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Impedance cardiography is a non-invasive methodology for measuring cardiodynamic parameters, such as
stroke volume and heart rate, as well as cardiac output. For the measurement, the electric conductivity of blood
is important. The conductivity of blood depends on various parameters, such as the haematocrit value as well
as the red blood cells’ (RBC) shape and orientation. In models, the response is usually affected by uncertainty,
which may lead to inaccurate medical diagnosis. Therefore, a ranking of the influence of the model’s input
factors may be necessary. Also, physically and physiologically correct assumptions are fundamental for the
accuracy of the model. The basis for predicting the conductivity of blood in this study is the Maxwell-Fricke
theory, which allows computing the electrical bulk conductivity of quiescent blood. For flowing blood, fluid
mechanics has to be coupled in the modelling phase.

Nevertheless, some assumptions may lead to invalid or inaccurate results. Based on a global sensitivity
analysis, this work shows which fluid mechanical assumptions are incorrect and should be avoided. Moreover,
positive effects based on accurate rheological modelling of the fluid properties are shown, and the factors with

a decisive influence on the computed conductivity change of flowing blood are illustrated.

1. Introduction

Blood is a heterogeneous suspension of several components, con-
sisting of plasma as the carrier fluid, as well as erythrocytes (red blood
cells), leukocytes (white blood cells) and thrombocytes (platelets) as
the cellular content. The fluid is physically complex and, due to its
physiological importance, its chemical and physical properties have
been studied in numerous scientific fields, [1-8].

It is generally assumed that the physical properties of whole blood,
such as the viscosity, i.e. its resistance to rates of deformation, and the
electrical conductivity, are mainly determined by the properties of the
red blood cells (RBCs) and the surrounding blood plasma. Furthermore,
the electrical conductivity of blood is a crucial factor for electrical
bioimpedance measurement applications in clinical settings [9-11].

The electrical properties of stationary blood depend mainly on the
volume fraction of RBCs in the blood plasma, namely the haemat-
ocrit [12], RBCs’ shape and orientation, and the temperature of the
blood. In [13], the research on electrical conductivity began from a
dilute suspension of spherical and ellipsoidal isolating particles in an
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electrolyte. From there, the findings produced the Maxwell-Fricke the-
ory, which allows accurate calculation of the conductivity of stationary
blood with randomly oriented RBCs as a function of haematocrit. To
study electrical properties on flowing blood, [14] elaborated the theory
quantitatively by introducing a Couette and successively a Poiseuille
flow, and adding probability distributions for the orientation angles of
RBCs. Within the Couette flow, the distribution of RBCs’ orientation
angles are dependent on the flow’s shear rate until an orientation
equilibrium is reached; the equilibrium of orientation distribution ap-
pears at low shear stress for high haematocrit values. Furthermore,
after equilibrium is reached, the viscosity decreases continuously due
to deformation of the RBCs. The reduction of viscosity is also confirmed
at the breakup of rouleaux at low shear rates, a phenomenon leading
to viscosity change. Regarding the Poiseuille flow, it is concluded that
the RBCs orientation is crucial for blood conductivity.

Years later, the Maxwell-Fricke theory was tested for human blood
in Poiseuille flow [15]. It was concluded that the cell orientation is
the dominant cause of the electrical conductivity changes of blood,
although large deformations of the RBCs occur. However, [16] and [17]
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showed that if only the orientation of RBCs is considered, the conduc-
tivity changes do not depend on the shear rate for higher haematocrit
levels (above 20%). Therefore, since an equilibrium orientation of
the RBCs is reached at a low shear rate, for higher shear rates the
conductivity changes are due to deformation of RBCs.

In [18], the Maxwell-Fricke theory was used to explain the depen-
dency of the electrical conductivity of blood on its flow condition in
a cylindrical tube. For this setup, the authors assumed a shear-rate
independent viscosity fluid in a steady flow, in which RBCs are oblate
ellipsoids that get deformed and oriented, given the flow condition.
Since the conductivity of RBCs is very low at frequencies below 3
MHz, the current distribution in the suspension and thus the mean con-
ductivity of this domain changes with the altered RBCs condition and
configuration. This study leaves the electrical conductivity change of
blood through the aorta due to its pulsatile flow condition unexplored.

To overcome this issue, [19-21] introduced a study on the impact
of pulsatile blood flow on the electrical conductivity of blood in a
cylindrical tube with rigid walls, using the flow theory developed
by [22]. In this case, it was visible, both theoretically and experimen-
tally, that during the acceleration phase of the fluid, i.e. the systolic
phase of the cardiac cycle, a robust linear relationship between the
average velocity and the conductivity of blood exists. The computed
impedance shows differences in both systole and diastole related to the
same average velocity. The latter phenomenon introduced a significant
new insight into the physiological origins of impedance variations in
bioimpedance methods. Developments performed in [23] include an
elastic tube instead of a rigid one for the domain of the model. It results
in highlighting the strong influence of the centre-line velocity value and
the low impact of the wall elasticity on the electrical conductivity of
blood.

Blood exhibits non-Newtonian behaviour dominated by shear thin-
ning, which must be accounted for in simulating blood flows of the
human body. Many models for blood flow, including the sources men-
tioned above, however, are subject to basic assumptions which may
differ from the physical reality. Examples relate to the state of flow
and the fluid dynamic behaviour upon deformation. E.g. the flow is
modelled either steady or pulsating.

