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Galerkin-BEM for elastodynamics in the time domain based on the convolution quadrature
method

Martin Schanz and Lars Kielhorn
Institute of Applied Mechanics, Graz University of Technology

Technikerstraße 4/II, 8010 Graz, Austria
e-mail: m.schanz@tugraz.at

Abstract

The Boundary Element Method in time domain is well suited to treat wave propagation problems, especially, in unbounded domains.
The time convolution in elastodynamics can be performed analytically or, as proposed here, with the convolution quadrature method.
The spatial discretisation of the underlying time-dependent boundary integral equations is, in engineering, mostly done via the collo-
cation method. Here, the symmetric Galerkin approach is used. As expected from the mathematical analysis for, e.g., the Helmholtz
equation, this approach shows a more robust behavior compared to the collocation method. In the proposed presentation the formulation
and several numerical studies will be shown.
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1. Introduction

The Boundary Element Method (BEM) in time domain is
well suited to treat wave propagation problems. Especially, the
implicit fulfillment of the Sommerfeld radiation condition makes
this method superior to other domain based discretization meth-
ods if unbounded domains are considered. The mathematical
background of the underlying boundary integral equations for
time dependent problems may be found in [1]. Nowadays in engi-
neering, the spatial discretization of those time-dependent bound-
ary integral equations is mostly done via the collocation method.
But also Galerkin type approaches exists which are mostly used
for time independent problems. For an overview see [2].

For the time discretization there exist in principle two ap-
proaches. Firstly, if time dependent fundamental solutions are
available, the usage of ansatz functions with respect to time yields
a time stepping procedure after an analytical time integration.
This technique has been proposed by Mansur [3]. Secondly, the
Convolution Quadrature Method (CQM) developed by Lubich
[4], [5] can be used to establish the same time stepping proce-
dure as obtained by a direct time integration, see [6]. Contrary to
the approach from Mansur for this methodology only the Laplace
domain fundamental solutions have to be used and the time inte-
gration is performed numerically. Hence, this approach can easily
be extended to the inelastic [7] or anisotropic [8] case where the
fundamental solutions are only available in the Laplace or Fourier
domain.

Here, the CQM based approach will be used in a symmet-
ric Galerkin BE formulation. This is motivated by the positive
results of the Galerkin approach in statics as well as for the
Helmholtz equation [9]. It will be studied whether the stability
of the time stepping procedure is improved compared to the col-
location based approach. Further, the quality of the results using
the same spatial discretization will be compared to the colloca-
tion approach. These studies are a preparation to apply the CQM
based Galerkin approach to visco- or poroelastic media.

2. Boundary integral equations

2.1. Problem statement
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Figure 1: Problem statement

Let the time T > 0 be fixed and let Ω ⊂ R3 be a domain with
a compact boundary Γ = ΓD,i∪ΓN,i with the degrees of freedom
i = 1, 2, 3 (Fig. 1). In ΓD,i and ΓN,i the notation (),i indicates
that at each boundary point the type of boundary condition can
be different in each direction i. Assuming further homogeneity
and a linear elastic material (Young’s modulus E, mass density
%, and Poisson’s ratio ν) with a linear stress-strain relation, the
dynamic behavior of a structure as well as the wave propagation
in the domain Ω× (0, T ) is governed by the equation of motion`
c2
1 − c2

2

´
grad div u + c2

2 ∆u +
b

%
=

∂2

∂t2
u (1)

where ∆ denotes, as usual, the Laplace operator. The vector
u = u(x; t) describes the displacement field at some point
x ∈ R3 and time t. Furthermore, b = b(x; t) is the body force
vector per unit mass, and c1, c2 are the dilatational and shear
wave velocities, respectively

c2
1 =

E(1− ν)

%(1− 2ν)(1 + ν)
, c2

2 =
E

2%(1 + ν)
. (2)

Under the assumption of vanishing body forces as well as
vanishing initial conditions and by taking into account some



CMM-2007 – Computer Methods in Mechanics June 19–22, 2007, Łódź–Spała, Poland

component-wise prescribed Dirichlet data gD,i(x; t) on ΓD,i and
Neumann data gN,i(x; t) on ΓN,i, respectively, the above system
reads as

(Lu) (x; t) = 0 ∀ (x; t) ∈ Ω× (0, T )

ui(x; t) = gD,i(x; t) ∀ (x; t) ∈ ΓD,i × (0, T )

qi(x; t) = gN,i(x; t) ∀ (x; t) ∈ ΓN,i × (0, T )

(3)

with the linear (hyperbolic) partial differential operator L =`
c2
1 − c2

2

´
grad div +c2

2∆ − ∂2
/∂t2. In Eqn (3), qi(x, t) denotes

the i-th component of the traction vector q(x, t) = σ(x, t)·n(x)
defined by the product of the Cauchy stress tensor σ(x, t) and the
outward normal vector n(x).

