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Wave functions, electronic localization, and bonding properties for correlated
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Many-body theories such as dynamical mean field theory (DMFT) have enabled the description of the
electron-electron correlation effects that are missing in current density functional theory (DFT) calculations.
However, there has been relatively little focus on the wave functions from these theories. We present the method-
ology of the newly developed ELK-TRIQS interface and how to calculate the DFT with DMFT (DFT + DMFT)
wave functions, which can be used to calculate DFT + DMFT wave-function-dependent quantities. We illustrate
this by calculating the electron localization function (ELF) in monolayer SrVO3 and CaFe2As2, which provides
a means of visualizing their chemical bonds. Monolayer SrVO3 ELFs are sensitive to the charge redistribution
between the DFT, one-shot DFT + DMFT, and fully charge self-consistent DFT + DMFT calculations. In both
tetragonal and collapsed tetragonal CaFe2As2 phases, the ELF changes weakly with correlation-induced charge
redistribution of the hybridized As p and Fe d states. Nonetheless, the interlayer As-As bond in the collapsed
tetragonal structure is robust to the changes at and around the Fermi level.
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I. INTRODUCTION

There has been much progress over recent decades in im-
proving upon the electron-electron correlation effects beyond
the local density approximation (LDA) [1] and generalized
gradient approximation (GGA) [2,3] in density functional the-
ory (DFT). In the DFT formalism, this includes developments
of the meta-GGA functionals [4,5] and hybrid functionals
[6,7]. Further progress has also been achieved by combining
many-body techniques with DFT, such as DFT with dy-
namical mean field theory (DFT + DMFT) [8–10]. DMFT
is successful in describing strongly correlated materials and
physical phenomena such as the Kondo problem and the Mott
transition [11]. These phenomena are absent in current DFT
implementations but are captured in DFT + DMFT. During
the development of DFT + DMFT in real materials, there has
been an emphasis on comparisons of the calculated quantities
with spectroscopic experimental data, such as photoemission
spectroscopy (PES), and its angle-resolved version (ARPES),
to investigate how the theoretical improvements change the
level of agreement between experiment and theory. How-
ever, deeper insight into the effect of including many-body
techniques will be achieved by calculating the wave func-
tions and quantities which depend on them. An example of
a wave-function-dependent quantity is the electron localiza-
tion function (ELF) [12,13], which is often used to help
visualize chemical bonds in materials. While it is not pos-
sible to directly probe this quantity experimentally, the ELF
has nonetheless been used to help understand many materi-
als ranging from molecules [14–16] to crystalline structures

[17–19]. Therefore the electron-electron correlation effects
that are included from many-body techniques may have sig-
nificant effects on the ELF which will give further information
about the consequences of these interactions.

DFT calculations use an auxiliary basis set of fictitious in-
dependent single-particle Kohn-Sham wave functions. When
introducing interaction terms, which couple the states of these
wave functions, it is possible to determine a new basis set in
which the wave functions would be orthonormal to each other
by diagonalizing the charge density matrix. These DFT +
DMFT wave functions are determined by a basis transforma-
tion from the Kohn-Sham basis using a unitary matrix that is
derived from diagonalization of the density matrix. Therefore
the DFT + DMFT wave functions can be used to calculate
wave-function-dependent quantities, which was implemented
and is discussed in this paper. Wave-function-dependent quan-
tities also require the electron occupation of states. At zero
temperature, these occupations are either zero or 1 in DFT,
whereas in many-body techniques these occupations can have
values between zero and 1 with a discontinuous quasiparticle
renormalization at the Fermi level. Therefore changes in the
Fermi-liquid-like occupations at the Fermi level or charge
redistribution away from the Fermi level will influence wave-
function-dependent quantities, especially those in which the
correlations are significant. It is therefore imperative to study
the effect on the wave functions when using many-body tech-
niques in combination with DFT.

This paper introduces the newly developed interface be-
tween the full-potential linearized augmented plane wave
(FP-LAPW) ELK [20] and Toolbox for Research on
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Interacting Quantum Systems (TRIQS) [21] open-source codes.
This ELK-TRIQS interface calculates the commonly used spec-
tral DFT + DMFT quantities and gives the opportunity to
calculate wave-function-dependent quantities in ELK such as
the ELF. See the full interface documentation in Ref. [22] for
further information. We illustrate the usefulness of examin-
ing this ELF in two materials: Monolayer SrVO3 and bulk
CaFe2As2. First we start by discussing the formalism of the
interface between the ELK package and TRIQS library. This
includes the method of calculating the DFT + DMFT wave
functions from the DFT + DMFT charge density matrix. Then
we briefly discuss how the ELF is calculated with these wave
functions. To benchmark the ELK-TRIQS interface, one-shot
(OS) and fully charge self-consistent (FCSC) DFT + DMFT
calculations were performed on monolayer SrVO3 using both
the ELK-TRIQS and WIEN2K-TRIQS [23] approaches, with ex-
cellent agreement shown between the two. The ELK-TRIQS

monolayer SrVO3 ELFs are shown to be sensitive to the
charge redistribution. Finally, using the ELK-TRIQS setup, we
consider the tetragonal (TET) and collapsed tetragonal (CT)
phases of CaFe2As2 where an interlayer As-As bond forms
in the CT structure, which our ELF calculations also indicate.
However, there are slight differences between the ELFs from
the GGA, meta-GGA, and FCSC DFT + DMFT approaches
that have been used. This is a consequence of the charge
redistribution from the hybridized As p and Fe d states.