The rheological behaviour of blood is highly complex because its
exact composition is more or less unique for each person. Broken
down to the most important influencing factor regarding viscosity, the
haematocrit value varies from person to person in a certain range for
average women and men (adult males: 42 %-54 %; adult women: 38 %-
46 % [24]). However it may differ by 4 %-7 % due to pregnancy [25] or
exceed 60 % for professional athletes [26].

The present work focuses on analysing the electrical conductivity
of flowing blood through a variance-based global sensitivity analysis
(gSA) [27] by considering different flow situations (steady or pulsating)
and rheological behaviour (Newtonian or non-Newtonian). Variance-
based gSA can be performed with Monte Carlo method, which requires
a high number of model simulations [28]. However, when dealing
with complex model structure, surrogate models are usually preferred.
Herein, the Polynomial Chaos Expansion (PCE) is used as surrogate
model for the assessment of the sensitivity indices [29].

The uncertainty in computational models can originate from two
different sources: in the model’s input parameters and in the model
selection. To reduce the first, a well-known uncertainty and sensitivity
analysis is performed based on the assessment of the sensitivity indices
from the PCE, see [30]. As for the model selection analysis, a discrete
variable, namely the trigger, is added in the input space of the surro-
gate model. To the knowledge of the authors, the latter approach is
innovative and not found in the literature.

The uncertainty quantification of the model selection was intro-
duced with a Bayesian approach [31], where the posterior probabilities
of all competing models are computed. The method, named Bayesian
Model Averaging (BMA) [32], highlights the need for considering the
uncertainty in the model selection to avoid over-confident inference
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and decision. A latest application of BMA can be found in [33] where
the best model choice is compared with the computed posterior prob-
ability. Lately, the approach was illustrated in [34] for the scope
of sensitivity analysis and then applied in [35]. Other applications
of model selection are found in countries composite indicators [36—
38], geological analysis of potential oil basins [39], and CO, storage
ability [33]. However, they all use Monte Carlo method to assess the
sensitivity of several competing models. Therefore, a trigger variable in
the input space of the surrogate model is introduced in this paper.

In the current study, different flow properties are studied by the
trigger variable that simulates the change in the model assumption, i.e.
emulating a switch behaviour. Differences between steady and pulsat-
ing flow with different fluid types (Newtonian or non-Newtonian) are
predicted. The input space will also include different properties of the
blood, distinguishing different patient-specific cases. In the pulsating
case, the gSA will focus on the computation of the conductivity of blood
in one cardiac cycle as a model output. The study aims to provide a
more profound understanding of the mechanisms governing the value
of the conductivity of flowing blood. The differences in the conductivity
of blood due to the varied model parameters will lead to conclusions
on the model sensitivity for this study case.

The paper is structured as follows: in Section 2 both the con-
ductivity and the fluid models are illustrated. The first refers to the
implementation of the state-of-the-art model for the computation of
the conductivity of flowing blood. In the second, the pulsating flow
condition and its particular case, i.e. steady flow, are referred to
both the Newtonian fluid and the non-Newtonian one. Also, a non-
dimensional formulation is derived in order to reduce the complexity
of the model with respect to parameter variation and physiological
ranges of the parameters. Successively, in Section 3, the gSA technique
that is used in this study is explained, with particular attention to the
variance-based approach and the use of the surrogate modelling of
the polynomial chaos expansion. Results are shown and discussed in
Section 4. In Section 5, the conclusions of the study are illustrated.

2. Models

The electrical conductivity of the blood is computed by assuming
the fluid to be a dilute suspension of ellipsoidal particles [12,13].
The fluid is flowing in a straight and rigid pipe, where the RBCs,
surrounded by plasma, are considered to be at the centre of each
control volume [18]. The control volumes are given by the fluid domain
discretization. The RBCs are oriented and deformed due to the shear
stress induced by the fluid.

2.1. Electrical characterization of blood

The conductivity of flowing blood was initially modelled by [18]
for a Newtonian fluid in steady laminar flow through a rigid tube of
cylindrical shape. This model extends the Maxwell-Fricke theory by
introducing orientation and deformation terms of RBCs in the flow.
Here, different shear stress thresholds exert different orientation con-
ditions of the RBCs. In [21], the model was extended by incorporating
a pulsatile flow and different orientation effects. Thus, the assumption
taken in [21] for the computation of electrical conductivity of blood
are herein considered and applied.

2.1.1. Orientation and deformation of RBCs

RBCs are subject to orientation and deformation in flowing blood
due to shear rate. Only two states of orientation for the RBCs are
considered, namely: a random orientation as in flipping disc behaviour,
and a stable orientation as in liquid drop behaviour. In the latter, given
that the RBCs are aligned with their major 25, axis, see Fig. 1, within
+20° from the axial and dominant flow direction, RBCs are assumed to
be parallel to the direction of flow [40].
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Fig. 1. Red blood cell modelled as an ellipsoidal particle.

When a pulsation of the flow is present, the time delay in the
alignment of the RBCs to the flow field has to be accounted for. Such
effect highly depends on the shear rate experienced by the cells and by
the acceleration of the flow [4,41]. To tackle the orientation rate as a
function of the shear rate, the function f(r) at a distance r from the
pipe axis, as introduced by [40], is shown as:

=
fi=-= % e
0o 1 N+
where n is the total number of RBCs per unit volume, of which » are
parallel to the flow, 7, is the time constant for parallel orientation of
cells, and 74 is the time constant for the aligned cells to disorient in
randomly oriented cells. The formulations of 7, and 7z, are expressed
in [40] as proportional to the inverse of the shear rate for 7,, and as
proportional to the inverse of the square root of the shear rate for .

