On the Applicability of Time-Driven Cache Attacks
on Mobile Devices* **

Raphael Spreitzer and Thomas Plos

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria
{raphael.spreitzer,thomas.plos}@iaik.tugraz.at

Abstract. Cache attacks are known to be sophisticated attacks against crypto-
graphic implementations on desktop computers. Recently, investigations of such
attacks on specific testbeds with processors that are employed in mobile devices
have been done. In this work we investigate the applicability of Bernstein’s [2]
timing attack and the cache-collision attack by Bogdanov et al. [4]] in real envi-
ronments on three state-of-the-art mobile devices: an Acer Iconia A510, a Google
Nexus S, and a Samsung Galaxy SIII. We show that T-table based implementations
of the Advanced Encryption Standard (AES) leak enough timing information on
these devices in order to recover parts of the used secret key using Bernstein’s
timing attack. We also show that systems with a cache-line size larger than 32
bytes exacerbate the cache-collision attack of Bogdanov et al. [4].

Keywords: AES, ARM Cortex-A series processors, time-driven cache attacks,
cache-collision attacks.

1 Introduction

Cache attacks are a specific form of implementation attacks that focus on the exploita-
tion of variations within the execution time of a cryptographic algorithm due to dif-
ferent access times within the memory hierarchy. For instance, the central-processing
unit (CPU) is able to access data within the CPU cache an order of magnitude faster
than data within the main memory. Cache attacks can be separated into three cate-
gories: (1) time-driven attacks, (2) access-driven attacks, and (3) trace-driven attacks.
Time-driven attacks [2]] exploit the overall encryption time and, thus, require many mea-
surement samples. In contrast, access-driven attacks [0, [12]] and trace-driven attacks [3]]
focus on more fine-grained information leakage and require far less measurement sam-
ples than time-driven attacks. However, access-driven attacks and trace-driven attacks
require sophisticated knowledge about the hardware and the software under attack.
Today’s mobile devices also employ CPU caches and investigations of implemen-
tation attacks—and cache attacks in particular—are necessary in order to ensure the

* An extended version of this paper can be found at [11].

** This work has been supported by the Austrian Science Fund (FWF) under grant number
TRP 251-N23 (Realizing a Secure Internet of Things - ReSIT). Furthermore, it has been sup-
ported by the Austrian Research Promotion Agency (FFG) and the Styrian Business Promotion
Agency (SFG) under grant number 836628 (SeCoS).

J. Lopez, X. Huang, and R. Sandhu (Eds.): NSS 2013, LNCS 7873, pp. 656—@ 2013.

The final publication is available at link.springer.com.
© Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-38631-2_53

On the Applicability of Time-Driven Cache Attacks on Mobile Devices 657

user’s privacy and security on these devices. Especially due to the wide-spread usage
of mobile devices, e.g., smartphones and tablet computers, and their manifold applica-
tion scenarios, security and privacy issues on these devices are of utmost importance.
Additional applications and widgets allow for further enhancements of capabilities on
these devices and potentially contain security-relevant algorithms. Since these algo-
rithms might be vulnerable to implementation attacks, the investigation of such attacks
shall raise the awareness of implementation attacks among developers, leading to more
secure systems in general. However, until recently these attacks mainly focused on
desktop machines [2, 16| (8l [12]. Only minor efforts have been made towards the in-
vestigation of these attacks on mobile devices [10]], where mainly testbeds simulating
specific mobile-device configurations [4} 5} |13] have been used.

In 2010, Bogdanov et al. [4] proposed a cache-collision attack by exploiting colli-
sions between consecutive encryptions of pairs of chosen plaintexts. The attack environ-
ment was an ARM9 board running the AES implementation of OpenSSL [9] which was
queried via an Ethernet interface. Gallais and Kizhvatov [5] investigated trace-driven
cache attacks on an ARM7 microcontroller. In 2012, WeiB} et al. [13] investigated the
applicability of Bernstein’s [2] time-driven cache attack on a Beagleboard employing
an ARM Cortex-A8 processor, running the Fiasco.OC microkernel and the L4Re run-
time environment on top. Nevertheless, they claim that further research regarding the
impact of real noise is necessary.