II. ELK-TRIQS INTERFACE

The interface from ELK to TRIQS consists of ELK generating
Wannier projectors [10,24,25] in a correlated energy window
W , in a similar manner to the procedures described for the
WIEN2K interface [23]. The interface from TRIQS back to ELK

involves the output of the DFT + DMFT density matrix from
TRIQS, which is to be read into ELK and used to update the
electron density, wave functions, and occupations. The ELK-
TRIQS interface will be explicitly discussed here. The current
implementation of the interface has been tested for nonmag-
netic, magnetic, and noncollinear spin-orbit coupled systems
calculated using ELK. We are able to interface noncollinear
calculations to TRIQS with the potential of doing noncollinear
DMFT calculations within TRIQS. For clarity, we will not dis-
cuss interfacing spin-orbit coupled and noncollinear systems
here. Further information about the interface specifics can be
found in Ref. [22].

ELK uses the second variational method (as described in
Ref. [26]) to be able to construct spinors for calculations
involving noncollinear magnetism and spin-orbit coupling. By
default, ELK uses the augmented plane wave plus local orbital
(APW + lo) method but can extend this by including higher-
order radial differentials in the APWs and local orbitals. The
projectors are constructed directly from the ELK Kohn-Sham
wave functions, meaning that they can be calculated from
whatever order APWs and local orbitals are used in the cal-
culation. In order to construct the Wannier projectors Pα,σ

mν (k),
a set of temporary projectors P̃α,σ

mν (k) are constructed from
the ELK Kohn-Sham second variational wave functions |ψσ

kν〉.
Here, k, m, ν, α, and σ relate to the k point, angular momen-
tum m eigenvalue, band index, atom index, and spin index,
respectively. In order to construct P̃α,σ

mν (k), a local basis |χ̃α,σ
m 〉

is used. By default in the ELK interface, the local basis is cho-
sen to be the APW radial function [|χ̃α,σ

m 〉 = |uα,σ
l (E1l )Y l

m〉,
with l and Y l

m corresponding to the angular momentum and
spherical harmonics, respectively] within the muffin tin at
the corresponding linearization energy E1l . The temporary
projectors are directly computed from the Kohn-Sham second
variational wave functions by

P̃α,σ
mν (k) = 〈

χ̃α,σ
m

∣∣ψσ
kν

〉
, ν ∈ W, (1)

where W is the correlated energy window. These temporary
projectors are then orthonormalized via

Pα,σ
mν (k) =

∑
α′m′

{[O(k, σ )]−1/2}α,α′
m,m′ P̃

α′,σ
m′ν (k), (2)

to form the complete Wannier projector set. Here, Oα,α′
m,m′ (k, σ )

are the overlap matrix elements (equaling to 〈χ̃α,σ
km |χ̃α′,σ

km′ 〉)
which, in terms of the temporary projectors, have the form

Oα,α′
m,m′ (k, σ ) =

∑
ν∈W

P̃α,σ
mν (k)P̃α′,σ∗

νm′ (k). (3)

These Wannier projectors, generated in ELK, are read into the
TRIQS library along with the energy eigenvalues, symmetries,
and so on. The treatment of symmetries within this interface
is discussed in the Appendix. With these Wannier projectors,
we can now calculate the quantities required for the DMFT
cycle, which is described in more detail in Ref. [10].

For FCSC DFT + DMFT calculations, the wave functions,
occupations, and electron density ρ(r) within ELK are updated
from the DMFT outputs by the following method. Starting
from the converged OS DFT + DMFT, the self-energy in
the Bloch basis, �σ

νν ′ (k, iωn), is calculated by correcting the
impurity self-energy with the double-counting correction, i.e.,


�
σ,imp
mm′ (iωn) = �

σ,imp
mm′ (iωn) − �dc

mm′ , (4)

which is then upfolded via

�σ
νν ′ (k, iωn) =

∑
αmm′

Pασ∗
νm (k)
�

σ,imp
mm′ (iωn)Pα,σ

m′ν ′ (k). (5)

From this, the lattice Green’s function Gσ
νν ′ (k, iωn) is calcu-

lated by

Gσ
νν ′ (k, iωn)−1 = (iωn + μ − εσ

kν )δνν ′ − �σ
νν ′ (k, iωn), (6)

which is used to calculate the interacting charge density
matrix Nk,σ

νν ′ . This is calculated from the summation of
Gσ

νν ′ (k, iωn) over the Matsubara frequencies,

Nk,σ
νν ′ =

∑
n

Gσ
νν ′ (k, iωn)eiωn0+

, ν ∈ W . (7)

Then Nk,σ
νν ′ is read into ELK.

