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ABSTRACT

The present state of mapping with radar is reviewed. Emphasis
is on radargrammetric mapping with single images, stereo pairs and
block adjustment. Applications to thematic mapping are addressed
as well. Examples presented concern radar mosaicking. sea-ice
study and extraterrestrial mapping (Moon, Venus).

I. INTRODUCTION

The application of side-looking radar images to topographic mapping had been
studied intensively and nearly exclusively at military agencies until a few years
ago. Civilian research at that time was limited. However, while the study of
military radar mapping until recently seems to have been deemphasized, it is being
considered for civilian tasks. A number of operational mapping projects have
been carried out with radar in different regions of the world. Brazil's RADAM
project is the largest of these. At the same time the importance of radar is
being evaluated as a remote sensing tool to be used in conjunction with other
data. This is particularly signified by considerations for radar imaging from
satellites (Seasat-A, Space Shuttle and Space Lab, Venus Orbital Imaging Radar).

Simultaneously, research is taking a closer look at the capabilities and
limitations of radar imaging for remote sensing of subsurface features. surface
roughness, soil moisture, polarization anomalies, etc. Mapping with radar is
thus a developing field of study with valuable present applications and future
promise.

This short review will go over the basics of radargrammetry, addressing the
projection equation, stereo-radar and image block adjustment. Then recent work
will be reviewed concerning the applications of radargrammetric mapping to carto-
graphy, with references to measurements of sea-ice drift and marine mapping.

IT. SINGLE IMAGE RADARGRAMMETRY

A. Mathematical Expression

Radargrammetric projection equations have been formulated on many occasions
in the literature. It is essential to differentiate between real-aperture and
synthetic-aperture imaging. In both cases the basic fact remains that radar
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projection lines are circles concentric with respect to an antenna (Figure 1).
However, with brute force radar (real-aperture) the plane of a projection circle
is normal to the longitudinal antenna axis, while with synthetic-aperture radar
(SAR) it is normal to the velocity vector of the antenna. From Figure 2 one may
thus specify the following projection equation:

p=s+tAr (1)

where p, s are vectors in an object space coordinate system defined by unit vec-
tors x, y, 2z, while r is a vector in an image space coordinate system defined by
unit vectors u, v, w, and A is a rotation matrix.

The unit vectors, X, y, z, are fixed to the imaged object, while the unit
vectors u, v, w are fixed to the radar antenna.

The vector r is a functicn of slant range r, look angle { and a system con-
stant ¢ (squint): .

r = r(sin ¢, (sinZQ = sin2¢)l/2, cos ¢) (2)

The matrix A describes the rotation of the image system u, v, w into the
object system (x, y, z). It is defined by the classical p, w, ¥ angles of photo-
grammetry, provided however that real-aperture radar is considered. For SAR it
is a function of the velocity vector s of the antenna.

Further details may be found in the literature (Leberl, 1975e, 1978;
Leberl et al., 1967a). It may be interesting to note that the radargrammetric
difference between real-aperture and SAR has so far not been considered in a
majority of radargrammetric studies. A recent valuable exception dealing with
satellite SAR is the paper by Kratky (1979).

B. Accuracies

Single image radar mapping accuracies achieved in the past depend on a num-
ber of factors of a particular project or experiment: type of radar system,
resolution, stabilization, density of ground control, type of control, mapping
method, type of terrain. Therefore results of one study may not be generalized.
The term "accuracy" describes the geometric errors of mapping. In a study
one can check these errors using checkpoints and computing root mean square
errors m_, m_ in the coordinate directions x and y. These error components can
be combined into a single point error m

m2 =m + m2.
p X y

Actually achieved point errors m_ are plotted in Figure 3: it is clear
that accuracies can vary widely as a Result of project parameters. Details have
been discussed in the literature (e.g., Leberl, 1976b).

In the best cases published accuracies were of the order of the ground re-
solution. Such results were reported, e.g. by Gracie et al. (1970), where very
high density of well identifiable ground control was available (about 10 points
per 100 sq km).
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Figure 1. Projection lines for (a) the orthogonal, (b) the central and
(c) the radar range projection. Note that projection lines
are circles in case (c).
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Figure 2. Definition for the radar projection equations.
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EXPERIMENTS WITH ACTUAL RADAR DATA

Accuracies achieved with single image radar mapping.

Figure 3.

Results depend strongly on specified project parameters.

Satellite results are from the Apollo 17 mission to the

Moon in 1972.
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"Ground resolution'" is here understood as the minimum distance that two

reflectors must have on the ground to produce separate images. A value for the
ground resolution is usually provided by the equipment operator and often is a
result of confusion when comparing radar systems of different manufacturers, or
when comparing radar with other imaging techniques.

