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Abstract: Three broad spectrum Ag(I) complexes against MDR (multi drug resistance) and ATCC standard
bacteria as well as the fungus C. albicans were presented. The three well-known structurally-related
Ag(I) complexes, [Ag(pyridine-3-carboxaldhyde)2NO3], 1, [Ag3(2-pyridone)3(NO3)3]n, 2, and
[Ag(3-hydroxypyridine)2]NO3, 3, were prepared by the direct combination of AgNO3 with the
corresponding pyridine ligands in a water-ethanol mixture. 1 and 3 are molecular compounds
while, 2 is a 2D coordination polymer with sheets bridged by strong homoleptic R2,2(8) hydrogen
bonds between ligands giving the ins topology. Different contacts affecting the molecular packing
in their crystal structures were computed by employing Hirshfeld analysis. Charge transferences
from the ligand groups to Ag(I) were analyzed using natural population analysis. The effect of
protonation and metal coordination on the tautomerism of 2-pyridone was analyzed using data from
the Cambridge Structure Database (CSD). It was found that Lewis acid attachment to both N and
O sites favor a state in between the two formal tautomers. All compounds were significantly more
active than 17 tested commercial antibiotics against three clinically isolated strains of Ps. Aeruginosa,
with 2 and 3 performing best on average against all ten tested bacterial strains but with 3 containing
less Ag per weight. Finally, docking studies were carried out to unravel the inhibition mechanism of
the synthesized silver(I) complexes.
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1. Introduction

Silver-containing compounds continue to attract academic attention for their antimicrobial
properties [1–8] but also for the immense variety of its coordination polymers, [9] and sometimes the
two coincide [10]. A recent review is optimistic of the future role of silver in medicine, [11] while
clinical studies are still not of sufficient quality to judge the practical usefulness of different silver based
wound healing materials, the most common medical application [12].
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The attractiveness lies in the low human toxicity of silver and silver ions, combined with the
in-vitro antimicrobial properties that are on par, or better than conventional antibiotics. The difficulties
lie in the yet sketchy knowledge of the mode(s) of action, [12] the variability of the Ag(I) coordination
modes, and the solution chemistry that likely will be dominated by chlorine interactions, such as the
precipitation and dissolution of AgCl(s), in biological fluids.

Silver(I) ion, and its complexes as well as their nanoparticles, have been proven to have
anti-inflammatory [7], antiseptic [13], and anti-cancer activities [14]. For example, silver(I) sulfadiazine
is used for treating infections during burn wounds treatment but it has been observed that silver(I)
sulfadiazine has major side effects such as slowing the rate of wound healing [15,16]. In the literature,
many Ag(I) complexes with N-heterocylic ligands that have significant anti-microbial actions were
reported. The results disclosed that the complexes of silver(I)-N-heteroclyles (e.g., pyridine, pyrimidine,
pyridazine, pyrazine, pyrazole, phthalazine, quinoxaline, quinazoline, and tricyclic phenazine) have
high anti-microbial activity towards several strains including Pseudomonas aeruginosa, Candida albican,
etc. [17–20].

The mechanism of action of the silver metal complexes as anti-microbial agent is
multi-directional [21–24]. The advantage of the different pathways of the activity of silver(I) may lead
to a slowdown of the bacterial drug resistance development [21–24]. One of the multi-directional
activities is that silver can interact with the cell surface of the bacteria, which help it to penetrate into
the cell, subsequently binding with the amino acid (thiol group in the cysteine as an example) in the
DNA which interrupts the replication and transcription processes leading to death of bacteria [21–24].
An alternative pathway is that silver(I) ion can induce reactive oxygen species (ROS) production, that
are known to target nucleic acids, proteins, and lipids leading to the cell death via malfunction of
these biomolecules.