Consider the RBCs as ellipsoidal particles with one symmetry axis
of length 2a, and two axes of equal length 25, s.t. a; < b, see Fig. 1.
An erythrocyte with initial axes ratio a,/b, is deformed into ay(r)/by(r)
due to shear stress present in a pipe flow. This deformation is inversely
proportional to the membrane shear modulus x of the cells [18] and it
is described as:

ay(r) _ a [1 . f'(r)bo]_3
by(r) by 4p ’
The magnitude of the shear stress tensor 7 is calculated by

T(ry=+\7:71. 3)

This quantity depends on the position in the flow field and relates
the state of deformation of the RBCs to the state of flow.

@

2.1.2. Conductivity of blood

The conductivity of blood is then computed from the Maxwell-
Fricke theory, with the formulation introduced by [18], in which the
conductivity of blood of a control volume o, (r) is given by:

o (r) 1-H

T1+(C(r-DH’ )

apl

where oy, is the conductivity of the blood plasma in § - m~', H is the
haematocrit level of the blood, and C(r) is the term accounting for
the orientation and the deformation of RBCs at a radial location r in
the pipe. In particular, the RBCs are considered impermeable to the
electrical field for frequencies in the range of several hundred kHz, and
therefore their amount in the blood volume is particularly significant.
The following formulation gives the calculation of C(r) [21]:

Cr) =G+ 1A - f(NC,, (5)

where f(r) is the function for the orientation of RBCs from (1), and
C,, and C, are terms that account for the alignment of RBCs. C, is the
average of the C values for each axis alignment to the flow as in:
1

C = §(Ca +2C), (6)
where C, = 1/M, C, = 2/(2 - M), and M is the deformation term
computed as

¢~ 5 sin(29)

sin® [}

M(a<b)= - cos ¢; )
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Fig. 2. Geometry of the flow domain (not to scale).

ay(r)
bd(") '

By substituting Eq. (2) in Eq. (8), the two models are coupled, i.e.
the electrical conductivity model and the fluid dynamics model. The
bulk conductivity of blood is computed as the integral of the control
volume’s conductivity over the cross-sectional area of the pipe of radius
R as:

(8)

cos¢ =

5 [R
Op = F/o o (r)rdr. 9

Finally, given the conductivity of stationary blood oy in which
orientation and deformation of RBCs do not take place [15], the con-
ductivity change of blood against its stationary value, expressed in
percent, is computed as:

Aoy = <M> -100. (10)

st
2.2. Dynamics of blood flow

For the present study, the flow of blood through a cylindrical vessel
with circular cross section is simulated, comparing steady and unsteady
flow of blood modelled as a Newtonian or a non-Newtonian liquid. The
study is based on an analytical description of the Newtonian, and on
numerical simulations of the non-Newtonian flows.

The flow domain is a section of a straight pipe with a circular
cross section of constant diameter D = 2R =25 x 10~ m. The section is
100 D long. The symmetry axis of the pipe is the z axis of a cylindrical
coordinate system, as sketched in Fig. 2. The domain and the flow field
are axisymmetric around the z axis, i.e., there is no dependency on the
polar angular coordinate 6. Numerically, the flow is nonetheless treated
as three-dimensional.

2.2.1. Governing equations

The fluid flowing through the pipe is assumed to be incompressible,
i.e., its density p is treated as constant. For this case, the mass balance
reduces to the requirement that the velocity field must be solenoidal,
ie.,

V-u=0. an
Neglecting body forces, the vectorial momentum balance reads
p[%+(u-V)u] - Vp+V.z, a2)

where 7 is the extra stress tensor and p the pressure.
The rheological constitutive equation relates the extra stress to
the velocity field. In the present study, two types of rheological be-

haviour of the liquid are considered: a non-Newtonian inelastic and
shear-thinning, on the one hand, and the Newtonian one on the other.
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Fig. 3. Flow domain with inlet velocity profile at time r =0 (not to scale).

Non-Newtonian inelastic shear-thinning - the generalized Newtonian model.
As the rheological constitutive equation for the non-Newtonian liquid
we select the Generalized Newtonian model given by [42] as

T=2n({y)D; 7= (2trD2)l/2 13

where the shear rate y is determined from the second invariant of the
rate-of-deformation tensor [43] D = (Vu+ (Vu)") /2, with the velocity
gradient Vu.

The dynamic viscosity 5(y) as a function of the shear rate is repre-
sented by the Carreau model [44]

]w—l)/z

1) = 1 + g = )1+ (277 , a4

which is known to well represent shear-thinning liquid behaviour.
In the model, 7, represents the zero-shear viscosity (1st Newtonian
plateau) and 7, the limiting value of the viscosity for high shear rates
(2nd Newtonian plateau). 4 and n are parameters determining the
shape of the function #(y). In the specification of this function for the
computational analysis, the four parameters are determined by fitting
(14) to experimental data from blood rheometry.

Special case of shear rate-independent viscosity - the Newtonian model.
A Newtonian fluid has a shear rate-independent dynamic viscosity.
Therefore its rheological constitutive equation reduces from (13) to

T =2, D, 15)

where #;, is the dynamic viscosity of the blood treated as Newtonian.
A model well-established in the literature for determining the viscosity
of blood as a function of the haematocrit for a Newtonian rheological
model is due to [1]. The determining equation reads

Mo =1y |1 +2.5H +7.35H7] 16)

where ny, and 5, are the dynamic viscosity of blood and plasma,
respectively, and H is the haematocrit represented as the volume
fraction of red blood cells.