C. Rectification

Rectification is the transformation of the single radar image into a map
projection. The process is usually photographical, but can also be numerical or
graphical or any combination of the above. Using Egqs. (1) and (2) with measured
navigation data does enable one to transform a given radar image point into the
map coordinate system (whereby the ground height must be known or assumed to be
known). If in addition to navigation data ground control points are also avail-
able, then the set of transformed radar image points can be matched to these
control points. Generally this match may be done with some sort of interpolation
algorithm and many different procedures are possible and have been applied in the
past.

While numerically the possibilities for rectification are boundless, they
are limited in practice if the photographic image is to be reproduced with
correct geometry. The technology of digital image processing permits complete
flexibility for rectification (see Figure 4). All geometric corrections are
possible; however, this rectification is presently expensive and tedious and
therefore unsatisfactory for any large mapping effort.

Jensen (1975) described an optical rectifier for image strips that permitted
changes to the along versus across track scales. The instrument employed ana-
morphic lenses. Its performance was such that the recrified images were of
degraded quality; rectification was partial only (along track scale), and the
solution was therefore unsatisfactory.

Peterson (1976) has extended the optical correlator (for SAR) to achieve
correction of along track scale. The solution is straightforward and does not
degrade image quality. Rectification of along track scale is achieved during the
conversion of signal films to map films. The simplicity of this method makes it
attractive. However, it only applies to SAR. Its implementation requires prior
numerical computation to determine the amounts of image deformations. On the
basis of this computation, curves can be produced for the along track scale (Fig-
ure 5).

An ortho photo-production capability for radar was developed by Leberl and
Fuchs (1978) and recently applied by Leberl et al. (in press) to a series of
radar images. The equipment used is the Avioplan OR-1 manufactured by Wild of
Heerbrugg, Switzerland. Similar instruments exist also from other manufacturers.
A result is illustrated in Figures 6a, b.

IITI. RADAR STEREO MAPPING

A. Visual Stereo
Stereo viewing of overlapping radar imagery can greatly enhance the inter-

pretation of the images by providing an improved means to observe morphological
details (Koopmanns, 1974), to determine slope angles and height differences and
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Example of radar image rectification using digital image
processing. The distorted image (a) is in slant range presen-
tation. Rectification is mainly a transformation to ground
ranges.
(Images courtesy Jet Propulsion Laboratory, taken with
L-band synthetic aperture radar system over arctic sea ice.)
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Figure 5. Scale error curves found in radar image strips (Leberl, Jensen

and Kaplan, 1976). The periodicity of the along track scale

errors as function of time is obvious.
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Figure 6.

Westinghouse Ka-band image, flight
height 6 km; (a) Not rectified (slant
range presentation), like polarized.
(b) Rectified on photogrammetric
orthophoto-machine, cross-polarized.
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to improve cartographic mapping and point positioning accuracies. The present
state of knowledge was reviewed by Leberl (1979).

A number of different schemes are conceivable to produce overlapping imagery
in such a way that visual stereo is possible. Figure 7 illustrates the most
common ones: same side and opposite side (La Prade, 1963; Rosenfield, 1968).
These schemes are the only ones possible for synthetic aperture radar. Crosswise
intersecting flight lines do not seem to produce valid visual stereo (Graham,
1975b). Other types of stereo arrangements would be possible with real aperture
radar, for example, with convergent schemes using tilted antennas (Leberl,
1972b; Bair and Carlson, 1974).

In order to view a three-dimensional model the two images comprising the
stereo pair must be sufficiently similar: the image quality and object illumina-
tion must be comparable and the geometric differences (parallaxes) must not ex-
ceed a certain maximum. In photography this hardly ever presents a problem since
sun angles do not change drastically in overlapping photos. In radar images
however the illumination angles depend on the orientation and position of the
sensor and so does the appearance of the images.

Figures 8 to 11 present examples of radar stereo pairs demonstrating some of
the limits to stereo viewing. Figure 8 shows part of the Estrella mountains in
Arizona, U.S.A., imaged with an opposite side arrangement from an aircraft at
12 km altitude. It can be seen that slopes that reflect strongly in one image
are in the radar shadow in the other image. A stereo impression can be obtained
in the flat areas of this stereo pair, but becomes very difficult in the moun-
tains. Figure 9 demonstrates with the same side stereo pair taken with the same
radar system that there are no problems to stereo viewing.