In general, �σ
νν ′ (k) has nondiagonal elements, which con-

sequently means that Nk,σ
νν ′ would also have nondiagonal

elements. To construct a diagonal set of wave functions (as
is conventionally used in DFT), first the total density matrix
(N ′k,σ

νν ′ ) within the DFT Kohn-Sham basis is constructed by
combining the DMFT density matrix within the correlated
energy window W (Nk,σ

νν ′ , ν ∈ W) with the DFT density
matrix outside that window (nk,σ

νν ′ , ν /∈ W). This total density
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matrix includes all the DFT + DMFT state indices ν, both
within and outside W . A new set of diagonal DFT + DMFT
occupation numbers N k,σ

ζ and DFT + DMFT wave functions
|φσ

kζ 〉 are determined by a unitary transformation U given by
diagonalizing the total density matrix (as in Ref. [27]):

N k,σ
ζ δζζ ′ =

∑
νν ′

U σ
ζνN ′k,σ

νν ′ U σ∗
ν′ζ ′, (8)

∣∣φσ
kζ

〉 =
∑

ν

U σ
ζν

∣∣ψσ
kν

〉
, (9)

where δζζ ′ is the Kronecker delta. These DFT + DMFT wave
functions can be used to generate quantities that are solely
dependent on the wave functions and occupations. It is these
DFT + DMFT wave functions and occupations that we have
used to generate the ELF in subsequent sections. The FCSC
DFT + DMFT cycle uses these wave functions and occupa-
tions to calculate the new DFT + DMFT electron density,
ρ(r), which is now

ρ(r) =
∑
ζ ,k,σ

N k,σ
ζ

〈
r
∣∣φσ

kζ

〉〈
φσ

kζ

∣∣r〉. (10)

The density matrix includes information about both oc-
cupied incoherent and coherent quasiparticle states as these
are included in the Matsubara lattice Green’s function, and
the density matrix is derived from the summation of this
Green’s function in Eq. (7). This is equivalent to integrating
the occupied spectral function on the real frequency axis, but
note that it does not require any analytic continuation which
complicates that approach. The influence of these coherent
and incoherent states changes the occupation function (de-
rived from the density matrix) from a Fermi-Dirac function
in DFT to something more like the Fermi-liquid occupation
function.

Finally, the total energy in the FCSC DFT + DMFT
formalism is calculated the same way as in previous imple-
mentations [23,27]. From the electron density update, a new
set of ELK Kohn-Sham second variational wave functions can
be generated from ρ(r) (by solving the Kohn-Sham equations
once) to produce new Wannier projectors and hence complete
an FCSC DFT + DMFT cycle.

III. ELECTRON LOCALIZATION FUNCTION

In the previous section, we have shown how to calculate the
DFT + DMFT wave functions and occupation numbers with-
out the need of analytic continuation. These can be used to
calculate the ELF, which is dependent on the occupations and
wave functions of the system. The ELF is based on a same-
spin pair probability density D(r) of finding an electron close
to another same-spin reference electron [12]. It has mainly
been used as a tool to investigate the electron localization in
chemical bonds via Hartree-Fock [12] and DFT [28] methods.
The ELF has also been used to investigate the bond evolution
in time-dependent DFT (TDDFT) [19]. The ELF has the form

η(r) = 1

1 + [D(r)/D0(r)]2 , (11)

where

D0(r) = 3

5
(6π2)2/3

(
ρ(r)

2

)5/3

(12)

is the kinetic energy density for the homogeneous electron
gas as a function of the electron density ρ(r), and D(r) is
given by

D(r) = 1

2

(
τ (r) − 1

4

[∇ρ(r)]2

ρ(r)

)
, (13)

with τ (r) being the spin-averaged kinetic energy density from
the wave functions, which has the form

τ (r) =
∑

ki

nki|∇�ki(r)|2. (14)

The wave functions �ki(r) and occupation numbers nki(r)
that are used to calculate an ELF can be any diagonal wave
function (and occupation) set, such as those from the DFT
or DFT + DMFT calculations. Hence index i would refer to
index ν or η for the DFT or DFT + DMFT calculation, respec-
tively. Therefore the effect of the electron-electron correlation
approximations on the wave functions—and consequently on
ρ(r) and τ (r)—can be investigated by using the ELF.

It is evident from Eq. (11) that the ELF is a quantity which
can vary from 0 to 1, with a reference value of 0.5 relating to
the Pauli repulsion being equal to that from a homogeneous
electron gas with the same density ρ(r). ELF values that
tend to 1 relate to a D(r) that tends to zero with respect to
the homogeneous electron gas, and therefore the electrons
would be highly localized in that region of space. It should
be noted, however, that a direct relationship between the ELF
and the Pauli exclusion of the electrons (i.e., their localized or
itinerant nature), is difficult to deduce as the ELF is dependent
on D(r)/D0(r), not just the same-spin pair probability density
of the material [17,29].