2.2.2. Initial and boundary conditions

Pulsating flow. In the numerical simulations, the flow is determined by
a prescribed time-dependent volumetric flow rate and the correspond-
ing velocity profile at the inlet of the pipe in Fig. 3. This profile is set
parabolic at the inlet and evolves hydraulically in the flow direction
z. The pipe section is long enough to ensure fully developed state at
the outlet z = L. The flow rate of the pulsating flow is composed of a
steady component Q,.., and a time-dependent component Q. (?). For
the present study, the time dependence is set to be sinusoidal, i.e.,

o = Qmean + Qosc(l) = Qmean + Qosc - sin(wt), a7)

where w = 2z f is the angular frequency of the pulsation with frequency
f, and Q. is the pulsation amplitude. The volumetric flow rate
equivalent velocity is given as u, and i is the volumetric flow rate
equivalent pulsation amplitude given as
o _ - -
e = U Uy (1) = U+l
The corresponding heart rate is computed in beats per minute
(bpm) by converting the frequency f from s~! to min~!. The boundary

0sc

u(t) = - sin(wt). (18)
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conditions for the velocity components u_, u,, u, at the inlet are imposed
in the following forms:

2
uz(r,z:o,r):@ <1-%> r € [0, R]; (19)

u.(r,z=0,1) =uy(r,z=0,)=0 rel[0,R] (20)

The boundary conditions at the pipe wall represent the no-slip
condition

u(r=R,z,t)=u,(r =R, z,0) =up(r = R,z,0) =0 Vz,t, @n

Steady flow. The steady flow is the special case where all the properties
of the flow are time-independent. The boundary conditions for the
velocity components at the pipe inlet read

2
uz(r,z=0)=2Q$ (1-%) r € [0, R]; (22)

u(r,z=0)=uy(r,z=0=0 re[0,R] (23)

The steady-state no-slip conditions at the pipe wall are analogous
to Eq. (21).

For both the unsteady and the steady simulations, the pressure at
the outlet z = L was set to zero. The inlet pressure was obtained as a
part of the solution of the flow problem.

2.3. Non-dimensional parameters

The mechanical behaviour of flowing fluids is governed by sets of
non-dimensional parameters. The parameters are defined as groups of
quantities characterizing the flow and the fluid, such as characteristic
velocities, length scales and fluid material properties. For the present
physiological context, the values of such parameters are known from
the literature. We mention the flow velocity, pulsation (heart beat)
frequency, vessel diameter and blood viscosity. From these values,
the values of the non-dimensional parameters are characterized in the
uncertainty analysis of this article.

With account for the unsteady case, the present flow is governed by
the six parameters u, i, w, D, p and 7. Given the three dimensions
kg, m and s involved, these parameters form the three non-dimensional
groups

=M; W0=D\/§; and rp:u‘fc R 24)
n n u

where ¢ may be interpreted as the ratio of the corresponding flow rates,
Qosc/Qmeam also’

The first non-dimensional group is the Reynolds number Re. It
represents the ratio of convective to diffusive transport of momentum,
with the volumetric flow rate equivalent velocity u, the diameter D
of the pipe, and the density and dynamic viscosity of the fluid, p and
n, respectively. Defining the Reynolds number for fluids with variable
viscosity requires a special treatment. The form of the generalized
Reynolds number in non-Newtonian flow proposed by [45] for a power
law fluid was re-derived for the present Carreau fluid to yield

Re

n=1 771

Re, =" +(no— ) |14 (221 (g2 |
8T 3y ( i ) Moo T V10 ™ oo 4m D
D

4m

(25)

The coefficient m, which represents a logarithmic derivative of
the pressure gradient with respect to a representative shear rate, is

calculated as

N + (;10 _ nm)[[l + (AJ-/W)Z]OHI)/Z + (ﬂyw)Z(n _ 1)(1 + (Ayw)z)("*3)/2]

m= R
Moo + (19— 1) [1+ (47, 2) "™

(26)
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with the wall shear rate y,,;, = % (8%). For each value of the
generalized Reynolds number, m was iteratively calculated, starting
from an initial value, calculating the wall shear rate from this value,
and using this wall shear rate to calculate a new m, and so forth. This
process was repeated until the difference between two successive values
of m was below 107>,

The second non-dimensional group in (24) is the Womersley num-
ber, which represents the ratio of the time scale for diffusive momen-
tum transport to the pulsation period. In the case of the non-Newtonian
fluid model, the dynamic viscosity varies in the flow field. There-
fore, for calculating the Womersley number, the kinematic viscosity is
expressed using the generalized Reynolds number to make it read

Do

Wo = Regen- 27)

u
The pulsating nature of the flow is represented by the
non-dimensional group ¢ in (24). Using this group, (17) transforms into

O®) = Opean * [1 + @ - sin(w)] (28)

Different magnitudes of ¢ determine the flow as follows:

— (29)
u

_ fiye ) <1 - steady flow rate dominating
> 1 - oscillating flow rate dominating

2.4. Numerical solutions

For non-linear material behaviour, the analysis of the flow field
requires a numerical method. The model Egs. (11) and (12) were solved
with the finite-volume method of the open-source software OpenFOAM.
Due to the axial symmetry, the flow field in the pipe was reduced
to a wedge of 5° in the polar angular direction, setting symmetry
boundary conditions at the angular faces. The wedge was discretized
into 1500 hexahedral and prism cells, with a refined grading towards
the pipe wall in order to resolve correctly the gradients on the wall
surface. A mesh convergence study was performed with Newtonian
fluid properties, and the velocity profile at the outlet from the pipe
section was compared to match the analytical solution of the laminar
Hagen-Poiseuille flow. With the above number of cells, a further re-
finement of the discretization did not change the results appreciably.
For the numerical solution, a second-order implicit scheme was cho-
sen for time. Gradient and divergence schemes were calculated with
second-order central differences. The non-orthogonality of wall-normal
gradients was taken into account by using an appropriate correction
scheme. For evaluating the results it was ensured that the flow at the
outlet from the pipe section, z = L, was developed. Additionally, for
the unsteady simulations, a periodic solution was obtained. Due to the
maximum values of the Reynolds number studied, the computations
involved laminar flow.