Figures 10 and 11 present two Apollo 17 satellite radar stereo pairs taken
of the lunar surface with same side geometry and very small stereo base. Look
angles, however, are much steeper than in the examples of Figures 8 and 9. This
leads to larger relief displacements and to differences of image contents in
stereo mates even with small stereo bases. In the flat part of Figure 10 stereo
viewing is not difficult. However, in the Apennine Mountains stereo fusion be-
comes nearly impossible and this is even more difficult in the image taken over
the rugged Oriental region on the Moon's far side (Figure 11). From the above
examples, the following factors influencing radar stereo viewing can be identi-
fied:

Stereo arrangement (same side, opposite side).
Look angles (angles off-naidr).

Stereo intersection angles,

Ruggedness of the terrain.

Exact interrelations among these factors are presently not well understood. Past
experiences lead, however, to the tentative conclusion that opposite side stereo
can only be applied in cases of flat or rolling surfaces, while rugged terrain
requires same side imaging. Stereo viewing improves with shallower look angles
(45° off-nadir and more). With steeper look angles (near nadir), the stereo base
has to be reduced for successful stereo viewing, otherwise the differences of
relief displacement become too large (compare Fig. 11). This smaller stereo base
while improving the stereo viewability, does degrade the accuracy of the stereo
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Figure 7. Basic flight configuration for stereo radar.
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Figure 8. Aircraft stereo radar image pair, opposite side geometry.
X-band, 12 km altitude; Estrella Mountains, Arizona
(Courtesy of Aeroservice, Goodyear)

Figure 9. Aircaft stereo radar image pair, same side geometry.
X-band, 12 km altitude; Estrella lMountains, Arizona
(Courtesy of Aeroservice, Goodyear)
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Figure 10.

Figure 11.

10km

Satellite stereo radar, same side imaging
Apollo 17 — ALSE-VHF, Apennine Region
on Moon.

Satellite stereo radar, same side imaging,
Apollo 17 — ALSE-VHF, Oriental Region on

Moon.
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model. One finds oneself in a tradeoff between stereo viewability and mapping
accuracy.

B.  Stereo Computation

Proper radar stereo computations may start from Equations (1) and (2). where
vector p is the unknown and to be found from:

p=s8 *tAT
(3)
p = §_n + éuzn

where (') denotes the left and (") the right image.

A simplified formulation is obtained when one assumes a stereo pair with
parallel, perfectly straight and level flight lines. Figure 12 shows that in a
ground range presentation a stereo parallax Ap can be found that relates to AH
as follows:

AH = p'/tanQ'

AH = p"/tanQ" ()
Ap = p' * p" = AH(tanf?' * tan{d')

AH = Ap/(tanf' + tanfd")

Equation (4) is valid only if the projection circles can be approximated by
straight lines (Figure 12). The plus sign applies to opposite side stereo,
the minus sign to same side.

The situation for slant range geometry is slightly more complex. Even a
flat ground will appear to be bowed in the radar stereo model. A discussion of
this can be found in Leberl (1978, 1979).

C. Accuracies

As with single image mapping, the range of accuracies achieved so far with
stereo radar is also diverse. Also here a large series of factors is of influ-
ence.

Figure 13 illustrates height accuracies obtained in the past. A conclusion
may be that accuraciles range from the resolution up to many tens of times the
resolution in this regard. Stereo arrangement and control density are the main
factors of influence. A study by Gracie et al. (1970) concluded that stereo
height measurements would be accurate to within *13 m. However, this result
applies to a density of 35 control points per 100 sq km and very well identifi-
able test points. Dowideit (1977) achieved a *25-m root mean square height
error using triple overlaps and high density of control. The computing effort
was considerable. With a more modest (and realistic) density of control that
corresponds to a reconnalssance-type, large area survey, say 4 points per 10,000
sq km , height accuracies may deteriorate to *100 to *200 m and more (see, for
example, Derenyi, 1975; Leberl, 1977a).

The future can bring about an improved radar stereo capability from aircraft

sensors if navigation and resolution improve, and from satellite sensors 1f look
angles are varied sufficiently from one pass to the overlapping one over a given
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Figure 12.
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area., However, the active mode of operation causes an inherent weakness of
stereo: differing image contents can only be attained if look angles vary, but
good visual stereo fusion requires similar look angles.

IV. BLOCK ADJUSTMENT AND MOSAICKING
A. General

Actual radar mapping projects result in blocks of overlapping image strips
(Brazil's Radam: 25%, Proradam: 60%, West Virginia, U.S.A.: 25% and 60%). Mapping
should thus be based on an adjustment to densify the generally sparse net of con-
trol points and to take advantage of the available redundancy in the overlaps.