The many-body effects from DMFT (encoded in the den-
sity matrix and DFT + DMFT wave functions) will change
the ρ(r) and τ (r) distributions, which in turn modify both
the D(r) and D0(r) on which the ELF depends. The extent
of the changes in ρ(r) and τ (r) will be material specific,
so linking the ELF distribution to just one of these may not
always be possible. Therefore comparing the ELF from differ-
ent theoretical approaches will give insight into the interplay
of the changes to the ρ(r) and τ (r) distributions as well
as the changes to the bonding present in the material. The
charge redistribution in the materials studied here dominated
the changes in the ELF.

IV. RESULTS

A. Monolayer SrVO3

Monolayer SrVO3 is a Mott insulator material in which the
charge redistribution is significant between the OS and FCSC
DFT + DMFT methods. This material has been used before
to benchmark the Vienna ab initio simulation package (VASP)-
TRIQS interface [27]. Bulk SrVO3 is a prototypical correlated
material for which many DFT + DMFT studies [11,30–35]
have produced good agreement with the experimentally ob-
served three-peak structure, which DFT calculations cannot
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FIG. 1. (a) The unit cell of the monolayer SrVO3, where each
monolayer is separated by 20 Å of vacuum. (b) The comparison of
the Wannier V t2g spectral functions calculated in the one-shot and
fully charge self-consistent (FCSC) DFT + DMFT methods by the
WIEN2K-TRIQS and ELK-TRIQS code combinations.

currently capture. It is the V t2g states which have been treated
as correlated in previous DFT + DMFT calculations, giving
the calculated Hubbard states. In bulk SrVO3, often only the V
t2g states around the Fermi level are used in the DMFT calcu-
lations. The eg states were not considered as correlated as they
do not hybridize with the t2g states and are also unoccupied.
On the other hand, recent GW + DMFT work (where GW is
Hedin’s GW approximation) in Ref. [36] reinterprets SrVO3

as a weakly correlated material with low static local interac-
tions, since their results show pronounced plasmonic satellites
due to screening. Reducing the dimensionality of bulk SrVO3

to a monolayer causes a metal-insulator transition (MIT). This
is seen experimentally [37,38] and complimented by DFT +
DMFT calculations [27,39]. There are a few material-specific
mechanisms which the MIT has been attributed to such as the
crystal field splitting [40–43] and confinement in the SrVO3

layers [44].
Here, we apply both the OS and FCSC DFT + DMFT

methods to the relaxed monolayer SrVO3 calculations us-
ing the ELK-TRIQS and WIEN2K-TRIQS interfaces. The relaxed
structure has been determined by previous GGA calculations
[40]. The monolayer structure is shown in Fig. 1(a). The a and
c lattice parameters are 3.52 and 3.92 Å, respectively, where
the a lattice parameter is of bulk SrTiO3. The unit cell used
in the DFT calculations has a separation of 20 Å between the
monolayers. The out-of-plane V-O distance has increased to
1.93 Å compared with c/2.

TABLE I. Comparison of the GGA (PBE), one-shot (OS), and
fully charge self-consistent (FCSC) DFT+DMFT orbital charges
based on the ELK and WIEN2K DFT codes.

GGA OS FCSC
dxy dxz + dyz dxy dxz + dyz dxy dxz + dyz

ELK/WIEN2K 0.65 0.35 0.98 0.02 0.76 0.24

The WIEN2K [45] and ELK DFT calculations used a k mesh
of 15 × 15 × 1 and the Perdew-Burke Ernzerhof (PBE) [3]
GGA functional, which is the same as that used in Ref. [27].
The correlated V t2g states around the Fermi level are the sub-
ject of the DMFT calculations. As with the bulk, the eg states
in the monolayer are unoccupied and do not hybridize with
the t2g states. Therefore the eg states were not used in DMFT,
which is consistent with previous benchmarking calculations
[27,39]. The V t2g Wannier projectors were generated within
a correlated energy window around the Fermi energy of
[−2.0, 1.1] eV, and then these projectors were interfaced
to the TRIQS library [21] by the TRIQS/DFTTOOLS applica-
tion [23]. The DMFT calculations used the continuous-time
quantum Monte Carlo (CTQMC) solver in the TRIQS/CTHYB

application [46] with 4.2 × 107 sweeps and the Hubbard-
Kanamori interaction Hamiltonian. The double counting was
approximated in the fully localized limit (FLL) which used
the DMFT occupations. These DMFT calculations used pre-
viously defined [27,39] U = 5.5 eV, J = 0.75 eV, and inverse
temperature β = 40 eV−1.