2.2. Time-dependent boundary integral equations

The derivation of boundary integral formulations starts with
the weak form of Eqn (3)Z

Ω×(0,t)

U∗(x,y; t− τ) (Lu) (y; τ) dy dτ = 0 . (4)

Beside the spatial integration over the domain Ω, Eqn (4) con-
tains a time integration of convolution type with respect to τ over
the time interval (0, t). Further, U∗(x,y; t− τ) denotes the fun-
damental solution which can be used as a weighting function to
obtain a boundary integral representation. For an unbounded do-
main R3 the fundamental solution has the property

(L U∗) (x,y; t, τ) = δ(x− y; t− τ) (5)

with x,y ∈ R3 and t, τ ∈ (0, T ). In Eqn (5), δ(x − y; t − τ)
denotes the Delta-distribution. It is obvious that the solution of
Eqn (5) can only be given in a distributional sense.

If vanishing initial conditions are assumed the application of
Green’s theorem to Eqn (4) yields the representation formula

u(x̃; t) =

Z
Γ×(0,t)

U∗(x̃,y; t− τ)
“
T n(y)
y u

”
(y; τ) dsy dτ

−
Z

Γ×(0,t)

“
T n(y)
y U∗

”
(x̃,y; t− τ) u(y; τ) dsy dτ

(6)

with x̃ ∈ Ω, y ∈ Γ and t ∈ (0, T ). Equation (6) contains only
spatial integrals on the boundary Γ. Moreover, causality implies
integral equations of Volterra type in the time variable and time-
invariance implies that they must be of convolution type in time.

The occurring operator T n(y)
y is a trace operator related to the

outward normal vector n(y). In elastodynamics it represents the
stress-strain relation based on Hooke’s law. Therefore, applying
T n(y)
y with respect to y to the displacement field u(y; t) yields

the relation“
T n(y)
y u

”
(y; t) = q(y; t) = σ(y; t) · n(y) . (7)

Now, by taking in Eqn (6) the limit Ω 3 x̃ → x ∈ Γ the first
integral equation

u(x; t) =

Z
Γ×(0,t)

U∗(x,y; t− τ) q(y; τ) dsy dτ

−
Z

Γ×(0,t)

“
T n(y)
y U∗

”
(x,y; t− τ) u(y; τ) dsy dτ

+
1

2
u(x; t)

(8)

is achieved. In Eqn (8), the singular behavior of the kernel func-
tions has to be considered. Hence, the first integral in Eqn (8)
is weakly and the second one is strongly singular. A second in-
tegral equation can be derived by the application of the operator

lim
Ω3x̃→x∈Γ

T n(x)
x̃ to Eqn (6)

q(x; t) =

Z
Γ×(0,t)

“
T n(x)
x U∗

”
(x,y; t− τ) q(y; τ) dsy dτ

−
Z

Γ×(0,t)

“
T n(x)
x T n(y)

y U∗
”

(x,y; t− τ) u(y; τ) dsy dτ

+
1

2
q(x; t) .

(9)

Note, that the limiting process to obtain Eqn (9) is the same as
for the first boundary integral equation (8). Due to the singular
kernels in Eqn (8) the first integral in Eqn (9) is strongly and the
second one is hypersingular. Now, by introducing the operators

(V ∗w)Γ (x; t) :=Z
Γ×(0,t)

U∗(x,y; t− τ) w(y; τ) dsy dτ`
K′ ∗w

´
Γ

(x; t) :=Z
Γ×(0,t)

“
T n(x)
x U∗

”
(x,y; t− τ) w(y; τ) dsy dτ

(K ∗w)Γ (x; t) :=Z
Γ×(0,t)

“
T n(y)
y U∗

”
(x,y; t− τ) w(y; τ) dsy dτ

(D ∗w)Γ (x; t) :=Z
Γ×(0,t)

“
−T n(x)

x T n(y)
y U∗

”
(x,y; t− τ) w(y; τ) dsy dτ

(10)

Eqns (8) and (9) can be written more compact»„
1
2
I − K V
D 1

2
I +K′

«
∗
„
u
q

«–
Γ

(x; t) =

„
u(x; t)
q(x; t)

«
. (11)

In Eqns (10) and (11) the ∗ denotes the convolution in time. In
Eqn (10), the operators can sequentially be titled as single layer,
adjoint double layer, and double layer potential. The last operator
is the so-called hyper-singular integral operator.