So far radar block adjustment has been applied to planimetry, using the original
images (Leberl, 1975c; Leberl et al., 1976b). Three-dimensional radar block
adjustment has been studied in a laboratory environment by DBA-Systems (1974) and
by Dowideit (1977). The approaches, however, are not practical under present
constraints,

Radar mosaicking has been carried out on three levels of sophistication:
(a) No control points are used; the images are simply compiled to fit into
mosaics. (b) Production strips are flown along parallel lines (for example
north-south) and tie-lines are flown across (for example east-west); the tie-
lines are controlled by ground control points or by tracking of the aircraft
(e.g., Shoran) and the production lines are compiled into mosaics to fit the tie-
lines. (c¢) All production strips are controlled by continuous tracking of
the aircraft (Shoran); or a block adjustment is carried out to control all radar
images for mosaicking.

Of these the most satisfactory method has been found to be a numerical block
adjustment. Settings are obtained for the image correlator (SAR) to correct the
scale of the image strips in a recorrelation (Peterson, 1976). Mosaicking is
greatly simplified by the method as compared to other approaches.

B. Method of Block Adjustment

1. Internal Adjustment. The block adjustment is based on a fit of the ra-
dar image strips with respect to each other using tie-points in the common over-
lap of images (Figure 14). A coherent image block is obtained as shown in Figure
14 (b). Spline functions are used to describe image corrections Ax (along flight)
and Ay (across flight). A spline consists of pieces of polynomials according to
Figure 15; each of the pieces is:

_ 2 3
Ax = a, o + ail(x—xi) + aiZ(X_Xi) + ai3(x—xi) .

2 3 (5)
Ay = bio + bil(x—xi) + biZ(x_xi) + biB(x-xi) .
where a; s bi' is the jth polynomial coefficient of piece i. The condition
applies:J J
X; 4 < x < xi (6)

which implies that a polynomial piece is valid only in the range delimited by

values xi_1 and Xi'
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Figure 14. Principle of internal radar block adjust-
ment. Tie-points are used to tie the
strips (or stereo models) into a
coherent block.
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Figure 15. Spline-function or piece-
wise polynomial. The
function is composed of
polynomial pieces defined
over a range D. Conditions
exist at joints that adja-
cent polynomials are not
discontinuous.
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Additional conditions apply to enforce a smooth transition from one poly-
nomial piece to the next: the derivatives of Oth, lst, 2nd order are made
identical at the joints of polynomial pieces. We find:

for the function value (0th derivative):

3

2

310 T 2311°D F 35D tagtdt =a o 7

for the tangent (1lst derivative):
2

351 Y 23;,°D ta 40D = Ay s 82
for the curvature (2nd derivative):

2312 + 6ai3°D = 2ai+1,1, (9)
D is the length of the polynomial piece:

D = x, - x,. (10)

2. External Adjustment. The coherent radar image block must be transformed
into the net of ground control points. The principle is illustrated by Figure 16.
Any method of interpolation can be used to fit the image block to the control
points. Often these methods are denoted by "warping" functions or 'rubber sheet
stretching."”

Internal and external adjustment can be carried out sequentially or simul-
taneously. A sequential solution has the advantage of low programming and
computational efforts. The generally limited density of ground control and
dominating effect of periodical ("systematic") image errors permit the con-
clusion that a sequential solution does not produce results significantly inferior
to a simultaneous approach (Leberl, 1975d).

C. Results

Block adjustment accuracy has been evaluated in a controlled experiment with
images from the U.S.A. (Leberl, et al., 1976b). The result is shown in Figure
17. The abscissa shows the density of control, the ordinate the root mean square
point errors in check points. The image had side-laps of 20%.

An equal distribution of ground control produces the best results. A point
density of 15 points per 100,000 sq km can result in rms point errors of about
*150 m (or coordinate errors of +100 m).

DBA-Systems (1974) and Dowideit (1977), in a more sophisticated, three-
dimensional method of computation, obtained results that were about 3 X the
resolution of the radar images, using however an unpractically high density of
about 10 control points per 100 sq km (10,000 points per 100,000 sq km).

V. APPLICATIONS

The term mapping, as understood by the US Federal Mapping Task Force
(Donelson, 1973), comprises
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Figure 16.

