20" Computer Vision Winter Workshop
Paul Wohlhart, Vincent Lepetit (eds.)
Seggau, Austria, February 9-11, 2015

Continuous Hyper-parameter Learning for Support Vector Machines

Teresa Klatzer!

nstitute for Computer Graphics and Vision

Graz University of Technology
klatzer@icg.tugraz.at

Abstract. In this paper, we address the problem
of determining optimal hyper-parameters for support
vector machines (SVMs). The standard way for solv-
ing the model selection problem is to use grid search.
Grid search constitutes an exhaustive search over
a pre-defined discretized set of possible parameter
values and evaluating the cross-validation error un-
til the best is found. We developed a bi-level opti-
mization approach to solve the model selection prob-
lem for linear and kernel SVMs, including the ex-
tension to learn several kernel parameters. Using
this method, we can overcome the discretization of
the parameter space using continuous optimization,
and the complexity of the method only increases lin-
early with the number of parameters (instead of ex-
ponentially using grid search). In experiments, we
determine optimal hyper-parameters based on dif-
ferent smooth estimates of the cross-validation error
and find that only very few iterations of bi-level opti-
mization yield good classification rates.

1. Introduction

In the field of machine learning much effort is put
in developing new algorithms trying to beat the cur-
rent record on diverse challenges and benchmarks.
What all those methods have in common is that they
only work as good as they have been fine-tuned
by setting sensible parameters affecting the perfor-
mance of the algorithms. The support vector ma-
chine (SVM) [9, 16} [19] as a particular instance of a
machine learning algorithm is a very popular method
for supervised classification that finds its application
in several disciplines including bioinformatics, text
and image recognition. Also for the SVM, setting
good hyper-parameters strongly influences the clas-
sification performance. The aim of model selection
is to find the hyper-parameters such that the perfor-
mance of the learning algorithm is “optimal”. Usu-

Thomas Pock!?
2 Safety & Security Department
AIT Austrian Institute of Technology
pock@icg.tugraz.at

ally this is done manually, or via some combination
of grid search and manual search.

Few parameters (1-2) can be set quite successfully
based on the evaluation of the cross-validation (CV)
error on a grid of possible parameter values. For
many parameters, however, the problem is hard to
solve because the search space grows exponentially
in the number of parameters. Grid search can easily
be parallelized, but one would still need access to a
massive computational cluster to solve the problem
in reasonable time.

In the past, attempts to reduce the complexity of
machine learning algorithms in terms of the num-
ber of hyper-parameters have been made. E.g., it is
common practice to use linear SVMs e.g. for image
classification on pre-computed explicit feature maps
of the data [22]]. Another example is the concept
of multiple kernel SVMs where kernels with differ-
ent fixed bandwidths are combined using weighted
sums of them [1} 121} [11]]. Here, the weighting factors
are directly included in the training objective of the
SVM.

More recent literature suggests that especially
in the field of computer vision there is increased
popularity of large hierarchical models [3] such as
Convolutional Neural Networks [14] or Deep Be-
lief Nets [12] which inherently have a large number
hyper-parameters to set.

The idea of using bi-level optimization for deter-
mining hyper-parameters is not entirely new. Kuna-
puli et al. [15]] have investigated a similar approach
to ours, but they use different methods to deal with
the optimization problem and only use available stan-
dard solvers which limits them to experiments with a
linear SVM. Another approach to use gradient meth-
ods to solve the parameter selection problem also for
kernel SVMs can be found in [7]]. They seek to min-
imize smoothed estimates of the generalization error

of the SVM w.r.t. the hyper-parameters, however,
their investigations are restricted to use error mea-
sures where the gradient to the hyper-parameters can
directly be computed.

Our contribution is an attempt to solve the model
selection problem for linear and kernel SVMs, with
extension to several kernel parameters using a bi-
level optimization approach. We develop a gen-
eral optimization scheme that allows for continuous
hyper-parameter learning based on estimates of the
cross-validation error.