In this work, we focus on the investigation of time-driven cache attacks in more
realistic environments by analyzing the applicability of the attack by Bernstein [2]] and
the attack by Bogdanov et al. [4] on three Android-based mobile devices. We aim at
analyzing whether T-table based implementations of the Advanced Encryption Standard
(AES) on state-of-the-art Android-based mobile devices, i.e., featuring a full-blown
operating system, leak enough timing information to deduce the used secret key.

The presented paper is organized as follows. Section [2| outlines the required pre-
liminaries and illustrates the basic concepts of the two investigated cache attacks. We
state the main findings regarding the analysis of these two attacks on mobile devices in
Section 3] Finally, we conclude this work in Section [4]

2 Background Knowledge

In this section we introduce the necessary preliminaries and outline the basic concepts
of the conducted attacks.

Advanced Encryption Standard. The Advanced Encryption Standard (AES) [7] is a
block cipher operating on a 128-bit state denoted as a series of bytes S = {sg, ...,S15}.
The AES consists of four round transformations: SubBytes, ShiftRows, MixColumns,
and AddRoundKey. Since SubBytes and MixColumns perform complex mathematical
operations, software implementations usually operate on look-up tables T which hold
precomputed values for these two round transformations. The fact that these look-up
tables—each consisting of 256 4-byte values—are partially cached during the encryp-
tion and the fact that the look-up indices are key dependent, i.e., s; = p, @ k; within the
first round, leads to AES implementations which are susceptible to cache attacks.

658 R. Spreitzer and T. Plos

Table 1. Detailed device specifications for the three mobile devices under attack.

Acer Iconia A510 Google Nexus S Samsung Galaxy SIIT
Processor Cortex-A9 Cortex-A8 Cortex-A9
Processor implementation ~ Nvidia Tegra 3 Quad 1.4 GHz Exynos 3 Single 1 GHz Exynos 4 Quad 1.4 GHz
L1 cache size 32KB 32KB 32KB
L1 cache associativity 4 way 4 way 4 way
L1 cache-line size 32 byte 64 byte 32 byte
L1 cache sets 256 128 256
Operating system Android 4.0.4 Android 2.3.4 Android 4.0.4

ARM Architecture. The ARM Cortex-A series processors [1] are employed in many
modern mobile devices, e.g., smartphones and tablet computers. Processors of this se-
ries typically employ a 4-way set-associative data cache with a cache-line size of either
32 or 64 bytes and a total size of 32 KB. The crucial difference between most desk-
top CPU caches and ARM CPU caches is the mechanism to evict a cache line from
a cache set. While desktop CPU caches usually employ a deterministic replacement
policy, ARM processors usually evict a cache line randomly. Since time-driven cache
attacks rely on statistical analysis of measurement samples, the random replacement
policy might have a negative impact on the number of required measurement samples.

Time-Driven Cache Attacks. The basic idea of these attacks is to exploit the overall
execution time of cryptographic primitives employing precomputed look-up tables.

Timing Attack. In 2005, Bernstein [2] suggested a time-driven cache attack against the
AES T-table implementation of OpenSSL [9]. The attack is based on the assumption
that the overall encryption time correlates with the timing leakage of specific look-up
operations. By correlating measurement samples of encryptions under a known key K
with measurement samples under an unknown key K one tries to deduce the used secret
key. For further details about this attack we refer to [2} 8]

Collision Attack. Cache-collision attacks exploit collisions between look-up indices
of intermediate state bytes. Given information about such collisions an attacker tries
to infer relations between key bytes. Bogdanov et al. [4] suggested to choose pairs of
plaintexts (Py, P2) such that five S-Box or T-table look-ups within the encryption of Py
collide with S-Box or T-table look-ups of P;. This is what they call a wide collision.
The encryption time of the plaintext Py is used as an indicator to determine whether
such a wide collision occurred.