Figure 1(b) shows the spectral function comparison
between the ELK-TRIQS and WIEN2K-TRIQS DFT + DMFT cal-
culations of both the OS and FCSC methods. These spectral
functions were obtained by analytically continuing the DMFT
local Green’s function by the “LineFitAnalyzer” technique
of the maximum-entropy analytic continuation method im-
plemented within the TRIQS/MAXENT application [47]. The
ELK-TRIQS and WIEN2K-TRIQS spectral functions are in ex-
cellent agreement with each other, with both showing the
incoherent Hubbard peaks. However, there are some minor
discrepancies between the spectral functions which are mainly
a consequence of the ill-posed problem in the analytic con-
tinuation process. Both the ELK-TRIQS and WIEN2K-TRIQS

calculations produce the strong orbital charge polarization
seen in the OS calculations, which is softened in the FCSC
results because of charge redistribution. This redistribution
occurs at the DFT level in the FCSC DFT + DMFT cy-
cle when the correlated t2g states are fed back into DFT
[39]. These results agree with previous studies of this mono-
layer [27,39]. The Wannier orbital charges are identical in
Table I when quoted to two significant figures. There are
minor discrepancies between ELK-TRIQS and WIEN2K-TRIQS

present in the DFT Wannier charges when quoted to higher
significant figures. These discrepancies will have propagated
to the DFT + DMFT calculations. These reasonable DFT
discrepancies can be explained by the different (default) set
of local orbitals used, the muffin-tin radial functions being
evaluated at different linearization energies, and the different
hard-coded approaches the DFT packages used to implement
the APW + lo method. A discussion on the comparison of

035106-4



WAVE FUNCTIONS, ELECTRONIC LOCALIZATION, AND … PHYSICAL REVIEW B 103, 035106 (2021)

FIG. 2. The monolayer SrVO3 (a) xy- and (d) xz-plane ELFs, slicing through the center of the V and O atoms. The fourfold symmetry
of the planes has been exploited to show the results from the GGA (PBE), one-shot (OS), and fully charge self-consistent (FCSC) DFT +
DMFT calculations. (b) and (e) are the differences [for example, FCSC-GGA = ηFCSC(r) − ηGGA(r)] in the ELFs from the different theoretical
techniques in the xy and xz planes, respectively. (c) and (f) show the charge density differences [for example, FCSC-GGA = ρFCSC(r) −
ρGGA(r)] between the different theoretical techniques in the xy and xz planes, respectively. The gray solid and magenta dot-dashed contours
in (c) and (f) show the positive and negative charge density difference isovalues of 6 × 10−3. The charge density differences are in units of
electrons per cubic bohr.

quantities evaluated by different DFT codes, and their dis-
crepancies, can be found in Ref. [48]. In the DFT + DMFT
calculations, on the other hand, the results from ELK-TRIQS

and WIEN2K-TRIQS are the same to two significant figures.
The values are quoted to this precision because of the inher-
ent noise present from the CTQMC solver, which causes the
charge to fluctuate in the higher significant figures. It should
be noted that the OS orbital charges are slightly different here
compared with the results in Ref. [27]. This is because more
OS DFT + DMFT cycles were done here for better conver-
gence. This discrepancy does not change their conclusions.
Nonetheless, the excellent agreement shown in Fig. 1(b) gives
confidence that the ELK-TRIQS interface works.

As the ELF [η(r)] depends on wave-function-dependent
quantities, the effect of the electron-electron correlation
effects from the different theoretical methods can be investi-
gated. Figure 2 shows η(r), the difference in η(r) [
η(r)],
and the differences in ρ(r) [
ρ(r)] between the DFT and
DFT + DMFT techniques for the V-centered xy and xz planes
[the yz-plane η(r) is the same as in the xz plane due to sym-
metry]. The xy and xz η(r), in Figs. 2(a) and 2(d), are similar,
with the greatest values located in shells around the V and
O atoms. However, the xy-plane η(r) has significantly filled
V dxy orbital nodes around the V atom, whereas the dxz(yz)

orbital nodes are not present in the xz-plane η(r) as these
orbitals have little charge contribution. The contribution of the
V t2g orbitals to η(r) in the different DFT and DFT + DMFT
calculations can be seen in the 
η(r) of the xy and xz planes
in Figs. 2(b) and 2(e), respectively. For the dxy (dxz) orbitals,
it can be seen that the OS calculation increases (reduces)
significant contributions to the η(r) compared with the DFT.
On the other hand, the dxy (dxz) orbital contributions to the
FCSC η(r) are only slightly increased (reduced) with respect
to the DFT, so that differences between the FCSC and DFT are
not so significant. This follows the dxy and dxz 
ρ(r) orbital
contributions from the DFT and DFT + DMFT calculations
highlighted in Figs. 2(c) and 2(f), respectively. It should be
noted that in Figs. 2(b) and 2(e) the muffin-tin and interstitial
regions are distinctly visible, which is an artifact of the basis
set used.

The ELF in monolayer SrVO3 is sensitive to the redistribu-
tion of charge, with respect to DFT, caused by the application
of both the OS and FCSC DFT + DMFT methods. In this
material, the changes in the ELF can be traced to the changes
in the charge distribution (primarily from the t2g orbitals as
expected), indicating that it is that which dominates when
DMFT is included. From Figs. 2(c) and 2(f), small changes
to the charge redistribution of the O occur even though only
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the t2g states are treated as correlated. This is because the
Wannier projectors contain information about the hybridized
V t2g and O p states (the same as in the bulk; see, for example,
Ref. [24]). The changes in the charge around the O sites
appear to be too small to affect the ELF significantly. The ELF
here gives another means to visualize the impact of DMFT
in correlation-induced changes on the electron distribution
within the bonds in this material.