Outline. This paper is organized as follows: In
Section [2] we discuss typical methods for hyper-
parameter optimization such as grid search methods.
In Section [3| we develop the bi-level solution for the
SVM in general and extend it to optimize several ker-
nel parameters. Furthermore we discuss the choice of
a smoothed higher level loss function to estimate the
classification performance. In Section 4 we evalu-
ate the proposed method and compare the different
performance measures. In Section 5| we conclude the

paper.
2. Grid search and random search

Throughout the machine learning literature, grid
search is the chosen method to determine hyper-
parameters. It is common practice to estimate the
performance of a learning algorithm based on a T'-
fold cross-validation error H (e.g. [10]). Here, the
error is determined on the data that has not been used
for training in the respective fold. The hope is that
the performance of the learning algorithm based on
the " validation sets datai‘fll) o can be successfully
transferred to the test set.

Inspired by the discussion about hyper-parameter
optimization and grid search/random search in [3],
we formalize the problem of hyper-parameter opti-
mization in terms of discrete sets as follows. Let 8
be a set of hyper-parameters with cardinality S and
0}, one possible configuration out of K in the discrete
search space. Let w;(6) be the separating hyperplane
obtained by the SVM training algorithm on training
set t using the hyper-parameters 6. The minimization

problem addressed by grid search can be written as
T

H(data™ w,(6)). (1

e, 3
For the SVM a typical set of hyper-parameters is e.g.
6 = (c,v): The regularization parameter ¢ control-
ling the margin and the bandwidth ~ of a Gaussian
kernel. From this formulation, we can easily deduce

that grid search suffers from the curse of dimension-
ality: Each hyper-parameter 61, ..., fg from the set 0
can take a set of values V7, ..., Vg. Then the number
of grid search trials is calculated by counting every
possible combination of values:

5
Huials = [] [Vil.)
s=1

Often, a grid search procedure is accompanied by
some degree of manual search to identify promising
value sets V; for each component of . Another prac-
tical strategy to alleviate the grid search procedure is
to perform first a coarse search to identify interesting
parameter ranges, and then consequently re-do the
grid search on a finer grid. Given access to a compu-
tational cluster, grid search can be easily parallelized
and run on the distributed system. It is also common
to assign a certain computational budget to perform

grid search (e.g. measured in trials).

There have been some attempts to tackle the prob-
lem of model selection other than grid search e.g.
using Bayesian optimization [20]], sequential model
based optimization [13], or a random search ap-
proach by [3]. Using random search [3] better or
equal results in hyper-parameter optimization can be
achieved compared to standard grid search, using a
reduced computational budget. These approaches
are interesting if the cardinality of the set 6 exceeds
S = 2, but they cannot be used for arbitrarily high
numbers of parameters (in [3] results are presented
for S < 32; determining hyper-parameters for a
Deep Belief Network).

What all those approaches neglect is the fact that
e.g. for SVMs the hyper-parameters are continuous.
Through the discretization, we always lose accuracy
in the possible solution. In our approach to solve the
hyper-parameter optimization problem on the exam-
ple of SVMs we exploit this property.

Moreover, grid search or random search proce-
dures are not adaptive. Only by manual interven-
tion, the course of the experiments can be altered
such that irrelevant parameter values are not further
explored. For the application to SVMs, we propose
a continuous bi-level optimization scheme that is in-
deed adaptive and performs continuous optimization
on the (smoothed) error surface we typically get cal-
culating a full grid search.

We will see another advantage of the bi-level
optimization scheme: The complexity only grows
linearly in the number of hyper-parameters. For
each hyper-parameter we want to determine, we

have one additional gradient to compute (see

Eq. [23). This makes the method also

applicable to more complex formulations of SVMs
such as kernel SVMs with highly parametrized ker-
nels or for learning hyper-parameters for a multiple
kernel SVM.

3. Proposed method
3.1. Preliminaries

In this paper we use a soft margin formulation of
the support vector machine. Assuming training ex-
amples z; € R'P with i = 1,..., N and their labels
y; € {—1, 1} we can write the optimization objective
for the linear SVM as follows:

N

. C 2)

min 5 lwllz + ;Sz

st yi({w,z) +0) > 1§
& >0.