2.5. Analytical solution

In the case of the Newtonian material behaviour, which is linear,
and given the symmetry of the flow domain, the hydraulically devel-
oped flow may be calculated analytically, even in the unsteady case.
The result is that the radial and the polar angular velocity components
are zero throughout the flow field. The analytical solution for the
z-velocity component is represented non-dimensionally as [46]

wt i =2 (1= 1) R oo 2 0 (vivorz) . (30)

Wo? I (\/Tin/z)

Here R denotes the real part of the complex term in the braces, and
i the imaginary unit. J, is a Bessel function of the first kind and of 0-th
order. The quantities denoted by a star in (30), i.e. u, r*, t* and p*, are
derived through nondimensionalization with respect to the following
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reference quantities: u for the velocity, R for length and coordinates,
the period of the pulsation T = 2z/w for the time, and pii* for the
pressure. The analytical solution is based on a time-dependent pressure
gradient driving the flow. p* is the non-dimensional amplitude of the
time-dependent pressure gradient. In the present analysis, a volumetric
flow rate equivalent to that pressure gradient was applied.

3. Method

Uncertainty and sensitivity analysis are fundamental steps in model
building and they represent an important role in the decision making
process that results from model simulations [47]. Sensitivity analysis
is used to extract the information, rooted into computational mod-
els, about how much the uncertainty in the input factors affects the
model output(s). Several methods are used to rank the most influ-
ential variables on a quantity of interest and to assess their level of
interactions [48,49].

Sensitivity analysis is classified as local when it focuses on the
impact of one input random variable in its vicinity for a small per-
turbation. In other words, one input parameter at a time is varied
while the others are kept fixed [50]. Examples of some local sensitivity
analysis are finite difference computation [47], differential importance
measure [51], elasticity measure [52], screening methods [47,53].

Alternatively, when multiple parameters are varied simultaneously
and the analysis is performed over the whole input space, the sensitivity
analysis is said to be global. Global sensitivity analysis (gSA) quantifies
the uncertainty of the model quantity of interest (Qol) by looking at the
uncertainty in all input parameters and their combination. gSA is also
a powerful tool when it is used in calibrating the model to reproduce a
physical process and it is based on the assumption that an information
about the model inputs’ probability distribution, joint or marginal, is
provided [39].

Different methods have been developed for gSA [47].
Non-parametric methods are successful in case of model linearity
and apply a regression of the model response to its input factors to
produce measures as standard regression coefficient or the Pearson
correlation coefficient. The variance-based methods base their analysis
on the expected reduction in model output variance given the certainty
of the model input factors. This method is built upon the ANOVA
output variance decomposition, which is unique in case of independent
input random variables [54-56]. From the variance decomposition,
sensitivity measures such as Sobol indices can be developed [57]. Some
other global sensitivity analysis methods are density-based method
and transformation invariant method. The first considers the entire
probability distribution of the quantity of interest, thus it does not focus
the analysis on one particular distribution moment [58,59]. The second
aims at transforming the output space when this is sparse or its range
covers many order of magnitude [60,61].

A variance-based approach is used for the current study. In this case,
the variance of the output is decomposed into a sum of contributions of
the input space [29]. Since knowledge regarding the model is limited,
in the sense that it is unknown whether its behaviour can be linear,
additive, monotonic, or none of them, the choice of a variance-based
approach is suitable. A model is defined to be additive when it is
possible to differentiate the effects of each input parameter on the
model’s output [35] separately.

For the estimation of the Sobol indices as quantitative measures
for the gSA, a surrogate model construction is employed, namely the
polynomial chaos expansion. Alternatively, the use of Monte Carlo
sampling or quasi-Monte Carlo sequences are adopted, but the cost
of this computation is still affected by the high number of model
calls [48].



G.M. Melito et al.
3.1. Variance-based approach

One of the most used techniques in gSA is the variance-based
method. Here, the output variance is apportioned in the sum of the
contributions of each random variable. The mechanics of the variance-
based method are initiated with the Sobol’ decomposition of the model
[57]. Consider a mathematical model as a function of an input random
vector x of dimension M defined in the unit cube KM, suchas Y = f(x).
The Sobol’ decomposition of the model reads

M
Y=f(xl""’xM)=f0+Zfi(xi)+ Z fij(xi’xj)+"'
i=1 1<i<j<M
+ fi oM X X, (31)

where f, is a constant and represents the average value of the model
response. The uniqueness of the decomposition is granted by the or-
thogonality of the summands in (31) over the M-dimensional unit cube
of the input space K. Each term of (31), is expressed as constant (32),
univariate—(33), bivariate—(34), and multivariate-terms.

fo=E[Y] (32)
fi =ElY|x;] - -E[Y] (33)
fij =BIY|x;,x;1——f, — f; —E[Y]. (€2))