B. CaFe2As2

The CaFe2As2 compound is a member of the AFe2As2 (A
being an alkaline metal) 122-family of Fe-pnictide supercon-
ductors. This material has been reported to have three distinct
phases: The TET phase, which is the structure that exists at
room temperature and ambient pressure; the antiferromag-
netic orthorhombic phase; and the CT phase, which displays
superconductivity under uniaxial pressure [49,50]. As well
as superconductivity, CaFe2As2 has displayed the shape-
memory alloy and superelasticity effects [51]. Chemical
substitution enables the fine-tuning of CaFe2As2 properties
[52–58].

ARPES studies have helped to understand the role of cor-
relations in the TET and CT phases [59,60]. DFT + DMFT
comparisons with the experimental results [59,61,62] have
improved agreement compared with the DFT calculations.
Although the DFT is able to describe some of the ARPES
features well, the DFT + DMFT results capture some of the
band renormalization. However, the renormalization is still
not as significant as seen in the ARPES data, which has been
suggested to be attributed to both nonlocal correlations and/or
phonon effects [61].

Previous studies on AB2X2 compounds (to which
CaFe2As2 belongs) show that an interlayer X-X σ bond can
exist from the X p states overlapping [55,63,64]. The bonds
between the A and B2X2 layers are ionic, the B-B bonds are

TABLE II. The experimental structural parameters for the tetrag-
onal (TET) and collapsed tetragonal (CT) structures from Ref. [49].

CT TET

P (GPa) 0.35 0.0
T (K) 50 250
a (Å) 3.9792 3.8915
c (Å) 10.6379 11.690
zAs 0.3687 0.372
Fe-As (Å) 2.3560 2.410
Fe-Fe (Å) 2.8137 2.7517

metal-metal bonds, and the B-X and X-X bonds are covalent
in nature. The B-X bond is associated with the hybridization
of the B d and X p states below the Fermi level [63]. X-ray
diffraction and Raman spectroscopy support the existence of
the X-X bond in NaFe2As2 [65]. In CaFe2As2, the As-As
interlayer bond has been shown to be mediated by the Fe-As
bond and the Fe spin state [66].

As the real-space ELF and charge distribution change
with respect to the inclusion of the electron-electron cor-
relation effects from many-body techniques, the ELF will
provide information on the effect of different types of in-
cluded electron-electron correlation effects on the As-As
bond. Therefore we have calculated the ELF via GGA (PBE
[3]) and meta-GGA functionals, as well as the ELK-TRIQS

FCSC DFT + DMFT implementation, to determine how the
changes in the electron-electron correlation effects between
each method affect the ELF distribution around the As atoms
in the TET and CT structures, along with the consequences
this has on the interlayer As-As bond. For the meta-GGA
calculations, we used the strongly constrained and appropri-
ately normed (SCAN) functional [5] as this was constructed
with consideration of D(r)/D0(r), on which the ELF is also
dependent in Eq. (11).

FIG. 3. (a) and (e) show the structures of the tetragonal (TET) and collapsed tetragonal (CT) phases, respectively. The parallelepiped
Wigner-Seitz unit cell is shown along with the dashed line indicating the xz plane on which the ELFs were calculated, and in (e) the interlayer
As-As bond is also indicated by the double arrow. (b), (c), and (d) are total and partial density of states for the GGA (PBE), SCAN, and fully
charge self-consistent (FCSC) DFT + DMFT calculations in the TET structure. (f), (g), and (h) show the same quantities as (b), (c), and (d),
respectively, in the CT structure.
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TABLE III. The fully charge self-consistent DFT+DMFT quasi-
particle residues Z in the tetragonal (TET) and collapsed tetragonal
(CT) structures.

Z
dz2 dx2−y2 dxy dxz/yz

TET 0.57 0.53 0.60 0.54
CT 0.66 0.67 0.65 0.61

Here, we considered the TET structure at 0 GPa and 250 K
and the CT structure at 0.35 GPa and 50 K using the exper-
imental structural parameters [49], summarized in Table II.
The TET and CT structures are shown in Figs. 3(a) and 3(e),
respectively, with both structures showing the parallelepiped
Wigner-Seitz unit cell used in the calculations. Both the GGA
and SCAN calculations used a 24 × 24 × 24 k mesh for both
structures. Whenever we discuss the GGA results, we are
referring to the PBE functional. The FCSC DFT + DMFT
calculations (using the PBE GGA functional) imposed DMFT
on the Fe d states using Wannier projectors generated within
a correlated energy window around the Fermi energy of
[−5.9, 16.0] ([−6.3, 16.0]) eV to encapsulate all of these Fe
d states in the TET (CT) structure. The DMFT calculations
used the full rotationally invariant form of the interaction
Hamiltonian with the CTQMC solver employing 2.52 × 108

sweeps. These DMFT calculations were in the paramagnetic
phase and used the previously defined values of U = 4.0 eV,
J = 0.8 eV, inverse temperature β = 40 eV−1, and the FLL
double-counting term [61]. Here, the FLL was calculated from
the DMFT occupations.