There is thus a good reason to continue to study the antimicrobial properties of Ag(I) compounds,
while at the same time exploring their fascinating and diverse solid state and coordination chemistry [25].
In this paper we present a study of three well-known silver(I) complexes [26–28] with the closely
related pyridine-type ligands pyridine-3-carboxaldehyde (also known as nicotinaldehyde), 2-pyridone
(keto form of 2-hydroxy-pyridine), and 3-hydroxypyridine (3-pyridinol), see Figure 1. Synthesis,
characterizations, single crystal X-ray structures, and antimicrobial screening in comparison to 17
commercial antibiotics are also described. Moreover, network topology analysis [29–31] was applied
to describe the structure of the synthesized complex with 2-pyridone. In addition, the intermolecular
interactions such as hydrogen bonding, C-H . . . π interactions, π-π stacking, etc. play very crucial
role in molecular packing of building blocks in the crystal. Hirshfeld calculations are important
for quantifying these intermolecular interactions in the crystal [32–37]. In this regard, Hirshfeld
quantitative analysis for the three complexes was performed.
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2. Materials and Methods

2.1. General Methods

All reagents used in this research are technical grade and utilized without purification.
All physicochemical measurements are provided in the supplementary information.

2.2. Synthesis

All silver(I) complexes were synthesized by employing a self-assembly approach. To a solution of
AgNO3 (0.17 g, 1.0 mmol) in H2O (10 Ml, deionized), then, an ethanolic solution of pyridine-3-carboxaldhyde
(0.19 mL, ~2.0 mmol), 2-pyridone (0.095 g, 1.0 mmol) or 3-hydroxypyridine (0.19 g, 2.0 mmol) added
drop by drop with stirring. The solution was kept at ambient for few days to give colorless crystals of
the target complexes. The crystals were filtered off, washed with small amount of ethanol, and dried in
air. FTIR and NMR spectra of the three complexes are given in Figures S1 and Figure S2 (Supplementary
data), respectively.

[Ag(pyridine-3-carboxaldhyde)2NO3], 1 [26], Yield: 0.15 g, 80% with respect to the ligand. (%):
Calc.: C, 37.52; H, 2.62; N, 10.94; Ag, 28.08. Found: C, 37.49; H, 2.63; N, 10.94; Ag, 28.10. 1H NMR
(DMSO-d6, 500 MHz): δ 7.64 (t, 1H at C-5), 8.24 (d, 1H at C-4), 8.82 (d, 1H at C-6), 9.06 (s, 1H at C-2) and
10.08 (s, 1H at C-7). 13C NMR (DMSO-d6, 125 MHz): δ 125.16, 125.18 (C-5), 131.90, 131.95 (C-3), 136.89,
137.14 (C-4), 152.10, 152.22 (C-2), 155.40, 155.40 (C-6), 192.23, 192.24, 193.17, 193.82 (C-7 of aldehyde).

[Ag3(2-pyridone)3(NO3)3]n, 2 [27], Yield: 0.196 g, 74% with respect to the ligand. (%): Calc.: C,
22.66; H, 1.90; N, 10.57; Ag, 40.71. Found: C, 22.67; H, 1.91; N, 10.57; Ag, 40.70.

1H NMR (DMSO-d6, 500 MHz): δ 6.20 (t, 1 H, H-4), 6.33 (d, 1 H, H-3), 7.39–7.41 (m, 2 H, H–5, H-6),
11.61 (s, 1 H, NH, exchangeable with D2O); 13C NMR (DMSO-d6, 125 MHz): δ 106.57, 106.81 (C-5),
119.59, 119.83 (C-3), 137.04, 137.33 (C-6), 141.65, 141.89(C-4), 163.16 (C=O).

[Ag(3-hydroxypyridine)2]NO3, 3 [28], Yield: 0.31 g, 86% with respect to the ligand. (%): Calc.: C,
33.36; H, 2.80; N, 11.67; Ag, 29.96. Found: C, 33.36; H, 2.81; N, 11.66; Ag, 29.97. 1H NMR (DMSO-d6, 500
MHz): δ 7.2–7.4 (m, 2 H, H–4, H–5), 8.01 (d, 1 H, H-5), 8.12 (d, H, H–2), 10.05 (s, 1 H, OH, exchangeable
with D2O); 13C NMR (DMSO-d6, 125 MHz):δ 123.26, 123.68 (C-4), 125.00, 125.37 (C-5), 139.82, 139.09
(C-2), 141.25, 141.49 (C-6), 154.50 (C-3).