3 Analysis and Practical Results

We launch the above outlined attacks on state-of-the-art Android-based mobile devices:
(1) an Acer Iconia A510 tablet computer, (2) a Google Nexus S, and (3) a Samsung
Galaxy SIII. Table[I] provides a detailed specification of these devices. The attack runs
in unprivileged mode, though we need root access once after powering up the device to
grant unprivileged applications access to the cycle-count register. As already suggested

On the Applicability of Time-Driven Cache Attacks on Mobile Devices 659

Table 2. Sample output of Bernstein’s time-driven cache attack on a Samsung Galaxy SIII.

of key candidates Key byte Possible values
3 0 b5 b4 b8
125 1 00 a2 be c2 b8 1d f6 .. 93 ..
165 2 87 03 51 17 1b 1f ¢7 .. 11 ..
2 13 4a 4b
40 14 6a 7a Tb 74 61 Tc 64 6b T8 ..
2 15 9c 9d

by Neve [8] we perform the attacks within a single application, i.e., the attack appli-
cation performs the AES encryption (standard C implementation of OpenSSL [9]) and
computes the relevant information. In this section we briefly state the main findings of
the conducted attacks on the three mobile devices.

3.1 Timing Attack

The timing attack by Bernstein [2] requires measurement samples under a known key
K and an unknown key K. Gathering 2° measurement samples under the known key K
and the unknown key K takes about 6 hours on the Google Nexus S and about 4 hours
on the Acer Iconia A510 and the Samsung Galaxy SIII. Table[2|illustrates an excerpt of
a sample output on the Samsung Galaxy SIII after correlating the measurement results.
The columns state the number of remaining key candidates, the index of the correspond-
ing key byte and all possible key bytes with the correct key marked in bold. A series
of dots illustrates omitted key bytes. The possible key candidates are sorted according
to the computed correlation and, thus, the position also indicates the probability of the
corresponding key candidate being the correct key byte. One clearly observes that tim-
ing information is leaking, though the number of remaining key bits is still too large for
an exhaustive key search. In order to retrieve more key bits one might apply the second-
round attack as suggested by Neve [§]. From Table[2] we also observe that for some key
bytes the number of possible key candidates has been reduced significantly, e.g., to only
2 key candidates. However, some key bytes have not been reduced significantly.

Table [3]lists two runs with the lowest number of remaining key bits for each of the
three mobile devices. The number of generated measurement samples seems to be a
crucial part. For the same number of measurement samples we observed runs where
the key space was not reduced significantly and runs where the key space was reduced
too much, i.e., the correct key byte was not present among the possible key candidates
anymore in which case the attack would fail. Thus, more measurement samples do not
necessarily yield better results in terms of remaining key bits.

Timing variations within the encryption time only occur if cache evictions happen
frequently. Bernstein [2] generated the required cache evictions by sending data of dif-
ferent length to the server and the server in turn performed memory accesses on the
transmitted data. We also launched this attack in a more realistic scenario where we
mounted the attack while watching videos or while watching an image slideshow on
the mobile devices. Nevertheless, running external applications on purpose did not leak

660 R. Spreitzer and T. Plos

Table 3. Results of Bernstein’s time-driven attack on the three mobile devices.

Device Samples in Remaining key space

study phase attack phase
Acer Iconia A510 ;ig ;z: ;g Ei::
Google Nexus S gjg zjz gg E::z
Samsung Galaxy SIIT gjz ;2 2? Ei:

more information and, hence, did not reduce the key space further. We conclude that
these external applications either affected the wrong cache sets or lead to uncontrollable
noise that corrupted the timing measurements. Furthermore, on multi-core devices, e.g.,
the Acer Iconia A510 and the Samsung Galaxy SIII, the two applications might be exe-
cuted on different cores. Thus, a fairly realistic approach would be to wrap the attack in
a fine-grained application and to control the memory accesses and potentially also the
number of active cores within this application.