2.3. Symmetric Galerkin formulation

To obtain a symmetric Galerkin formulation for mixed
boundary value problems, the first boundary integral equation is
used only on the Dirichlet part ΓD,i while the second one is used
only on the Neumann part ΓN,i. Note, because here a vectorized
problem has to be solved on each boundary point different types
of boundary data in each direction may be prescribed. This yields

(V ∗ q)Γ,i (x; t)− (K ∗ u)Γ,i (x; t) =
1

2
gD,i(x; t) (12)`

K′ ∗ q
´
Γ,i

(x; t) + (D ∗ u)Γ,i (x; t) =
1

2
gN,i(x; t) . (13)

Equation (12) is only valid for x ∈ ΓD,i while for Eqn (13)
x ∈ ΓN,i holds. Now, the displacements ui(y; t) and the
tractions qi(y; t) are decomposed into ui = ũi + g̃D,i with
ũi = 0, g̃D,i = gD,i for y ∈ ΓD,i and qi = q̃i + g̃N,i with
q̃i = 0, g̃N,i = gN,i for y ∈ ΓN,i, respectively. Note that
g̃D,i and g̃N,i are arbitrary but fixed extensions of the prescribed
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Dirichlet- and Neumann-data. Inserting these decompositions
into Eqn (12) and (13) result in

(V ∗ q̃)ΓD,i(x; t)− (K ∗ ũ)ΓN,i(x; t) =

((
1

2
I +K) ∗ g̃D)Γ,i(x; t)− (V ∗ g̃N )Γ,i(x; t)

(K′ ∗ q̃)ΓD,i(x; t) + (D ∗ ũ)ΓN,i(x; t) =

((
1

2
I − K′) ∗ g̃N )Γ,i(x; t)− (D ∗ g̃D)Γ,i(x; t)

(14)

with the unknown data ũi on ΓN,i and q̃i on ΓD,i, respectively.
By defining the bilinear form [1]

a(q̃, ũ;w,v) =

Z T

0

3X
i=1

h
〈V ∗ q̃, w〉ΓD,i

− 〈K ∗ ũ, w〉ΓD,i

+
˙
K′ ∗ q̃, v

¸
ΓN,i

+ 〈D ∗ ũ, v〉ΓN,i

i
dt

(15)

using appropriate test-functions w,v and by defining the linear
form

F (w,v) =

Z T

0

3X
i=1

h
〈(1

2
I +K) ∗ g̃D − V ∗ g̃N , w〉ΓD,i

+ 〈(1

2
I − K′) ∗ g̃N −D ∗ g̃D, v〉ΓN,i

i
dt

(16)

the system of boundary integral equations in Eqn (14) is equiva-
lent to the variational problem:

Find (q̃, ũ) such that

a(q̃, ũ;w,v) = F (w,v) (17)

is satisfied for all test-functions (w,v).

3. Boundary element formulation

3.1. Spatial discretization

For the approximate solution of Eqn (17) a triangulation of
the boundary Γ = ∪n

k=1τk is introduced, i.e., the boundary Γ is
the union of n boundary elements τk. Further, it is assumed that
in each boundary element τk the unknown boundary data belong
either to ΓD,i or to ΓN,i in each direction i. With respect to this
triangulation the subspaces

Sα
h,i(ΓD,i) = span{ϕα

i,k}ni
k=1

Sβ
h,i(ΓN,i) = span{ϕβ

i,k}
mi
k=1

(18)

are defined containing ni polynomial shape functions ϕα of order
α and mi polynomials ϕβ of order β. The subspaces’ dimensions
ni and mi correspond to the number of unknowns on ΓD,i and
ΓN,i. Therefore, the unknown Dirichlet data and the unknown
Neumann data can be approximated by

q̃α
h,i(x; t) =

niX
k=1

qi,k(t) ϕα
i,k(x)

ũβ
h,i(x; t) =

miX
k=1

ui,k(t) ϕβ
i,k(x) .