2.3. X-Ray Crystallography

Experimental details of the crystallographic measurements for the studied complexes are provided
in the supplementary information [38–40]. The low temperature crystallographic structural data at
100(2) K for the studied Ag(I) complexes were deposited at CCDC with numbers 1,062,878–1,062,880.
The topology analyses were performed using Crystal Explorer 17.5 program [41].

2.4. Computational Details

The amount of charge transferred from the ligand groups to the Ag(I) in complexes 1–3 were
calculated using NBO 3.1 [42] program with the aid of Gaussian 09 program package [43]. For this
task, theωB97XD DFT method in combination with 6-311G(d,p) basis sets for nonmetal atoms and
LANL2DZ basis set for Ag were used.

2.5. Testing of Antimicrobial Activity

The full details about the anti-microbial protocol are provided in the supplementary
information [44].

2.6. Methodology for Molecular Docking

The binding mechanism of the three silver(I) complexes was investigated at molecular level using
molecular docking. To validate and specify the target for anti-bacterial and anti-fungal potential of
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these compounds, seven different protein targets i.e., N-myristoyl transferase (PDB ID 1IYL) [45],
dihydrofolate reductase (DHFR) (PDB ID 4HOF) [46] from C. albicans were selected as fungal targets,
while dihydrofolate reductase (PDB ID 3FYV) [47], gyrase B (PDB ID 4URM) [48] from S. aureus, DNA
(PDB ID 1BNA) [49] thymidylate kinase of P. Aeruginosa (PDB ID 3UWK) [50], and undecaprenyl
diphosphate synthase (PDB ID 4H2M) [51] from E. coli were selected based on their direct role in
the drug resistance. Crystal structures of all these proteins in complex with their cognate ligand
were retrieved from the Protein Data Bank. All proteins were prepared, protonated, charged, and
minimized by structure preparation module in MOE [52]. Solvent molecules were removed as required.
The compounds were built using the builder module in MOE. Complexes were further charged and
minimized by MMFF94x forcefield [53]. For docking, an induced fit docking protocol was used
with default MOE docking parameters i.e., Triangle Matcher Algorithm with two rescoring functions
London dG and GBVI/WSA dG. For each complex a total thirty conformations were generated and
saved in mdb format.

3. Results and Discussion

3.1. Crystal Structures

All crystallographic measurements were performed using graphite monochromated MoKa
radiation at 100(2) K. The structure of complexes 1 and 3 agrees well with the previously reported
X-ray data shown in Figure 2 [26,28]. All relevant crystallographic data as well as selected interatomic
distances and bond angles can be taken from Tables S1–S4 (Supplementary data). Interestingly, the
low temperature X-ray structure of [Ag(2-pyridone)NO3]n; (2) complex showed some variations
compared to the previously reported room temperature (293(2) K) data [27]. Hence, its structure will
be described in some details in this publication. The asymmetric unit of [Ag(2-pyridone)NO3]n; (2)
contains three independent AgL(NO3) complexes (Figure 2), which differ slightly by their Ag-O(NO2)
bond distances and O-Ag-O bond angles. The coordination geometry of Ag(I) have one short Ag-O
bond (2.307–2.316(4) Å) to the organic ligand and longer bonds (2.533(4) Å, Ag3-O9, to 2.666(5) Å,
Ag2-O12) to the nitrate anions. On other hand, the main difference between the newly reported
structure of 2 with the previously reported data by Bowmaker and coworkers is that the asymmetric
unit of the latter comprised one AgL(NO3) unit in which the corresponding Ag-O distances are 2.315(6)
and 2.588(8) to 2.715(10) Å, respectively.
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The crystal structure of [Ag(2-pyridone)NO3]n is built up by a strongly folded 2D-infinite network
of silver cations and nitrate anions parallel to the ab plane of the unit cell (Figure S3; Supplementary
data) where the coordination geometry of the Ag(I) could be simply described as distorted tetrahedral
as shown in Figure S4 (Supplementary data). These are interconnected by the 2-pyridone ligands by
formation of two strong hydrogen bonds with the R2,2(8) pattern between two neighboring ligands
(N-H...O distances: N-H: 0.879 Å, H...O: 1.922 Å for O3-H1, 1.924 Å for O2-H3B and 1.932 Å for O1-H2B)
as shown in Figure 3. This is a common motif for lactam dimers [54]. The structure is best understood