&) GROUND CONTROL

Principle of external radar block adjustment: the coherent
block is made to fit the ground control points. Methods of
fitting are numerical interpolation ("warping," ''rubber
sheet stretching'").
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Figure 17. Accuracy of radar block adjustment for
mosaicking: data are from an experimental
radar block in West-Virginia (Leberl,
Jensen and Kaplan, 1976) and from Colombian
Proradam (Leberl, 1977a).
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Land surveys (point positioning for geodesy, engineering)
Land mapping (plainimetric, topographic, thematic),
Marine mapping (nautical charts, bathymetry, floating aids, hazards)

Instead of focussing on some specific radar mapping applications it may be more
relevant to discuss such applications in general terms. For specific applica-
tions reference is made to an extensive literature (see Bibliography). From the
point of view of point positioning accuracy and of resolution of details, radar
is generally no match for current methods of surveying and photogrammetry.
However, timeliness and costs of mapping products are often of such an over-
riding concern that radar's independence from weather and sun illumination could
justify a certain spectrum of mapping applications in spite of its limited
accuracy performance.

These applications, however, are only in land and marine mapping, not in

point positioning tasks. These would be useful only in planetary exploration,
such as on Venus, or to support mapping functions such as image rectification.

A. Land Mapping: Planimetry

Table 1 illustrates the map accuracy standards as they apply in the USA.

Table 1. Map accuracy standards in the U.S.A. in meters,
expressed for planimetric point positioning

Stand. deviation of coord.

Scale 90% of coord. errors, m errors, m
Class Class
A B c-1 A B Cc-1
1:250,000 90 180 359 54 110 218
1:100,000 36 72 143 22 44 87
1: 50,000 18 36 72 11 22 44

Comparison of this table with radar mapping accuracies clarifies that airborne
radar mapping essentially can satisfy scales 1:250,000 at class B-level, or
1:100,000 at class C-1 level. Satellite radar can be expected to have a geo-
metric stability superior to aircraft radar so that the potential exists for
mapping errors of only in the order of magnitude of 30 m or so, provided that
resolution permits such precise point identification.

B. Land Mapping: Height

For height mapping, stereo radar accuracies are generally not sufficient.
Only in the context of thematic mapping (geomorphology, for example), or as a
means to rectify individual images, must one see the usefulness of radar stereo.
Only under very special circumstances, such as on Venus, or in arctic areas, may
one find radar a tool suitable for measuring heights. However, space photography
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such as the large format camera on the Space Shuttle, on Space Lab and later on
a free-flying Multi-Mission Modular Spacecraft (MMS) must be expected to be
superior in height accuracy.

C. Thematic Mapping

Radargrammetry is an obvious tool for preprocessing radar images for sub-
sequent thematic analysis. Applications include merging of multitemporal data
of Images from different sensors and of images with maps or with topographic
relief data. An example is the radar-Landsat synergism (Harris and Graham, 1976,
Daily et al., 1978).

D. Marine Mapping

Nautical charts exist at the following scales in the U.S.A.:

Type Scale Range

Sailing < 1:600,000
General 1:100,000 to 1:600,000
Coastal 1: 50,000 to 1:100,000
Harbor 1: 50,000

Many inhospitable areas of the world with low illumination levels (polar regions)
and/or cloud covers must still be served in the need for charts. Man-made point
features such as ships and floating aids and nautical features such as icebergs
and sea-ice can well be mapped by radar (Super and Osmer, 1975; Leberl et al.,
1979). This 1s of particular significance because of the relative ease with

which it is possible to signalize all image features on an otherwise specularly
reflecting water-surface.

VI. RECOMMENDATIONS

Radargrammetry still is lacking significant efforts for technique developn-
ment and for experimental performance verification. Methods of rectification of
single images, stereo mapping and use of blocks of overlapping image strips must
be studied to more fully understand the applicability, possibilities, and limita-
tions of radar mapping. Investigations must include development of efficient
techniques to employ modern mapping equipment such as differential rectifiers,
analytical photogrammetric plotters, and digital image processing systems.

Concepts and questions can be treated using aircraft data. Such data may be
of great value for themselves and for qualitative evaluation of expected results
from satellite radar. They may bé misleading, however, concerning quantitative
conclusions on satellite radar; as a result one should use aircraft data in an
initial phase of work to delimit, in general terms, the potentials of satellite
radargrammetry and following such experiments with data from space. Short space
missions such as those with the Space Shuttle could prove to be of singular im-
portance to test and verify various concepts and expectations concerning merging
of radar with digital terrain height files and other images, stereo mapping and
point positioning for rectification using orbit data, and control points and
overlapping image strips. During an experimental phase, extended space missions

would not add significantly beyond the configuration that is available from short
sorties.
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