(19)

In the following, Neumann data are approximated by con-
stant functions and Dirichlet data by linear functions, i.e., α = 0,
q̃h = q̃0

h and β = 1, ũh = ũ1
h. Further, the shape functions

approximating the geometry are chosen of the same order as the
Dirichlet data, i.e., the geometry is also approximated with linear
polynomials.

3.2. Time discretization

After the spatial discretization the system of boundary in-
tegral equations has to be discretized also in the time variable.
Here, as a time stepping procedure the Convolution Quadrature
Method (CQM) proposed by Lubich is chosen. This is advanta-
geous due to the fact, that the CQM deals only with the Laplace
transformed fundamental solutions, which makes it also attrac-
tive for handling problems where fundamental solutions are only
known in Laplace domain.

The goal is the computation of the convolution integral

y(t) = f ∗ g =

Z t

0

f(t− τ) g(τ) dτ . (20)

If the Laplace transform of the function f(t) is known and by
dividing the time into M intervals of equal step size ∆t the con-
volution can be approximated for the time step tm = m∆t by

y(m∆t) =

mX
k=0

ωm−k(∆t) g(k∆t) (21)

with the integration weights ωm. These integration weights can
be determined by

ωm(∆t) =
R−m

L

L−1X
`=0

f̂

 
γ(Rei` 2π

L )

∆t

!
e−im` 2π

L . (22)

From Eqn (22) it is obvious that the integration weights de-
pend only on the Laplace transform of the function f denoted
by f̂(s) = Ls{f} with the complex Laplace variable s. The
parameters R and L depend mainly on the number of time steps
M and are in the following chosen as R = 10−

5/2(M−1) and
L = M − 1. Moreover, this choice allows the computation of
the integration weights via a technique similar to the Fast Fourier
Transformation. Finally, the term γ(·) represents the character-
istic function of the underlying multistep method, e.g., a BDF2.
More details about the Convolution Quadrature Method and the
choice of the used parameters can be found in [4], [5], and [6].

Now, the convolution quadrature in Eqn (21) with the defini-
tion of the integration weights given in Eqn (22) is applied to the
bilinear form in Eqn (15) and the linear form in Eqn (16). For
example, an entry corresponding to the single layer potential can
be computed for a time tm and some fixed directions i and j as

〈(V ∗ q̃h)(x; tm), wh(x)〉ΓD,i

=

niX
k

njX
`

Z tm

0

Z
supp(ϕ0

k
)

ϕ0
i,k(x) ×Z

supp(ϕ0
`
)

U∗
ij(x,y; tm − τ) qj,`(τ) ϕ0

j,`(y) dsy dsx dτ

≈
niX
k

njX
`

mX
p=0

ωm−p
ij,k` (Û∗, ∆t) qj,`(p ∆t)

=

niX
k

njX
`

mX
p=0

Vm−p
ij [k, `] qj,`(p ∆t)

(23)

with the integration weights

ωn
ij,k` =

R−n

L

Z
supp(ϕ0

k
)

Z
supp(ϕ0

`
)

ϕ0
i,k(x) ×

L−1X
l=1

Û∗
ij

 
x,y;

γ(Reil 2π
L )

∆t

!
e−inl 2π

L ϕ0
j,`(y) dsy dsx .

(24)

Note, that in Eqn (23) as well as throughout the entire paper no
summation convention has been used.
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Figure 2: Singularities

3.3. Singular Integrals

The fundamental solution U∗(x,y; t − τ) as well as the
Laplace transformed fundamental solution Û∗(x,y; s) are in
principle functions of type 1/rn with r = |x − y|. The expo-
nent n corresponds to the integration kernel and determines the
kind of singularity. It is one in the single layer potential, two in
the double layer potential, and three in the hypersingular opera-
tor, respectively. Therefore, attention must be paid to cases where
x reaches y, i.e., r → 0. As shown in Fig. 2 in Galerkin methods
four cases must be distinguished.

Obviously, in the regular case always r 6= 0 holds. So, this
case can be treated without any modifications to the integral ker-
nels and the integrations can be carried out with standard Gaus-
sian quadrature rules. Without going too much into detail the
other three cases require special integration techniques.