Appl. Sci. 2020, 10, 4853 5 of 17

as a 3D net with the ins-topology, illustrated in Figure 4. The topology is binodal, containing one type
of 3-connected node and one type of 4-connected node. This topology is rather rare, but has also been
found in the coordination polymer [Ag3(hexamethylenetetramine)2][ClO4]3·2H2O [55].
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Figure 4. Node assignment (top) and resulting ins-net in [Ag(2-pyridone)NO3]n; 2 (center) and the
ideal ins-net (bottom).

Indeed, the ADDSYM option of the software package PLATON suggests a transformation to
another unit cell with only 1/3 of the initial volume and thus only one formula unit per asymmetric
unit [27]. However, even if this may correspond to the network topology, this is not the correct
description of the symmetry of the studied complex. A refinement with the smaller unit cell led to
implausible atomic displacement parameters, high standard deviations of the positional parameters,
and much higher R-values.
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3.2. Tautomerism in 2-Pyridone/2-Hydroxy-Pyridine Systems

It has been agreed for quite some time that it is the 2-pyridone form and not the tautomer
2-hydroxy-pyridine that is the most stable form of this molecule in the solid state, but in the gas phase
2-hydroxy-pyridine is favored and in solution sometime delicate equilibriums exist [56,57]. Depending
on substitution pattern, similar molecules may prefer either forms, but a search of the Cambridge
Structure Database (CSD) showed that the 2-pyridone form is prevalent, as illustrated in the plot of
C1-O1 versus C1-C2 shown in Figure 5.
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Figure 5. Analysis of the 2-pyridone/2-hydroxy-pyridine tautomerism in purely organic compounds in
the Cambridge Structure Database (CSD). Using the atom numbering in Figure 1, we have plotted the
distances of C1-O1 versus C1-C2 and the colors represent number of hits in the database.

It is clear that there is a preference for C-C distance of 1.48 Å with a C-O distance of 1.22 Å, thus
the 2-pyridone form, but there is also a much smaller minimum at C-C distance of 1.39 Å with a C-O
distance of 1.35 Å corresponding to the 2-hydroxy-pyridine form. In [Ag(2-pyridone)NO3]n complex,
both N and O are connected to Lewis acids (H+ and Ag+) and also the C-C distances: 1.425–1.436Å; and
C-O distances: 1.266–1.273 Å, give no clear clue about whether this is the keto- or enol-form. In fact,
looking at Figure 5 it seems that it falls right in the area that could be considered to correspond to the
transition state and indeed the transition state of the tautomerization has been shown theoretically to
go through a similar dimerization [57].

3.3. Analysis of Molecular Packing

The different Hirshfeld surfaces of the three complexes are collected in Figure 6. In the studied
Ag(I) complexes, the molecules are packed differently in the crystal structure and the possible contacts
are presented in Figure 7.
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complexes 1–3, respectively. The decomposed dnorm maps and fingerprint plots shown in Figure 8
revealed the importance of these interactions in the molecular packing.
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contacts in the molecular packing.

The π-π stacking interactions are another interesting feature of molecular packing that was
observed using Hirshfeld surface analysis. It is clear from Figure 9 that all evidences for the π-π
contacts such as red spots in dnorm and blue/red triangles in the shape index map were achieved.
In addition, there is appropriate amount of C . . . C contacts in the three complexes as indicated from the
fingerprint plot. The C . . . C contact percentages are 6.4, 2.8, and 2.6% for complexes 1–3, respectively.
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In addition to these intermolecular interactions, the Hirshfeld surfaces detected very well the
polymeric nature of complex 2 via Ag-O bonding with the neighboring complex units (Figure 10B).
Also, complex 1 showed significant amount of short Ag . . . N interactions (3.9%) with the neighboring
complex units (Figure 10A), while in complex 3 some significant Ag . . . C (1.7%) and Ag . . . O (5.7%)
interactions were detected (Figure 10C,D). It is worth to note that the Ag . . . C interactions have less
significance in complexes 1 and 2 compared to 3.
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3.4. Natural Charge Analysis