3

Starting from the primal formulation using the slack
variables &; we can write the SVM objective function
in its unconstrained form in terms of a loss function
() (like e.g. in [6]):

N
w*(f) € argmin {C||w||§ + Zﬁ(w, b, z;, yl)} . @
w,b 2 i=1
Solving the SVM gives us the optimal soft-margin
hyperplane defined by w*. It is influenced by the reg-
ularization parameter ¢ which controls the trade-off
between maximizing the margin and minimizing the
misclassification error. The loss function in Eq. [is
the exact Hinge loss

l(w, b, xi,y;) = max(0,1 — y;((w, z;) +0). (5)

It will turn out in Eq. [0 that we require the SVM ob-

jective to be twice continuously differentiable, thus
we introduce a smooth approximation [23]] of Eq. [J]
parametrized with p:

1
gll. (’LU, b7 T, y’L) = ; 10g(1 + eiﬂ(yi(<w’xi>+b)71)) (6)

In [23] it is shown that ¢,(.) converges to (.) as
p — oo. The actual choice of p will be discussed
in Section[d Solving the SVM we obtain an optimal
soft-margin classifier, but the quality of the solution
depends on how we choose the hyper-parameter c.
We want to set this parameter such that the CV error
on the given data is minimal.

3.2. Bi-level formulation

In the following, we want to formulate the model
selection problem as a bi-level optimization problem.
Bi-level optimization is a mathematical concept in-
volving a higher level optimization problem with an-
other (lower level) optimization problem as its con-
straint [8]. The aim is to find the hyper-parameters
yielding the minimal cross-validation error subject to
the SVM solved using those parameters. The chal-
lenge is to set the error measure in connection to the
hyper-parameters because it is typically not directly
dependent on the hyper-parameters, but only via the
optimal hyperplane defined by w* obtained by min-
imizing the SVM’s energy function E. This relation
is depicted in Fig. [T]

Higher Level min H J0H —?
Problem o6
w*(0), b*
SVM <—Parameters 0 = {¢,v, ...}

Figure 1. Schema of the bi-level problem.
Formally, we can write:

T
min ; H(w(0),Z¢,m:)

s.t. w(0) € argmin E(wy, 0, Xy, yi) ™

we

t=1,..T.

For simplicity, we use matrix notation in the deriva-
tions. Let us define the important symbols. The train-
ing set we are given is divided into a training set to
calculate the SVM classifier and a validation set to
estimate the performance of the trained classifier.
We use an augmented weight vector defined as
w € R™P with D the number of feature dimensions
of the input data plus one, including bias b in the
end. The training examples z; € R'™P i =1,.. N
are condensed in the matrix X € RN*D the val-
idation examples (; € RY*D are condensed in the
matrix = € RY*P. Both X and Z contain a col-
umn of ones in the end for handling the bias implic-
itly. N and L are the numbers of examples in the
training and validation set, respectively. The vectors
y € RV*1and € RV*! contain the class labels
vi,mi € {—1, 1} for the data. € is the column vector

of hyper-parameters for the SVM, in the linear case
@ = c. There are t = 1,...,T sets of training and
validation data for T'-fold cross-validation.

To solve the problem in Eq.[7|we need to reformu-
late it. We use a Lagrange multipliers)\; to deal with
the lower level constraints:

T

Lw,0,0) =Y [H(w(@)tﬁt,nt) <)\t, gE >} .

t=1 W

®)

We will use the unconstrained form of the bi-level

problem from Eq. [§] to calculate the desired gradi-

ent 60 via implicit differentiation. This gradient is

used to determine the optimal hyper-parameters for
the SVM.

For 6* to be a local minimizer of Eq. [8|the neces-

sary KKT optu7ahty cog}}tlonﬁ] are glver\by

Owq ow?

oH a E
Jwr + Bw)\
T 8H(wt,) 2’E =0.
2= < - 8u389At>
BiE
ow1

G(w,0,\) =

OF
owr

(€))
From the structure of Eq. [9] we observe that the
SVM’s energy function has to be twice continuously
differentiable. This fact gives rise to use the smooth
approximation of the Hinge loss in Eq.[6] Likewise,
we also need a smooth approximate of the CV error
as a higher level loss function H(.) (see discussion
in Section [3.6).