Basically, there exist two approaches to handle the occurring
singularities. The first one is the analytical treatment of the sin-
gularity which demands a detailed knowledge about the integral
kernel. The second approach is the one used here and was de-
veloped mainly by Sauter [10]. These formulas were developed
using as less information of the kernels as possible to achieve for-
mulas which are applicable to most integral operators. Finally, a
numerical treatment of the singular kernels is possible. There-
fore, this approach allows the use of a wide range of fundamental
solutions in combination with different approximations for the
geometry as well as for the Dirichlet and Neumann data within
one implementation.

Nevertheless, it also must be mentioned that this approach
is restricted to singular kernels which contain at most a Cauchy
singularity, i.e., these integration rules can only be applied up to
the double layer potentials but not to the hypersingular integral
operator where the kernels are in fact non integrable.

To regularize the hypersingular bilinear form the elasto-
static fundamental solution is used together with its regularized
form. The regularization of the hypersingular elastostatic bilin-
ear form is done via the Stoke’s theorem and yields a bilinear
form which contains only weak singularities [11]. In the follow-
ing, D̂ED denotes the Laplace transformed elastodynamic hyper-
singular operator while DES represents the elastostatic one. To-
gether with the operator M containing the Günter-Derivatives
Mij = nj∂i − ni∂j , i.e.,

M =

0@ 0 n2∂1 − n1∂2 n3∂1 − n1∂3

n1∂2 − n2∂1 0 n3∂2 − n2∂3

n1∂3 − n3∂1 n2∂3 − n3∂2 0

1A (25)

the regularized form eDES of DES is given by

〈 eDESu,w〉Γ =Z
Γ

Z
Γ

 
3X

k=1

(Mk+2,k+1w)(x) · (Mk+2,k+1u)(y)

!
×

µ

4π

1

|x− y| dsy dsx+Z
Γ

Z
Γ

(Mw)T(x) ·
` µ

2π

I

|x− y| − 4µ2 U∗
ES(x,y)

´
·

(Mu)(y) dsy dsx+Z
Γ

Z
Γ

3X
i,j,k=1

(Mkjwi) (x)
µ

4π

1

|x− y| ×

(Mkiuj) (y) dsy dsx .

(26)

Note, that the commas in the first term of Eqn (26) are used just to
separate the indices of the operator matrix M. These indices are
given with respect to modulo 3, i.e., 4 has to be identified with
1 and 5 with 2, respectively. Further, I represents the Identity
matrix.

Due to the fact, that the hypersingularity is concentrated in
the elastostatic part of the elastodynamic hypersingular operator
a regularized form of the hypersingular elastodynamic bilinear
form can be given by

〈D̂reg
EDu,w〉Γ = 〈 eDESu,w〉Γ + 〈(D̂ED −DES) u,w〉Γ . (27)

Equation (27) contains only the weak singularities from the reg-
ularized elastostatic hypersingular bilinear form 〈 eDESu,w〉Γ.
The difference term is regular.

3.4. Linear system of equations

After introducing the spatial and time discretization, in Eqn
(17) the discretized Galerkin variational problem now reads as:

Find (q̃α
h , ũβ

h) ∈ Sα
h (ΓD)× Sβ

h (ΓN ) such that

a(q̃α
h , ũβ

h;wα
h ,vβ

h) = F (wα
h ,vβ

h) (28)

is satisfied for all (wα
h ,vβ

h) ∈ Sα
h (ΓD)× Sβ

h (ΓN ).
In Eqn (28), the bilinear form a is given by

a(q̃α
h , ũβ

h;wα
h ,vβ

h)=

M−1X
m=0

3X
i=1

˙
(V ∗ q̃α

h )(x; tm), wh

¸
ΓD,i

−
˙
(K ∗ ũβ

h)(x; tm), wh

¸
ΓD,i

+
˙
(K′ ∗ q̃α

h )(x; tm), vh

¸
ΓN,i

+
˙
(D ∗ ũβ

h)(x; tm), vh

¸
ΓN,i

(29)
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and the linear form by

F (wh,vh) =

M−1X
m=0

3X
i=1

˙
((

1

2
I +K) ∗ g̃D − V ∗ g̃N )(x; tm), wh

¸
ΓD,i

+
˙
((

1

2
I − K′) ∗ g̃N −D ∗ g̃D)(x; tm), vh

¸
ΓN,i

.