The calculated natural charges of Ag and ligand groups for the [Ag(pyridine-3-carboxaldhyde)2NO3];
(1), [Ag3(2-pyridone)3(NO3)3]; (2), and [Ag(3-hydroxypyridine)2]NO3; (3) complex units are listed in
Table 1. It is clear that the net charge of the nitrate group is close to −1 in complex 3 which comprised
an ionic nitrate, which is weakly coordinated to Ag(I) ion. The amount of electrons transferred to Ag(I)
in this case is only 0.0358 e. In contrast, the amount of electrons transferred from the nitrate group to
Ag(I) ion in complexes 1 and 2 are higher. The amounts of electron density transferred are 0.1635 and
0.1936 e, respectively indicating strongly coordinated nitrate to the silver ion. The pyridine ligand groups
transferred 0.1071, 0.0762, and 0.1395 e in complexes 1–3, respectively. As a result, the charges at silver
atom were reduced to 0.6222, 0.7284, and 0.6852, respectively.

Table 1. The net natural charges at ligand groups and Ag.

Metal/Ligand 1 2 3

Ag 0.6222 0.7284 0.6852
Py-ligand 0.1071 0.0762 0.1395

NO3− −0.8365 −0.8046 −0.9642

3.5. Antimicrobial Activity

Previous studies showed that silver(I) metal complexes-based different N-heterocycles such as
imidazole, 1,2,4-triazole and tetrazole were active against two strains including Ps. aeruginosa and S.
aureus and more potent (ca. 4–8 folds) better than the silver nitrate (AgNO3) as positive control [58]. Also,
silver(I)-imidazole and silver(I)-L-histidine polymer complexes were shown to have an equal potency of
the studied microbial strains S. aureus and Ps. aeruginosa (MIC 15.7 and 12.5 µg/mL), on the other hands,
silver(I)-1,2,3-triazole polymer complex had no effect on the bacteria [59]. Several examples of the silver
metal complexes based on nicotinate compounds have been explored by our research group previously [60],
where [Ag(isonicotinamide)2-µ-O,O’(NO3)]2 and [Ag2-µ-O,O’(2-aminonicotinium)2-(NO3)2]n exhibited
a remarkable effect towards Ps. aeruginosa with MIC ranged 2–8 µg/mL, another example for the
silver metal complex such as [Ag(ethylnicotinate)2](NO3) showed against two strains including S.
aureus and S. pyogenes (MIC = 4–16 and 2–4 µg/mL, respectively). [Ag(ethylisonicotinate)2(NO3)],
[Ag(methylisonicotinate)2(H2O)](NO3), and[Ag(ethylnicotinate)2](NO3) possessed high efficacy towards
P. mirabilis (MIC 1–16 µg/mL). Also, we have explored silver(I)-based pyridine complexes and the
anti-microbial activity against S. lutea and M. lutea, which provided interesting and promising results with
the MIC = 2 and 4 µg/mL, respectively [44].

In this paper we introduced another group of silver(I) pyridine complexes with relatively high
biological activity against a broad spectrum of MDR (multi drug resistance) and ATCC standard
bacteria as well as the fungus C. albicans. The Minimum Inhibition Concentrations (MIC) of the tested
compounds were tested and 17 antibiotics were used for the activity comparison. The detailed results
are given in Table 2 and presented graphically in Figure 11. One of the advantages of this set of silver
complexes is its broad-spectrum activity against MDR (multi drug resistance) bacteria isolated from
diabetic foot ulcers as well as the ATCC standard bacteria with different action ranging from MIC
= 4 µg/mL for compound 2 against Ps. Aeruginosa to MIC = 64 µg/mL for compound 1 against K.
pneumoniae and E. Coli. An additional advantage of silver compounds is that they, in contrast with
antibiotics in general, are active against fungi. Thus complexes 1–3 were active against the yeast C.
albicans (See Table 2). When looking to these data, we also need to consider the different silver contents
of the three compounds. These being by weight 28% for 1, 41% for 2 and 30% for 3. The best action is
for 2 against Ps. Aeruginosa with MIC value of 4 µg/mL.
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Table 2. Minimum inhibitory concentration (MIC) for complexes 1–3 compared with reference antibiotic drugs. (MIC ≥ 256 indicated no activity).