The system of equations Eq. 0] can be reduced by
firstly solving the optimality conditions of the SVM
for fixed 0 for each fold ¢ up to sufficient accuracy
(the last T' lines of Eq. E] are therefore eliminated).
Hence we get w; which is then used in the remain-
der of the equations. From the first 7' equations we
can calculate the Lagrange multipliers A\; using the
inverse Hessian of the SVM’s energy function:

PEN L ON

M=—| —= —_— 10
¢ ow;? Ow; (10

Consequently we ojbtain the main result:
% _ Z aH(w:aEhnt)
06 00

OB (BN oH
Ow; 00 \ Ow;? owy |-
This gradient is used for optimizing the hyper-
parameters. Observe that in case of the linear SVM

an

(Eq the gradlent 9L 54 reduces to
T

2 2 -1
_ Z* 0O°E [0 E2 OH (12)
c ow; ol \ owy ow;
t=1

because the derivative of the higher level loss func-

tion H(.) is zero w.r.t. ¢. So far, we have developed
the bi-level solution for the linear SVM. In the fol-
lowing, we show that the concept can easily be ex-
tended for kernel SVMs.

3.3. Extension to kernel SVMs

First, we have to formulate the lower level prob-
lem - the energy function of the SVM - in terms of a
kernel function k(z, x;). We use again a primal, un-
constrained formulation of the SVM’s energy (like
in [6]). Instead of the weight vector w, we introduce
a weight vector & € RV*! with N the number of

training examples.
(9)—argm1n{||f|2+zf yg)} (13)
(14)

with

N
= Zaik(x,xi) and
HfHQ_ZZajal Zj,T

Jj=11i=1

=a"Ka.

The kernel matrix X € RV*¥ is composed of ma-
trix elements k(z;, z;)

Rewriting Eq. in matrix form using k; € RV
for describing a row of matrix K, we get

N
TKaJrZE (kjo y])} =

j=1

a*(0) = arg min {

argmin E(a, 0, K, y).
(15)

For the non-linear case, the SVM’s energy function
used in the bi-level solution stated in Eq.[9} [I0|and|[T1]
is replaced by E(«, 0, K, y). After the change of the
weight vector w to « and of the data matrices X and
= to their corresponding kernels K € RN¥*V and
K € REXN | the former results are directly applica-
ble.

In the case of a simple Gaussian kernel with band-
width v we have # = (c,y)” and
oL (‘?f) 6
o0 \aL |’
Oy

aH(a(Q)t7 ICtv ’I’]t)
00

The derivative

a7)

from Eq. [T1]is non-vanishing any more due to the
dependence of the kernelized data to the kernel pa-
rameters.

3.4. Generalization to many kernel parameters

Assuming a Gaussian kernel havingd = 1,..., D
parameters, one for each feature dimension of input
data, we can write down one element of the kernel
matrix:

D
k(xj,x;) = exp(— Z a(Zjd — Zid) 2). (18)

The gradient g—ﬁ is extended to

oL (az: oL oL)T

— ==, =—,..., =— 19
oy 0y 072 Ovp (19)

and the entries of the gradient vector are computed
according to Eq.[T1]

3.5. Multiple kernel bi-level SVM

We demonstrate in this section that the bi-level
optimization scheme can directly be applied to de-
termine parameters for a multiple kernel model [L,
21, [11]]. There are different application scenarios for
multiple kernel models: They can be used to com-
bine different subsets of heterogeneous features or to
combine different feature representations of the data.

We define the model as follows: Let p =
1,2,..., P be the partitions (i.e. equivalent to the
number of kernels used) each of which is of dimen-
sion D). A training example can be written as con-
catenation of P feature subsets x; = {z},22,...,2}
whereas CL‘ € RPrx1 A kernel element k‘/g of the
new kernel matrix K 5 € RNV

sz, ;) Zﬁp o, a?) (20)

With kg, being a row of the matrix Kz the SVM’s
energy function becomes

a(f) = argmln 50 TKga + qu ksja, y;)
Jj=1
2D
The vector of hyper-parameters @ now contains the
~yp for each sub-kernel and the weighting factors 3,:

0= (Caf}/lvr}/Qa"'77Pa1817"'7/8P)T' (22)

Analogous to the previous derivations, we can write
the gradlen 9 as follows:

%
%: (35);1 . (23)
(%),

Our bi-level learning approach makes it possible
to treat the kernel combination weights as hyper-
parameters and also the parameters for the base ker-
nels can be learnt. Next, we discuss the choice of the
higher level loss function H(.).