(30)

This discretized variational problem can be written in a ma-
trix notation as shown in Eqn (31).

26666666666664

2664
V0

V1 V0

...
. . .

VM−1 VM−2 . . . V0

3775 −

2664
K0

K1 K0

...
. . .

KM−1 KM−2 . . . K0

3775
26664

KT
0

KT
1 KT

0

...
. . .

KT
M−1 KT

M−2 . . . KT
0

37775
2664

D0

D1 D0

...
. . .

DM−1 DM−2 . . . D0

3775

37777777777775
·

2666666666664

2664
q0

q1

...
qM−1

3775
2664

u0

u1

...
uM−1

3775

3777777777775
=

26666666666664

26664
K̄0

K1 K̄0

...
. . .

KM−1 KM−2 . . . K̄0

37775 ·
26664

gD
0

gD
1

...
gD

M−1

37775−
2664

V0

V1 V0

...
. . .

VM−1 VM−2 . . . V0

3775 ·
26664

g̃N
0

g̃N
1

...
g̃N

M−1

37775
26664

K̄′0
K′1 K̄′0
...

. . .
K′M−1 K′M−2 . . . K̄′0

37775 ·
26664

gN
0

gN
1

...
gN

M−1

37775−
2664

D0

D1 D0

...
. . .

DM−1 DM−2 . . . D0

3775 ·
26664

g̃D
0

g̃D
1

...
g̃D

M−1

37775

37777777777775

(31)

In Eqn (31), the diagonal terms of the discrete double layer
potential K̄0 which correspond to the first time step is given by
K̄0 = 1

2
I+K0 and, analogously, by K̄′0 = 1

2
I−K′0 for the discrete

adjoint double layer potential.
As it can be seen, the system matrices in Eqn (31) are com-

posed of some kind of lower triangular Toeplitz-block-matrices.
This property can be used to formulate the following recursion
formula for the solution of Eqn (31) in the m-th time step. Fi-
nally, this yields

»
V0 −K0

KT
0 D0

–
·
»
qm

um

–
=

»
fD
m

fN
m

–
−

m−1X
i=0

»
Vm−i · qi − Km−i · ui

KT
m−i · qi + Dm−i · ui

–
(32)

with the prescribed boundary data»
fD
m

fN
m

–
=

»
K̄0 · gD

m − V0 · g̃N
m

K̄′0 · gN
m − D0 · g̃D

m

–
+

m−1X
i=0

»
Km−i · gD

i − Vm−i · g̃N
i

K′m−i · gN
i − Dm−i · g̃D

i

–
.

(33)

From Eqn (32), it is obvious that the solution requires only the in-
version of the matrix corresponding to the first time step. There-
fore, the matrix V0, which is symmetric as a result of the Galerkin
discretization, is decomposed via a Cholesky-factorization. Af-
terwards, the Schur-Complement-System is computed by

S0 = KT
0V−1

0 K0 + D0 . (34)

Due to the symmetry of V0 and D0 the Schur-Complement
S0 is also symmetric and can be decomposed by a Cholesky-
factorization.

Hence, the displacement field u and the tractions q can be
found by solving

S0um = f̃N
m − KT

0V−1
0 f̃D

m (35)

and

qm = V−1
0

“
f̃D
m + K0um

”
(36)

for every time step m = 0, . . . , M −1. In Eqns (35) and (36) the
vectors f̃D

m and f̃N
m are given by»

f̃D
m

f̃N
m

–
=

»
fD
m

fN
m

–
−

m−1X
i=0

»
Vm−i · qi − Km−i · ui

KT
m−i · qi + Dm−i · ui

–
. (37)

In Eqn (37), the usual structure of a BE time stepping technique
is observed. The first term denotes the given boundary data of the
actual time step m whereas in the second term the time history is
stored.
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4. Numerical Examples

4.1. Model problem

3
m

1 m

x1

x2 t

q2(t)

1 N
m2

q2 = 1 N
m2 H(t)

Figure 3: Boundary Conditions

In the following, a 1-d elastodynamic rod is considered as
depicted in Fig. 3. The rod is fixed on one end, and excited by
a pressure jump according to a unit step function q2(x

?; t) =
−1N/m2 H(t) on the other free end with x? = [ x1; 3; x3 ]T.
The remaining surfaces are traction free with respect to their tan-
gential directions and blocked in the normal direction. The ma-
terial data represent steel with Young’s modulus E = 2.11 ·
1011 N/m2 and the density % = 7850 kg/m3. An exception has
been made to the use of Poisson’s ratio which is chosen to ν = 0.
This artificial value is taken in order to model the 1-d analytical
solution.