Antibiotic
Gram-Positive Bacteria Gram-Negative Bacteria Fungi

MIC (µg/mL)

S. lutea1 M. luteus2 S. aureus3 E. coli4 K. pneumoniae2 Ps. aeruginosa1 Ps. aeruginosa2 Ps. aeruginosa3 P. mirablis2 E. cloacae2 C. albicans2

Amikacin 4 8 4 8 >256 12 32 >256 64 >256 -

Gentamicin 16 16 16 4 32 24 24 96 192 >256 -

Streptomycin 16 64 12 6 64 16 12 128 128 >256 -

Amoxicillin 8 24 8 32 >256 >256 16 192 192 128 -

Ampicillin 64 16 4 24 >256 8 8 96 128 96 -

Cephradinei 48 64 16 24 192 128 32 192 192 >256 -

Cefuroximeii 32 32 8 16 128 64 16 128 96 128 -

Cefoperazoneiii 16 16 6 12 96 8 16 96 32 48 -

Cefepimeiv 24 8 4 4 64 32 8 48 24 32 -

Imipenem 8 32 2 3 >256 >256 64 96 >256 16 -

Meropenem 32 16 2 2 192 128 48 64 128 12 -

Azithromycin 16 16 12 12 64 128 64 128 48 64 -

Clarithromycin 24 24 16 8 32 96 48 96 32 32 -

Nalidixic
acidi 8 32 24 4 128 64 48 128 >256 >256 -

Ciprofloxacinii 4 24 4 6 32 48 24 64 64 128 -

Levofloxaciniii 16 16 3 8 16 32 16 32 32 32 -

Vancomycin 32 24 32 4 128 64 32 128 48 64 -

1 32 8 32 16 64 8 8 8 32 64 6

2 12 16 8 32 32 4 4 4 16 8 8

3 12 16 16 16 32 8 8 8 16 32 32
1 ATCC 10,031 2 Clinical 3 ATCC 6538p, 4 ATCC 8739; Roman superscript numbers indicate the generation of the antibiotic. Lower values indicate higher activity.
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3.6. Molecular Docking Studies

The analysis of the docking results revealed that among all seven targets, only thymidylate
kinase (TMK) from P. aeruginosa showed good binding affinity and docking interactions with studied
complexes. The results of the docking scores of control inhibitor and silver complexes against the
target proteins are mentioned in the Table 3. Figure 12D presents the alignment of different silver
complexes in the active site of TMK. As shown in the Figure 12A–C, all the complexes fit well into the
active site of TMK. The coordinates of these compounds overlap in the crystal structure of the template
plate, mimicking some of its interactions with the macromolecule.

Table 3. Root-mean-square deviation (RMSD) and predicted binding affinity (docking scores in
kcal/mol) of control inhibitor and silver complexes against target proteins.

PDB ID Codes

Docking Scores

RMSD of Control Ligand Silver (I) Complexes

(Å) Control Ligand 1 2 3

1IYL 1.85 −11.6752 −7.224 −10.1026 −7.7626
1BNA - - −5.7922 −7.2206 −4.3620
3FYV 1.23 −8.4286 −6.8618 −9.6077 −5.3467

3UWK 0.9 −10.9856 −8.1865 −11.4224 −6.2362
4HOF 1.5 −8.6736 −5.9142 −7.8969 −4.9028
4URM 1.9 −9.4327 −6.7318 −8.0604 −4.881
4H2M 2.0 −10.6792 −5.7233 −9.2959 −4.8587
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kinase (TMK) of P. aeruginosa demonstrated from the top ranked dock pose. Red dashed lines represent
H-bonds, while (D) presents the superimposition of all the compounds.