3.6. Higher level loss function

Due to the nature of our continuous optimiza-
tion, we need a differentiable estimate of the gen-
eralization error. This is ideally a smoothed version
of the actual hard classification rate e.g. described
by the zero-one loss which assigns constant error to
wrongly classified examples and zero error to correct
examples.

In this paper we investigate three different higher
level loss functions and compare them according to
their meaningfulness for estimating the performance
of the SVM. We use a smoothed version of the zero-
one loss:

H(w,Z,n) =

oo Gl +1 Y

with smoothing parameter = 12. However, the
zero-one loss is a non-convex function which might
be a disadvantage for the optimization process.
The other functions we reviewed were the
smoothed Hinge loss function

w, Z,n) Zf (w, b, Gy i) (25)

as well as the mean squared error on the classifica-
tion)
H(w,Z,n) = E”EMT —nll3. (26)

The MSE calculates the mean squared distance of
the examples to the class labels (or, otherwise put,
to the margins). Intuitively, the smoothed Hinge loss
function should yield a better estimate of the hard
classification error than the MSE because it assigns
no error to correctly classified examples up to the
margin and a linear increasing error for examples in-
side the margin and to wrong examples. Both MSE
and Hinge loss are convex functions, and the MSE is
particularly easy to differentiate.

On toy experiments, we found that the Hinge loss
and the zero-one loss perform better on oddly shaped

datasets (imbalanced, with outliers) than the MSE
(see Fig. [2). Using the MSE (green area) the bi-
level SVM tends to learn a larger margin than us-
ing the Hinge loss (blue area), and the margins are
pulled towards the barycenter of the data distribu-
tion. There was no difference in the behaviour be-
tween Hinge/zero-one loss in this case. However, in
our experiments using real world data sets also the
MSE performs quite well suggesting a good general-
ization capability.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Figure 2. Margins and hyperplanes on an imbalanced toy
data set for Hinge loss (blue) and MSE (green) as a higher
level loss function.

4. Experimental Results

In our implementation we used the LBFGS-B op-
timization algorithm to solve the higher level opti-
mization problem, see [5]. For solving the lower
level problems (the SVM) we used FISTA [2]]. For
the experiments, we used several data sets from the
UCI machine learning repository EI (diabetes, iono-
sphere, heart, seeds, parkinson). The aim of the ex-
periments is to show how the classification results us-
ing the hyper-parameters determined via the bi-level
optimization scheme compare to the results of the
traditional grid search procedure. In particular, we
focus on evaluating the effectiveness of the higher
level loss function approximations. Furthermore, we
show results for two settings using an increased num-
ber of hyper-parameters as well as results for an im-
age classification experiment.

The smoothing parameter 1 from Eq.[6]and[25|was
chosen as big as possible as long as the outer level op-
timization does not fail (due to the Hessian becoming
ill-conditioned when it is very sparse). The initial
values 6 for the bi-level optimization were set ran-

'nttp://archive.ics.uci.edu/ml

domly due to the fact that their choice is not critical:
Usually the bi-level program converges to the same
0* for different initial values given sufficient accu-
racy of the solution of w*.

4.1. Illustrative examples

First, we have a look at how the hard classifica-
tion rates vary in the hyper-parameters and how the
higher level loss functions we mentioned earlier "fit”
to the achieved classification performance. For this
reason, we show two examples. First, results us-
ing a linear bi-level SVM on the diabetes data set
are shown in Fig. 3] On the y axis the CV error
rate and the test error rate are shown as well as the
higher level loss function values. The MSE is plotted
in dashed blue, the approximated Hinge loss in solid
red and the smooth zero-one loss in solid green. The
errors are plotted over the regularization parameter ¢
and have been determined via grid search. We point
out that the error values are not directly comparable
hence we rescale them for better comparison.

N

T
= = CV error MSE
O Bilevel iter. MSE
—— CV error Hinge
% Bilevel iter. Hinge
CV error 01loss
Bilevel iter. 01loss
=== CV error rate
----- test error rate

error
7

Figure 3. Comparing hard classification rates and the cor-
responding higher level loss function values over c using
a linear SVM on the diabetes data set.