Figure 4 shows the mesh for the described model problem. It
is made up with 112 elements on 58 nodes. As mentioned before,
the tractions are approximated with constant functions whereas
the displacements are approximated linear.

Figure 4: 112 elements, 58 nodes

In order to compare some results for different time and/or
spatial discretizations the dimensionless value

β =
c1 ∆t

re
(38)

is introduced. Beside the velocity of the fast wave the value β de-
pends on the step size ∆t and the characteristic element length re.
To determine the characteristic length is not easy due to the fact
that in 3-d it is not clear which length should be chosen. Here, a
characteristic length of re = 0.5 m is used.

Figure 5 compares results arising in collocation and in the
proposed Galerkin method for the longitudinal displacements at

point x?
u = [ 0.5; 3; 0.5 ]T. The chosen time step size is

∆t = 2 · 10−5 s. Together with the wave velocity c1 =
p

E/%,
this yields β = 0.2.

-3e-11

-2.5e-11

-2e-11

-1.5e-11

-1e-11

-5e-12

 0

 0  0.002  0.004  0.006  0.008  0.01

d
is

p
la

ce
m

en
t 

u 2
 /

 m

time t / s

analytic Collocation sym. Galerkin

Figure 5: Collocation method vs sym. Galerkin: Longitudinal
Displacements

As it can be seen, the results obtained from the symmetric
Galerkin method are slightly better than the collocation results.
The shifting of the phase is not as distinctive as it is for the re-
sults coming from collocation.
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Figure 6: Collocation method vs sym. Galerkin: Tractions

Figure 6 shows the traction solution q2(x
?
q ; t) for

x?
q = [ 0.5; 0; 0.5 ]T. Here, the collocation seems to approx-

imate the analytical solution a little bit better than the Galerkin
method does, especially the mapping of the discontinuities is
better.
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Figure 7: Longitudinal Displacements: Influence of time step size

In Fig. 7 a finer time step size of ∆t = 8 · 10−6 s is chosen.
Therefore, β = 0.08 is obtained. The longitudinal displacements
u2(x

?
u; t) are more or less equal for both methods up to the time

t = 4.5 · 10−3 s. But then, the collocation method gets unstable.
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Figure 8: Tractions at the fixed end: Influence of time step size

This lost of stability is even more worse if the tractions
q(x?

q ; t) are considered. In Fig. 8 the tractions at the fixed end
are depicted up to the time t = 3 · 10−3 s. On the other hand
the results obtained by the symmetric Galerkin method are very
stable up to the time t = 0.01 s, and even beyond. In Fig. 9 and
Fig. 10 the longitudinal displacements and tractions show this
behavior.
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Figure 9: Longitudinal displacements at Point x?
2
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Figure 10: Tractions at point x?
q

5. Conclusion

In the actual paper, a boundary element method for elasto-
dynamics based on a Galerkin discretization in space and on the
Convolution Quadrature Method in time has been presented. To
obtain a symmetric, or to be more precise, a skew-symmetric for-
mulation, also the usage of the second integral equation is re-
quired. After the prescribed boundary data are inserted in the
system of boundary integral equations a variational form is in-
troduced. Then, this variational form is discretized in space
and time. While the spatial discretization is done by a standard
Galerkin method the Convolution Quadrature Method is used as a
time stepping procedure, which uses only the Laplace transform
of the fundamental solutions. Finally, a well structured system of
lower triangular block-matrices is obtained which can be solved
recursively, i.e., only an update of the right hand-side has to be
made due to the fact that just the factorizations for the system
matrices of the first time step are required for the left hand-side.

The presented numerical examples show that this approach
has obviously better numerical stability properties than the wider
used collocation methods have. Therefore, the positive results al-
ready obtained in statics with the symmetric Galerkin methods
continues also in time domain analysis. Nevertheless, it has to be
mentioned that due to the variational form the computation of the
matrix entries is more complex. Hence, at the moment the overall
computation is more time consuming than the standard colloca-
tion method. In future, these computational costs should be re-
duced by, e.g, the application of some adaptive integration rules
or the enhancement of fast-methods like ACA or H-matrices to
the time domain.
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