Considering the model input is defined as a random variable; its
response will be random, its variance can also be decomposed with
(31). By doing so, the first-order sensitivity index [62,63] (or first-
Sobol’ index) can be derived by the ratio of the partial variance due
to the ith random variable and the total variance of the model. By
definition, the first-Sobol’ index is also a function of the conditional
variance V(E[Y|x;]) of the model output as:

_ VIE[Y |x;]]

=

which represents the contribution of the random variable x; to the
change of the model output, without considering the effect of its
interaction with other input variables. Therefore, a random variable
x; is considered to be influential (non-influential) to the model output
if the conditional variance V(E[Y|x;]) is large (small) enough to the
variance of the quantity of interest. The first-order index identifies
the level of influence of the single parameter on the output in the
analysis. It does not give any information regarding the interaction of
the parameter with other variables of the input space. It allows the use
of the Factor Prioritization setting, that is the identification of the input
factors that contain the most influence on the Qol, i.e. which one is the
most responsible for the production of the model variation.

As expected, in (35), the bivariate- and multivariate-terms expressed
in (33) and in (34) are missing. Thus, the need for a quantitative mea-
sure to account for the interaction effect among the input parameter has
to be fulfilled. The total-order sensitivity index (or total-Sobol’ index),
which evaluates the total effect of such input parameter, has to account
for the conditional variance of the output. The conditional probability
is then computed over the whole input space except the ith random
variable. This is described as x_; and leads to the evaluation of the
total-Sobol’ index as:

ST —1_ VIE[Y |x.;1] _ E[V[YIXN;]].
! ViY] VIY]

The total-order sensitivity index shows the degree of the influence
of the input random variable alone on the Qol together with the
interactions with other input factors. The total-order index is used
to produce the Factor Fixing setting. Here, the lower values of the
total-order index are analysed to decide which variable has no effect
or low effect on the output, considering also its collaborations. As a
consequence, they can be considered as model constants, and the model
output will not be affected by such change. Together with the first- and
total-order sensitivity indices, it is possible to compute the interaction

(35)

(36)
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terms of several degrees of interaction. However, the first and total
indices together express the influence relationship of the input domain
on the Qol sufficiently and avoid the need of computing high-order
sensitivity indices, which may be computationally expensive [39].

3.2. Polynomial Chaos Expansion

The estimation of the Sobol indices, (35) and (36), can be performed
with several numerical methods. A common one involves the use of
Monte Carlo method. Here, a deterministic model is evaluated for a
large sample collected from the input space of the model, and finally
the conditional expectations in [71,72] are computed. However, this
method requires a large number of samples, which might result imprac-
tical in some applications. An alternative solution is the construction of
surrogate models, such as Polynomial Chaos Expansion (PCE), which
allows to derive an analytical expression for the sensitivity indices [29,
30]. The PCE was introduced by [73] and implemented in the en-
gineering world by [71]. It aims at representing random fields in a
polynomial expansion based on orthogonal polynomials of probability
measures [72].

A polynomial chaos expansion for a model of dimensionality M is
formulated as:

Y % fpcp®) = ) valPo(X), (37)

acA

where @ = (a;,a,, ..., @y,) is a multi-index of a set A of N, = (M;”) for
polynomials with a maximum degree p, the multivariate polynomials
¥, are defined as the product of univariate polynomials of degree «;,
i.e. y, [28]. The univariate polynomials are generated following the
Askey scheme for the composition of polynomials. As a final step, the
estimation of the two sensitivity indices (35) and (36) is performed
from the expansion coefficients y, and evaluations of the analytical
expressions of the normalization factor associated with the polynomial
¥, [74]. The expansion coefficients y, can be estimated with projection
or regression methods [29].

In this study, PCE is computed through the UQLab toolbox for
Matlab [75].

3.3. Application to the model

The uncertainty sources in the present study are generated by both
the physiological variability of the human body and the variation of
data collected from model assumptions. Physiological parameters, such
as aortic flow rate Q,.,, and corresponding flow rate ratio ¢, blood
haematocrit H and density p, and heart rate f, present significant
probability distribution variation [1,21,64-67]. Moreover, through lit-
erature research on the models that emulate the electrical conductivity
of blood, it has been noticed that some of the input parameters vary
substantially among different authors, i.e. the RBCs axes ratio a/b,
the electrical conductivity of plasma oy, [15,21,68], and viscosity of
plasma 7, [21,67]. A uniform probability distribution function for all
random variables is considered, due to the lack of prior information
on their real probability distributions. Furthermore, this assumption
allows to better emphasize the randomicity of different patient-specific
cases. The ranges of the distributions, shown in Table 1, highlight
the uncertainty that afflicts medical research. Their variation aims at
producing different responses of the models and at analysing their
influence through such models using a sensitivity analysis technique.