We observe that the minima of the CV and test
classification error rates do not coincide exactly but
the magnitudes are consistent. The smoothed Hinge
loss seems to model the actual CV classification rates
quite well, and the zero-one loss approximation fits
even better (as expected). Their minima lie in the
area of lowest classification error rates. The MSE
does not correspond to the error rates, but still has
the minimum in a reasonable area.

The second example shown in Fig. [] illustrates
the dependency of the kernel parameter ~y of a sim-
ple RBF kernel SVM for a fixed ¢ on the same (dia-
betes) data set. Here, the CV and test error rates have

http://archive. ics.uci.edu/ml

error
o e r—— —

E-
:\.
1 \
‘| SN = = CV error MSE
“. " o = CV error Hinge
I, " oae e CV error 01loss
9 ” = — =+ CV error rate
----- test error rate
. I : :
0 1 2 3 4 6 7 8 9 10

20

Figure 4. Comparing hard classification rates and the cor-
responding higher level loss function values with fixed ¢
over -y using a kernel SVM on the diabetes data set.

again similar minima, and in this case, also all three
flavours of higher level loss functions share approx-
imately the same minima. For the MSE, we observe
and additional local minimum at v ~ 5.5 which is an
unwanted property for optimization. At this point, no
clear answer can be given which of the higher level
loss functions is the best.

4.2. Classification rates for different settings

In Tab.[Ilwe summarize the CV and test error rates
obtained by the linear and kernel bi-level SVM as
well as the respective rates obtained using grid search
on a comparable computational budget measured in
trials. Each trial consists of the evaluation of the
SVM for T folds for one set of hyper-parameters.
The number of folds in our experiments was chosen
with 7' = 5. Surprisingly, often the MSE yields good
test classification rates, sometimes even best values,
even though the CV error does not usually yield low-
est rates. Here, often Hinge loss and sometimes zero-
one loss lead to better results. In terms of number of
trials used for optimization, the zero-one and Hinge
loss are the best. Given the low computational budget
assigned for grid search, only for one data set better
rates were achieved (seeds), even though it is quite
possible that grid search can outperform the bi-level
approach using more trials in the linear/simple kernel
case because the exact classification rates are taken to
decide which set of hyper-parameters is best. How-
ever, as we will see in the following experiments, the
classification rates can be significantly improved by
using a more complex kernel for which it will be dif-
ficult to achieve a good result using exhaustive grid
search.

Data set | Type CV Err. Test Err. Trials

Diabetes | LinOlloss 24.13 20.33 10
LinHinge 24.13 20.66 7
LinMSE 25.87 19.67 8
LinGrid 24.34 20.66 15
KerOlloss 22.17 18.03 8
KerHinge 21.30 17.70 26
KerMSE 18.70 20.98 11
KerGrid 25.00 19.02 50
Ionosph. | LinOlloss 12.86 8.57 7
LinHinge 11.43 7.86 5
LinMSE 16.19 7.86
LinGrid 14.29 8.57 15
KerOlloss 0.95 2.85 17
KerHinge 2.86 3.57 32
KerMSE 3.81 2.86 33
KerGrid 13.81 4.29 50
Heart LinOlloss 15.79 15 8
LinHinge 14.21 13.75 6
LinMSE 17.37 15 8
LinGrid 18.95 13.75 15
KerOlloss 15.26 15 15
KerHinge 14.74 13.75 16
KerMSE 17.89 13.75 34
KerGrid 18.95 15 50
Seeds LinOlloss 6 10 5
LinHinge 6 10 6
LinMSE 7.33 11.67 11
LinGrid 9.33 9.33 15
KerOlloss 2 8.33 14
KerHinge 1.33 8.33 15
KerMSE 7.33 6.67 23
KerGrid 10.67 10 50

Table 1. Summary of classification rates on several
datasets comparing the CV and test errors and the num-
ber of trials used. Results are reported for the linear (’lin”)
and kernel ("ker’) SVM using the MSE, Hinge or zero-one
(’Olloss’) higher level loss functions.

4.3. Learning multiple parameters

Learning one parameter ~y per feature dimen-
sion. For this experiment, the seeds data set was used
(D = 8). The results are summarized in Tab.