3.2 Collision Attack

Bogdanov et al. [4] aim at recovering 4-byte key chunks at once. After recovering all
four potential 4-byte key chunks these are enumerated exhaustively in order to recover
the whole key. Recovering 4-byte key chunks at once requires at least four real wide col-
lisions between chosen pairs of plaintexts (P, P2). However, given the overall encryp-
tion time of multiple plaintexts the critical part of this attack is to distinguish encryp-
tions that lead to wide collisions from encryptions that do not lead to wide collisions.
This in turn means that a high expectation rate of false positives{ﬂ must be overcome by
taking more plaintexts—that possibly lead to wide collisions—into consideration.
Figure |1|illustrates two histograms of encryption times of five plaintexts that lead
to wide collisions in light gray and five plaintexts that do not lead to wide collisions in
dark gray. The presented histograms are based on measurement samples gathered on the
ARM Cortex-A8 processor. Due to reasons of noise each of the five chosen plaintexts
is encrypted multiple times. In case of the 3-round AES implementation we clearly
observe easily separable encryption times for plaintexts which lead to wide collisions
and plaintexts which do not lead to wide collisions. Thus, by taking n = 4 plaintexts
with the lowest encryption times we might indeed detect 4 real wide collisions with a
high probability. In contrast, in case of the 7-round AES implementation we observe
that the encryption times of these two categories of plaintexts cannot be distinguished
anymore. Obviously, the number of false positives increases drastically and, hence, we
need to consider a higher number n of plaintexts that possibly lead to wide collisions.
The n plaintexts are used to find possible candidates of 4-byte subkeys by iterating
over all possible 4-byte keys (23?). Bogdanov et al. [4] state the number of expected

! False positives are diagonal pairs which are supposed to lead to wide collisions due to their
encryption time, but in fact do not lead to wide collisions.

On the Applicability of Time-Driven Cache Attacks on Mobile Devices 661

10000r : - 35000
[]wide collisions (mean: 349.22) [Jwide collisions (mean: 586.21)
[Wide non collisions (mean: 366.89) 30000" [l Wide non collisions (mean: 587.05) |
8000 1
8 8 25000¢
£ 2
g 6000 S 20000
kS k)
2 4000 & 15000
= £
2 2 10000
2000
5000¢ i
‘_-i Iil-__-
850 300 350 400 450 500 1?50 500 550 600 650 700 750
Encryption time [cycles] Encryption time [cycles]

Fig. 1. Histogram of encryption times for a 3-round AES (left) and a 7-round AES (right).

4-byte subkey candidates per attacked 4-byte subkey as ((Z) - 256) and since these
subkeys must be enumerated exhaustively for all four 4-byte subkeys this yields an
overall complexity of (('}) - 256)* AES encryptions to recover the whole key.

We blame the larger cache-line size of 64 bytes on the ARM Cortex-AS8 for the chal-
lenging detection of wide collisions. In contrast, Bogdanov et al. [4] launched the attack
on an ARMY board with a cache-line size of 32 bytes. Since each T-table is composed
of 256 4-byte elements, a 32-byte cache line holds 6 = 8 T-table elements, whereas a
64-byte cache line holds § = 16 T-table elements. In case of a cache miss the Cortex-A8
loads 16 consecutive T-table elements into the cache, whereas the ARM9 board loads
only 8 elements into the cache at once. If we take probability theory into consideration
the problem becomes clear. Since the last round of the AES T-table implementation usu-
ally employs a different T-table, there are 4 - 9 look-up operations into the same T-table
within the rounds 1-9. The probability for § consecutive T-table elements—mapping to
the same cache line—still not being cached after one encryption is (1 — %)4 9. In case
of § = 16 this yields a probability of 0.098 that a specific block of T-table elements is
still not being cached after one encryption. In case of § = 8 this yields a probability of
0.319. Hence, the probability for a specific T-table element already being cached after
the first encryption is 1 — 0.098 = 0.902 and 1 — 0.319 = 0.681. This in turn means
that the probability for additional cache collisions, besides the required wide collisions,
is far greater on systems with a cache-line size of 64 bytes. The overall encryption time
of P; decreases and makes wide collisions nearly indistinguishable from non wide col-
lisions. We conclude that the larger cache-line size on the ARM Cortex-A8 exacerbates
the detection of wide collisions and, thus, the applicability of this attack in general.