The binding mode of complex 1 with thymidylate kinase displayed number of prominent
interactions including hydrophobic, hydrophilic, salt bridges, and π- stacking interactions. Figure 12A
presented that O3 of the nitrate anion that directly ligated to the silver metal involved in hydrogen
bond interaction with the side chain of Arg50 (2.73 and 2.95 Å), Arg96 (3.23 Å), and Arg151 (2.85
Å), respectively. While Tyr104 mediate strong hydrogen bond interaction with the carbonyl of
pyridine-3-carboxaldehyde at a distance of 2.07 Å. The hydrophobic contact of pyridine ring with
Glu12, Arg96, Phe155, and Glu156 might also contribute in the observed activity of this complex.
Further protein-ligand interactions are stabilized by the formation of a salt bridge between complex
and Glu12 and Asp153. Moreover, the geometry of the silver metal interaction retained by making
contact with Asp153 at a distance of 2.78 Å.

In case of most active complex 2, a network of strong hydrogen bond interactions with the residues
of the active site of TMK has been observed that rationalize the inhibitory potential of the complex.
The nitrate ion of the complex involved in three hydrogen bond interactions with Tyr104, side chain of
Glu12, and Arg96 at a distance of 1.88, 2.19, and 2.46 Å, respectively. Both of the nitrate ions that ligated
with silver metal mediated bidentate hydrogen bond interactions with the residues Glu12 (3.02 Å),
Arg50 (2.99 Å), Arg96 (2.66 Å), Arg149 (2.80 and 2.88 Å), and Glu156 (3.41 Å). The hydrophobic contact
of pyridone rings with the hydrophobic patch of Pro11, Ala100, Tyr104, Ala146, Arg151, Phe155, and
Phe163 provided further anchorage to the active site. Complex 2 was further stabilized by special type
of electrostatic interactions i.e., salt bridges between pyridone of the complex with Glu12, Asp153, and
Glu156 (Figure 12B).
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In contrast to complexes 1 and 2, complex 3 (Figure 12C) mainly stabilized by hydrophobic
interactions with Glu12, Ala100, Tyr104, Phe155, and Glu156. Additionally, the contacts were further
stabilized by hydrophilic interactions between Glu12 and Phe155 with 3-hydroxypyridine at a distance
of 3.30 and 31.9 Å, respectively.

4. Conclusions

Three Ag(I) complexes with pyridine ligands were synthesized and well characterized using
X-ray single crystal diffraction analysis, elemental analysis and NMR spectra. The solid state
structure of [Ag(2-pyridone)NO3]n is peculiar and best understood using network topology analysis
giving the unusual ins-net. Their antimicrobial properties were compared with 17 antibiotics.
[Ag(2-pyridone)NO3]n has specific activity against three clinically isolated strains of Ps. Aeruginosa
compared to the tested antibiotics. This group of silver(I) pyridine complexes have relatively high
biological activity against a broad spectrum of MDR (multi drug resistance) and ATCC standard
bacteria as well as the fungus C. albicans. We hope to find promising substances to be used in wound
dressing applications. Also, molecular packing analyses for complexes 1–3 were performed with the
aid of Hirshfeld analysis. The net charges at silver atom are 0.6222, 0.7284, and 0.6852 instead of 1.0000
due to the interactions with the ligand groups coordinating it. The molecular docking of the studied
complexes shows several types of interactions with the pocket including hydrophilic, hydrophobic,
salt bridges, and π- stacking interactions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/14/4853/s1,
Figures S1–S3: 1H and 13C NMR spectra of complexes 1–3. Figure S4: Distorted tetrahedral coordination of the
silver atoms in [Ag(2-pyridone)NO3]n. Figure S5: Hydrogen bond interactions. Figure S6: X-ray structure with
atom numbering for complexes 1–3. Tables S1–S4: X-ray crystal data for the complexes 1–3.
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