Learning parameters vy, and 3, for a multiple ker-
nel SVM. For this experiment the parkinson data set
was used [16]. The data contains 21 measurements
of different orders of magnitude. Using the multi-
ple kernel SVM we are able to combine the features
into P groups of similar magnitude, and set the pa-
rameters -y, and 3, via the bi-level optimization pro-
cedure. The results are summarized in Tab. 3l We
achieve good results using no pre-processing and no
filtering of correlated features compared to the orig-
inal paper [16] where they report a test classification
rate of 8.2% 4 2. We observe an exceptionally low

number of necessary trials using the zero-one loss for
both experiments, and very good test classification
rates for Hinge and zero-one loss.

| Dataset | Type CVErr. TestEr. Trials |
Seeds MSE 0.67 3.33 62

Hinge 0 3.33 119
Olloss 2.67 3.33 59

Table 2. Results using a bi-level kernel SVM with vp pa-
rameters.

‘ Data set ‘ Type CVErr. TestErr. Trials ‘
Parkinson | MSE 0 9.09 53
Hinge 8.75 7.27 80
Olloss 2.04 7.27 30

Table 3. Results using a bi-level multiple kernel SVM.

4.4. Image classification

The following image classification experiment
was conducted on the Graz02 data set [[18]]. For fea-
ture extraction the VLFeat Library || was used. The
data was pre-processed according to a bag of visual
words model using PHOW features, a variant of SIFT
features extracted at several scales [[17]. Moreover,
for this task we use exponential 2 kernels because
they show naturally better performance on histogram
data compared to RBF kernels [24].

Confusion Matrix, mAcc = 70.00%

bike ELXy@ 0.00 0.00 3.33

cars| 0.00 QEEKEKE 0.00 6.67

none | 36.67 36.67

3.33 | 23.33

person| 3.33 3.33

bike cars none person

Figure 5. Resulting confusion matrix using a bi-level ker-
nel SVM and the Hinge loss as a higher level loss function.

Confusion Matrix, mAcc = 73.33%

bike 0.00 0.00 6.67

cars 3.33 6.67
none| 36.67 20.00 26.67 16.67

3.33 333 6.67

person

bike cars none person

Figure 6. Resulting confusion matrix using a bi-level ker-
nel SVM and the MSE as a higher level loss function.

In Fig. [5] and Fig. [f] we compare the classification
results for each of the four classes in the Graz02 data

http://www.vlfeat.org/

Confusion Matrix, mAcc = 73.33%

bike gERKKE 0.00 0.00 6.67

cars 6.67 6.67
none| 36.67 20.00 30.00 13.33

person| 6.67 3.33 6.67

bike cars none person

Figure 7. Resulting confusion matrix using a kernel SVM
and grid search using 50 trials.

set, namely bike, cars, person and none (the back-
ground class). For training we used 60 images per
class, and 30 for testing. Overall the accuracy us-
ing the MSE is better, but if we do not regard the
background class the results using the Hinge loss are
superior. By construction, the data for learning 1 vs.
rest classifiers is imbalanced due to the low number
of positive examples. That might explain why MSE
performs worse than Hinge loss in the image classi-
fication example. The results via the kernel bi-level
SVM were obtained using a mean of 9 trials per each
1 vs. rest classifier that was trained using Hinge loss
and 8 trials using the MSE. The results of grid search
and evaluating the CV error rate to determine the best
hyper-parameters using 50 trials are shown in Fig.
We obtain a baseline of classification results on this
data set for the relevant classes bike, cars and person.

5. Conclusion

In this paper, we presented a novel bi-level opti-
mization scheme that is able to perform continuous
hyper-parameter optimization for linear and kernel
SVMs based on different smoothed estimates of the
CV error rate. Very good test classification rates are
obtained using only a tiny fraction of trials that would
be necessary to perform exhaustive grid search which
makes the method very practical. High potential lies
in the optimization of several kernel parameters: The
classification rates are better than using only a simple
kernel and optimizing the parameters is easy using
the bi-level optimization approach. In the case of op-
timizing one or two parameters only, a very fine grid
search might lead to better results than the bi-level
approach because the exact classification errors are
minimized, but at a much higher computational cost.