Figures 3(b) [3(f)], 3(c) [3(g)], and 3(d) [3(h)] show
the TET (CT) total and partial As p and Fe d density of
states (DOS) for GGA, SCAN, and FCSC DFT + DMFT
calculations, respectively. The FCSC DOS was calculated
using the analytically continued DMFT self-energy via the
TRIQS/MAXENT application [47]. The SCAN DOS has a
similar shape to the GGA; however, the band widths have
generally increased, and the band centers tend to shift away
from the Fermi level for larger absolute energies. This in-
dicates that these states are more delocalized than in GGA
functional calculations. On the other hand, the FCSC DOS
shows a significant renormalization of the states around the
Fermi level, as expected from the quasiparticle residue (see
Table III), which broadly agrees with the previous studies on
this material [61,62]. The smooth profile is a consequence of
the reduced quasiparticle lifetimes relating to the imaginary
part of the self-energy.

The band structures and A(k, ω) for the TET and CT
structures are shown in Figs. 4(a) and 4(b), respectively. The
FCSC A(k, ω) broadly agrees with the previous studies in
Refs. [59,62], and any discrepancies with those results are
likely due to the different U , J , and correlated energy window
used. Even within the displayed energy window around the
Fermi level, the increased band widths of the SCAN bands
can be seen. The band renormalization is distinct for the FCSC
A(k, ω). The GGA and SCAN bands cross the Fermi level at
similar k values for the CT structure, whereas there are small,
but observable, changes for the TET structure. However, the

(a)

(b)

FIG. 4. The band structures according to the GGA (PBE)
and SCAN functionals and the A(k, ω) of the fully charge self-
consistent DFT + DMFT calculations for the (a) tetragonal (TET)
and (b) collapsed tetragonal (CT) structures. The high-symmetry
points correspond to a simple tetragonal unit cell. The natural log
color scale and range were used for clarity of the bands.

FCSC A(k, ω) have bands crossing the Fermi level at different
k values compared with both the GGA and SCAN results for
both structures.

The ELFs for the TET and CT structures are given
in Figs. 5(a) and 5(b), respectively. These ELFs are two-
dimensional (2D) slices in the xz plane, which is indicated
by the dashed lines in Figs. 3(a) and 3(e), centered around
the As-As bond. For the TET structure, the ELF indicates
that there is a higher likelihood of finding an electron in the
horseshoe-shaped region between the interlayer As atoms.
However, it is in the CT structure that these horseshoe-shaped
regions have coalesced to form distinct ELF weight at the
center between the atoms. This indicates that the bond has
formed between these interlayer As atoms. The ELFs in these
regions are robust between the different calculations, as sig-
nificant (hybridized) As p and Fe d states (within the energy
range of [−7, −2] eV) are still fully occupied meaning that
the associated As-As and As-Fe bonds still exist. Although the
kF of certain bands has changed between each calculation, this
has not affected the ELF significantly, especially in the region
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(a)

(b)

FIG. 5. The 2D ELFs in the xz plane [as indicated in
Figs. 3(a) and 3(e)] for the (a) tetragonal (TET) and (b) collapsed
tetragonal (CT) structures. The ELFs for the GGA (PBE), SCAN,
and fully charge self-consistent (FCSC) DFT + DMFT calculations
are shown in quadrants, as this plane is fourfold symmetric. The
dot-dashed contours are of η(r) = 0.5.

around the Fe atoms as it is the states around the Fermi level
which are predominantly Fe d in character. However, there

are slight changes to the ELF which are highlighted by the
dot-dashed contour of η(r) = 0.5. Compared with GGA, the
SCAN η(r) redistributes weight away from the Fe-As bond
and moves it into the interstitial region away from the Fe and
As atoms. On the other hand, the FCSC η(r) results redis-
tribute weight (compared with GGA) to the region between
the As and Fe atoms.

These results are consistent with the changes in the per-
centages each atom contributes to the total charge within the
interlayer As-As σ -bond regions (see Table IV). These were
estimated by integrating the partial and total DOS over the
energy range (see Table IV) in which there is significant As p
partial DOS. This energy range is where the (hybridized) As
p and Fe d states are associated with the As-As and As-Fe
bonds. Compared with the GGA, the SCAN results indicate
that charge has redistributed away from the Fe atoms, which
results in greater interstitial region contributions to the ELF.
This is likely due to the delocalization of the states seen in the
SCAN DOS and band structures. However, the FCSC results
have greater charge around the Fe atom and reduced contribu-
tions from the other regions with respect to the GGA results.
This increases the Fe d and As p hybridization and strengthens
the Fe-As bond, which in turn weakens the As-As bond.
This is similar to the effect of the Fe spin state in Ref. [66],
but here the strength of the bonds is weakly influenced by
correlations. Both the SCAN and FCSC results have drawn
weight away from the center of the As-As bond. Nonetheless,
these calculations give an indication that the electron-electron
correlation effects affect the As p and Fe d hybridization (as
shown in Table IV), which in turn influences the strength of
the As-As and Fe-As bonds as seen in the ELF.

