simulation method independent controller (suitable for MBS and FE)
- Model is able to cover full range of subject movement

Comparison Dummy Test - Volunteer Test - Simulation

Conclusions:

- Differences in kinematic behavior between volunteer and Dummy
- Large inter-subject variability
- Good agreement between simulation and volunteer kinematics

Outlook:

- EMG analyses
- Movement patterns
- Movement controller optimization

Thank you for your attention

www.om4is.com

www.vsi.at

www.v2c2.at

Appendix - Sled Testing

- 11 volunteers analogue 50% male dummy (average weight 78 kg, average height 175 cm)
- 3 frontal tests per volunteer (0,8 g acceleration / 10 km/h velocity)
- > 3 lateral tests per volunteer (0,4 g acceleration / 8 km/h velocity)
- 2 different camera systems (Vicon infrared / Weinberger highspeed)
- Measurement of 8 different muscles (left and right bodypart -> 16 muscles)

For detailed information refer to

Detailed Analysis of 3D Occupant Kinematics and Muscle Activity during the Pre-crash Phase as Basis for Human Modeling Based on sled tests

13.06.2011 ESV Washington DC

Appendix - Vehicle Testing

- ➤ Volunteer 1-30
 - 1.) <u>frontal passive/unaware</u>
 - 2.) lane change passive/unaware
 - 3.) frontal passive/anticipated
 - 4.) lane change passive/anticipated
 - 5.) <u>frontal active/informed</u>
 - 6.) <u>lane change active/informed</u>
- > Summary
 - 30 volunteers
 - 90 frontal tests
 - 90 lane change maneuver