Different model assumptions are the basis of the sensitivity analysis
to understand the importance of such hypotheses when computing the
conductivity of blood. One of the questions that arose in the develop-
ment of this study is: how complex should the fluid model be to give
a reliable output of electrical conductivity change of flowing blood?
Often models tend to simplify the fluid mechanics of the problem to
avoid complexity and to reduce the computational effort. Therefore, it
is the interest of this study to evaluate and quantify the importance of
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Table 1
Input parameters of the model and their probability distribution properties used for sensitivity analysis.
Parameter Notation Probability distribution Unit Reference
Volumetric flow rate QO mean U'[3.20e-5, 1.82e-4] m?/s [64]
Flow rate ratio @ 0.1, 1] - [64]
Blood density P U°[1050, 1060] kg/m3 [21,65-67]
Haematocrit level H °[0.30, 0.70] - [1]
RBCs axes ratio ay/by U°[0.11, 0.40] - [15,21,68]
Conductivity of plasma Oy U [1.12, 1.57] S/m [15,21,68]
Viscosity of plasma = U[1.10e-3, 1.55e-3] Pas [1,21,67]
Heart rate f U'[50, 100] min~' [69,70]
Trigger (model assumption) trigger [1, 2 or 3] - [15,18,20,21]
T Model (2) Model (3)
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Fig. 4. Dimensionless Reynolds and Womersley number for the simulations of each
model assumption.

such choices concerning the evaluation of the conductivity of blood.
The last random variable in Table 1, discretely distributed and referred
to as the trigger, is used to analyse the differences in the output
considering different model assumptions:

Model (1) Newtonian fluid and steady flow
Model (2) Newtonian fluid and pulsating flow

Model (3) Non-Newtonian fluid and pulsating flow

The experimental design is built so to explore the model’s input
space. The variability of the input space is also meant to simulate
the randomicity of everybody’s health condition and characteristics.
It is therefore essential to analyse the functioning of different model
assumptions in relation to the randomness of their corresponding input
domain (Table 1). In order to assure the physiological ranges of the flow
parameters with respect to the rheological parameters of the human
body in modelling haemodynamics [76], the ranges of non-dimensional
numbers characterizing the flow are calculated and depicted in Fig. 4,
namely the Reynolds and the Womersley number. Given the fact that
their distributions lead to laminar condition, the flow is considered
laminar.

The conductivity change relative to stationary blood was deter-
mined to assess the Qol, as expressed in (10). In particular, given its
variability over one cardiac cycle, its average value in time over the
period is taken into account

T
M5y = & / Aoy dr. (38)
0

The reason for this choice is that such output holds more useful
information about the behaviour of conductivity of blood over time.
More importantly it is mostly used in the related scientific literature,
instead of considering the conductivity of blood per se. The peak-to-
peak amplitude of such signal over one cardiac cycle, referred as 4y,
is also considered to be of interest to analyse the models’ mechanics.

Two different sensitivity analyses have been performed. The first
one is a sensitivity analysis within each model assumption, i.e. model
(1), (2) or (3), to better understand their functioning and mechanics.
This analysis is performed with a different sample size N, of the input

Fig. 5. Leave-One-Out Error ¢ o, of the PCE for models (2) and (3). The computed
error for the Ag,, is indicated with the star marker (*), while for 46y, with the circle
marker (0).

space, with the dimension M = 8, given that the trigger variable is
considered constant for such computation. The high computational ex-
penses of model assumption (3), i.e. non-Newtonian fluid and pulsating
flow, constrains the number of performed simulations to N, = 500.
For trigger equal 1 or 2, the sample size is N;,, = 10000 due to the
availability of the analytical formulation for the fluid mechanics, which
reduces the computational costs.

The second sensitivity analysis is then performed among the model
assumptions and with the input space of dimension M = 9, since the
last factor of Table 1 is assumed as a random variable. For this analysis,
the number of simulations is N = 1500, so that each model assumption
is run an equal amount of times.

The two sensitivity analyses, are computed from two different poly-
nomial chaos expansions. The surrogate model for the analysis within
each model assumption is resolved with ordinary least square method
(OLS) [77,78] for the models (1) and (2), given the low computational
costs. For model (3), due to the limited number of simulations, the
least-angle regression (LARS) method [79] is selected. The degree of
each expansion is selected at the minimum of the Leave-One-Out error
e100 [30,80] produced for different polynomial degrees. Therefore, as
visible in Fig. 5, degree 7 is chosen for both Qols in model (2). As for
model (3), PCE is truncated at degree 10 for the cycle average Aoy,
and at degree 6 for the amplitude 46,;. OLS method is selected for the
sensitivity analysis among the model assumptions and the polynomial is
truncated at degree 4, see Fig. 6. A PCE degree smaller than M suggests
the exclusion in the PCE of some interaction terms. However, the
employed basis-adaptive strategy detects and deletes negligible high-
order interaction terms, reducing the dimensionality of the truncated
polynomial expansion [79,81].

The trigger variable is included in the construction of the polynomial
chaos expansion upon transformation into a uniformly distributed vari-
able. Nonetheless, such transformation does not affect the accuracy of
the surrogate model. By evaluation of the accurate PCE, a Monte Carlo
method is chosen for the estimation of the Sobol indices among the
model assumptions, (35) and (36).
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Fig. 6. Leave-One-Out error ¢, of the PCE for sensitivity analysis among the three
model assumptions. The computed error for the 4s,; is indicated with the star marker
(*), while for 46y, with the circle marker (o).

4. Results and discussion
4.1. Uncertainty analysis

After performing the simulations for each model assumption, a first
check on the reliability of the results was performed. In Fig. 7, the box
plots of the cycle average of the conductivity change of blood 4o}, (left)
and its amplitude 46, (right) are shown.