Even on the Cortex-A9 the detection of at least four wide collisions among a small
number of chosen plaintexts, e.g., n < 6, is a challenging task and a larger number of
n drastically increases the remaining brute-force complexity. Our observations showed
that we are able to detect enough wide collisions among n = 7 chosen plaintexts, but in
this case the complexity of the exhaustive key search is impractical.

662 R. Spreitzer and T. Plos

4 Conclusion

Recent investigations of cache attacks on mobile devices focused on specific testbeds
and stressed the importance of analyzing these attacks in more realistic environments.
Thus, we investigated the applicability of two time-driven cache attacks on state-of-
the-art Android-based mobile devices. We observed that timing information also leaks
on these devices and can be used to reduce the key space of cryptographic algorithms
significantly. Though time-driven cache attacks usually require an enormous number of
measurement samples we consider the attack of Bernstein [2]] a threat for cryptographic
implementations on mobile devices. In addition, we analyzed the attack of Bogdanov et
al. [4] according to its applicability on mobile devices. We showed that a cache-line
size of 64 bytes exacerbates this attack and even on systems with a cache-line size of
32 bytes the detection of wide collisions seems to be a challenging task. Our observa-
tions revealed that, in practice, encryptions where wide collisions occur and encryptions
where no wide collisions occur are hardly distinguishable. Even though a high number
of false positives might be overcome by taking more diagonal pairs into consideration,
this drastically increases the complexity of the following key-search phase.

References

[1] ARM Ltd. Cortex-A Series. Available online at http://www.arm.com/products/
processors/cortex—a/index.php, 2012.

[2] D.J. Bernstein. Cache-timing attacks on AES. Available online athttp://cr.yp.to/
antiforgery/cachetiming-20050414.pdf} 2005.

[3] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo. AES Power Attack
Based on Induced Cache Miss and Countermeasure. In ITCC (1), pages 586-591, 2005.

[4] A.Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke. Differential Cache-Collision Tim-
ing Attacks on AES with Applications to Embedded CPUs. In CT-RSA, pages 235-251,
2010.

[5] J.-F. Gallais and 1. Kizhvatov. Error-Tolerance in Trace-Driven Cache Collision Attacks.
In COSADE, pages 222-232, Darmstadt, 2011.

[6] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games - Bringing Access-Based Cache
Attacks on AES to Practice. In IEEE SP, pages 490-505, 2011.

[7] National Institute of Standards and Technology (NIST). FIPS-197: Advanced Encryption
Standard, November 2001.

[8] M. Neve. Cache-based Vulnerabilities and SPAM Analysis. PhD thesis, UCL, 2006.

[9] OpenSSL Software Foundation. OpenSSL Project. Available online at http://www.
openssl.org/, 2012.

[10] R. Spreitzer and T. Plos. Cache-Access Pattern Attack on Disaligned AES T-Tables. In
COSADE 2013, LNCS. Springer, 2013. In press.

[11] R. Spreitzer and T. Plos. On the Applicability of Time-Driven Cache Attacks on Mobile
Devices (Extended Version). Cryptology ePrint Archive, Report 2013/172, 2013. http:
//eprint.iacr.org/.

[12] E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache Attacks on AES, and Countermea-
sures. Journal of Cryptology, 23(1):37-71, 2010.

[13] M. WeiB, B. Heinz, and F. Stumpf. A Cache Timing Attack on AES in Virtualization
Environments. In FC, pages 314-328. Springer Berlin Heidelberg, 2012.

http://www.arm.com/products/processors/cortex-a/index.php
http://www.arm.com/products/processors/cortex-a/index.php
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://www.openssl.org/
http://www.openssl.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

	On the Applicability of Time-Driven Cache Attacks on Mobile Devices