Acknowledgements

The authors acknowledge support from the Austrian
Science Fund (FWF) under the START project BIVI-
SION, No. Y729.

http://www.vlfeat.org/

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

F. R. Bach, G. R. G. Lankriet, and M. I. Jordan. Mul-
tiple Kernel Learning, Conic Duality, and the SMO
Algorithm. International Conference on Machine
Learning, 2004. [1 3]

A. Beck and M. Teboulle. A Fast Iterative
Shrinkage-Thresholding Algorithm for Linear In-
verse Problems. SIAM Journal on Imaging Sciences,
2(1):183-202, Jan. 2009. [6]

J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. The Journal of Machine
Learning Research, 13:281-305, 2012.

D. P. Bertsekas. Nonlinear programming. Athena
Scientific, 1999. @]

R. Byrd, P. Lu, J. Nocedal, and C. Zhu. A lim-
ited memory algorithm for bound constrained opti-
mization. SIAM Journal on Scientific Computing,
16(5):1190-1208, 1995. [f]

O. Chapelle. Training a support vector machine in
the primal. Neural Computation, 19(5):1155-78,

May 2007. 1 B} @
O. Chapelle, V. Vapnik, O. Bousquet, and
S. Mukherjee. Choosing multiple parameters for
support vector machines. Machine Learning, pages
131-159, 2002. 1]

B. Colson, P. Marcotte, and G. Savard. An overview
of bilevel optimization. Annals of Operations Re-
search, 153(1):235-256, Apr. 2007. E]

C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3):273-297, Sept. 1995.

K. Duan, S. Keerthi, and A. N. Poo. Evaluation
of simple performance measures for tuning SVM
hyperparameters. Neurocomputing, 51:41-59, Apr.
2003. 2

M. Gonen and E. Alpaydn. Multiple kernel learn-
ing algorithms. The Journal of Machine Learning
Research, 12:2211-2268, 2011. [T} f]

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast
learning algorithm for deep belief nets. Neural Com-
putation, 18(7):1527-1554, 2006. [I]

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequen-
tial model-based optimization for general algorithm

configuration. Learning and Intelligent Optimiza-
tion, 2011. 2

A. Krizhevsky, 1. Sutskever, and G. Hinton. Ima-
geNet Classification with Deep Convolutional Neu-
ral Networks. Advances in Neural Information Pro-
cessing Systems, 25:1097-1105, 2012. [I]

G. Kunapuli and K. Bennett. Classification model
selection via bilevel programming. Optimization
Methods & Software, 23(4):475-489, 2008. E]

M. a. Little, P. E. McSharry, E. J. Hunter, J. Spiel-
man, and L. O. Ramig. Suitability of dysphonia

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

measurements for telemonitoring of Parkinson’s dis-
ease. IEEE Transactions on Bio-medical Engineer-
ing, 56(4):1015-1022, Apr. 2009.

D. G. Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Com-
puter Vision, 60(2):91-110, Nov. 2004. E]

A. Opelt and A. Pinz. Generic object recognition
with boosting. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 28(3):416—431, 2006.
8]

B. Scholkopf and A. J. Smola. Learning with ker-
nels: Support Vector Machines, Regularization, Op-
timization, and Beyond. MIT Press, Cambridge,
MA, USA, 2002. [1]

J. Snoek, H. Larochelle, and R. Adams. Practi-
cal Bayesian optimization of machine learning algo-
rithms. Advances in Neural Information Processing
Systems, pages 1-9, 2012. [2]

S. Sonnenburg, G. Ritsch, C. Schifer, and
B. Scholkopf. Large scale multiple kernel learning.
Journal of Machine Learning Research, 7:1531-
1565, 2006. [I1[3]

A. Vedaldi and A. Zisserman. Efficient additive
kernels via explicit feature maps. [EEE Transac-
tions on Pattern Analysis and Machine Intelligence,
34(3):480-92, Mar. 2012. 1]

J. Zhang, R. Jin, Y. Yang, and A. Hauptmann. Mod-
ified logistic regression: An approximation to SVM
and its applications in large-scale text categoriza-
tion. International Conference on Machine Learn-
ing, pages 888-895, 2003. 3|

J. Zhang, M. Marszalek, S. Lazebnik, and
C. Schmid. Local Features and Kernels for Classifi-
cation of Texture and Object Categories: A Compre-

hensive Study. International Journal of Computer
Vision, 73(2):213-238, Sept. 2006.