V. CONCLUSION

We have introduced the newly developed ELK-TRIQS in-
terface, which, in addition to standard one-particle quantities
such as spectral functions, also allows the calculation of
orthonormal DFT + DMFT wave functions and related quan-
tities. To illustrate the effect of correlations on these wave
functions and occupations, we calculated the ELF. The
changes in the DFT + DMFT ELF come from the redis-
tribution of the charge and kinetic energy density. The
modifications in the charge density distribution dominated
the changes in the ELF for monolayer SrVO3, but it should
be noted that in other materials this may not always be the

TABLE IV. The estimated percentage of charge associated with As p and Fe d character for each calculation and structure. These
percentages were calculated from the partial and total DOS integrals within the σ -bond DOS energy window. The As p estimated energy
ranges, which the DOS integrals were evaluated within, are also included.

GGA (PBE) SCAN FCSC

TET
Fe d (%) 25.2 23.4 31.8
As p (%) 26.2 26.8 23.0
As p limits (eV) [−6.07, −1.93] [−6.64, −2.15] [−5.97, −2.03]

CT
Fe d (%) 24.5 22.5 29.7
As p (%) 25.7 26.5 23.4
As p limits (eV) [−6.26, −1.99] [−6.69, −2.15] [−6.22, −2.33]
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case due to its dependence on the kinetic energy density.
Therefore a comparison of ELFs which have been computed
within DFT + DMFT and DFT, as has been demonstrated in
CaFe2As2, helps to visualize the role of correlations on the
ELF. This means that the ELF, which is related to the strength
of the chemical bonds, could be used to investigate changes
in chemical bonding due to the electronic correlations from
DMFT.

The ELK-TRIQS monolayer SrVO3 results have excellent
agreement with the WIEN2K-TRIQS results, and the generated
ELFs were sensitive to the charge distribution of the V dxy

and dxz(yz) orbitals. Therefore any factors which influence the
charge redistribution, such as the correlated energy window
and/or double counting, will also impact the DFT + DMFT
ELF. The CaFe2As2 ELFs show an excellent visualization
of the interlayer As-As bond formed in the CT phase. The
Fe-As bonds (and As-As bonds present in the CT struc-
ture) are influenced by the Fe d and As p hybridization,
which is weakly dependent on the different electron-electron
correlation effects beyond GGA that are present in either
SCAN or FCSC DFT + DMFT calculations. This is contrary
to the large effects that correlations have on the FCSC DFT +
DMFT spectral functions. Correlations may have a more pro-
nounced effect on the ELF if there is a significant charge
redistribution and/or if the states affiliated with the bonds are
at the Fermi level, where the additional correlations (from the
many-body technique) affect the results more significantly.
This could potentially be seen in other AB2X2 compounds,
such as those investigated in Ref. [18]. We also suggest that
the ELF should be used to investigate the effect of correlations
on the bond-disproportionated insulating phase in rare-earth
nickelates (RNiO3) [67]. As well as this, the effect the MIT
has on the bonds in heterostructures, such as SrVO3/SrTiO3

[40,44], and at their interfaces could be investigated using the
ELF. Nonetheless, these results show the usefulness of the
ELF in helping to visualize the bonds present in many other
similarly correlated crystalline materials.

There are other wave-function-dependent quantities which
can be calculated using this formalism, such as the electron
momentum density (EMD), which is experimentally probed
by Compton scattering [68]. There is also the possibility of
incorporating DMFT with other capabilities within ELK such
as the out-of-equilibrium functionality using TDDFT [69],
where real-material TDDFT + DMFT calculations are being
reported [70].
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APPENDIX: SYMMETRIES

This Appendix will briefly discuss how the symmetries
have been used to construct the projectors and calculate the
Brillouin zone integral of k-dependent quantities, A(k), in
TRIQS from ELK.

For equivalent atoms in the unit cell, their second varia-
tional wave functions are equivalent. Therefore the temporary
projectors need to be transformed into the global basis before
they are orthonormalized. This is done by using the matrix
transformation of

P̃global,α′,σ
mν (k) = Sα,α′

P̃loc,α,σ
mν (k), (A1)

with Sα,α′
specifying the symmetry matrix which transforms

the projector to the equivalent atom site. The DMFT cy-
cle will transform between the global and local coordinates.
The global and local indices have been omitted in the main
text for clarity. It should be noted that an m orbital basis
transformation will also be applied here (after the symmetry
transformation). Therefore a subset of m values (such as the
t2g orbitals) could be chosen, and/or a diagonal m basis could
be used to help reduce issues with the sign problem (when
using the CTQMC solver).

The Brillouin zone integrals are calculated using the fol-
lowing generic formula:

BZ∑
k

A(k) =
Ns∑

s=1

∑
k

SsA(k)S†
s , (A2)

with Ns symmetry operations.
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