An overview of the distribution of the results of the Qols is necessary
to analyse the behaviour of different model assumptions and differences
in their mechanics. Here, the distribution of the cycle average of the
blood conductivity change of the model assumption (1) (Fig. 7 left,
model (1)) shows inaccurate results. Its distribution is characterized by
a median value slightly larger than zero and by a prolonged negative
tail. As visible, such results are inaccurate in expressing the incre-
ment of conductivity of flowing blood. Theoretically, during the flow
condition, RBCs are oriented and deformed by the shear rate. The
steady flow assumption has been developed for the computation of
the electrical conductivity of blood, given its simplicity and easiness in
implementation. Results of its use are also compared to experimental
results [18]; however, those comparisons stand only for a few particular
cases and combinations of the input domain. Thus, since most of the
distributions of the conductivity change Aoy, are below the zero value,
model (1) indicates the inability of the steady flow assumption in
computing such Qol, given the variability of the input parameters.
Furthermore, due to the steadiness of the flow, the amplitude of the
conductivity change of blood is absent, which stresses the inability of
such assumption in emulating the nature of such measurement. As a
consequence, the steady flow model assumption is not considered for
the following sensitivity analysis.

The results for model assumptions (2) and (3) are not only compa-
rable, but also more realistic when compared to the real behaviour of
the Aoy, signal. In previous deterministic models [19-21], 4oy, is shown
to oscillate between 10% and 20 %. Lack of previous studies on the
variation of such outputs for different fluid and flow assumptions lead
to the conclusion that the present results are valid. The distributions
of Ao, show good agreement both in the median value and the tail
of the distributions. Regarding the distribution of the amplitude of
conductivity change 46y,, see the right plot in Fig. 7, the assumption
of a non-Newtonian fluid highly increases the variability of this Qol.
Such a phenomenon has to be further investigated through a sensitivity
analysis among the models, with a particular interest in the output
Aby;. Nonetheless, both distributions show good agreement with the
nature of the Aoy, signal, and are therefore considered as reliable results
[19-21].

For the sake of completeness, the results of the pulsating flow
models are shown in Fig. 8. Here, the average trends over the simula-
tions of the conductivity change of blood, both for the Newtonian and
non-Newtonian fluid in pulsating flow, are plotted over a normalized
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Fig. 7. Box plots of the cycle average of conductivity change of blood (left) and its
peak-to-peak amplitude (right) for the three model assumptions.
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Fig. 8. Conductivity change of blood in time averaged over the simulations for a
Newtonian (in black) and non-Newtonian fluid (in blue), both in a pulsating flow
model assumption.

cardiac period. Noticeable is the similarity of expressing the delay
in decelerating when compared to the input sinusoidal wave of the
volumetric flow rate (Section 2.2.2), as researched in [21].

4.2. Sensitivity analysis

Before proceeding with the sensitivity analysis, an investigation of
the behaviour of the model is performed with the use of a scatter plot,
see Fig. 9, where the input parameters are projected in turn against
the two Qols. Here, the grey colour represents the use of the model (2)
assumption, while the black one refers to model (3). Furthermore, the
input space is normalized with respect to their input domain and 46y,
is represented in log scale for better visualization.

The scatter plots show that 4oy, is more sensitive to the variables
haematocrit H and the RBCs axes ratio a,/b,, which display a strong
linear relationship in both model assumptions. In addition, the volu-
metric flow rate Q,,.,, for model (2) also shows a linear trend, but all
the other input factors do not exhibit particular influence. As for the
amplitude of the conductivity change of blood 46, a clear difference
behaviour between the two model assumptions is visible. In model
(2), variables such as haematocrit H, volumetric flow rate Q,.,, and
flow rate ratio ¢ demonstrate a higher influence on 46,,. In model (3)
however, while H seems to maintain its impact on this output, O can
influence decreases. Instead, the flow rate ratio ¢ shows a new strong
linear trend. The output 44y, is also equally influenced by the RBCs axis
ratio ay/b, for both model assumptions.

Worthy of note is the difference in output domain coverage for 48y,
when switching from model (2) to model (3), see Fig. 9 bottom row. For
the latter, all the input variables show an exponential behaviour, apart
from ¢ in case of Non-Newtonian fluid and pulsating flow assumptions,
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Fig. 9. Scatter plot of the two quantities of interest, cycle average of change of blood conductivity 4cy, and its amplitude 46y, versus the model input parameters, normalized in
their domain (Table 1). The third dimension, the colour, represents different model assumptions: grey for model (2) and black for model (3).
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Fig. 10. Sensitivity indices on the mean value (top) and amplitude (bottom) of the
conductivity change of blood for model 2 (Newtonian fluid and pulsating flow) and
model 3 (non-Newtonian fluid and pulsating flow). The grey bars represent the first-
order sensitivity index; the black bars the total order sensitivity index. The variables
are sorted by first-order sensitivity index.

which suggest the presence of a level of interactions higher than for
the output 4cy,;. The use of scatter plots aids in identifying influential
parameters, however it can be deceiving and lead to refutation of
influential parameters [34]. This motivates the use of a variance-based
sensitivity analysis and the computation of Sobol’ indices.

Sensitivity analysis results are plotted in Fig. 10. The top two figures
refer to the first- and total-order Sobol’ indices on the cycle average of
the blood conductivity change 4cy, for models (2) and (3). In contrast,
on the bottom, the indices refer to the amplitude of blood conductivity
change 46y,.

Regarding the first-order sensitivity indices S; of the output 4oy,
(top figures in Fig. 10), the ranking of the most influential factors
is similar for both model (2) and (3) having the haematocrit value
of blood H as the most important one, followed by the RBCs axes

ratio a,/b, and the volumetric flow rate Q,,.,,- The haematocrit value
is the volume fraction of RBCs in the blood, thus proportional to
the number of RBC, which are considered to be non-conductive for
the electrical signal. The electrical signal follows the path with less
resistance; indeed, it is eased by fewer RBCs or by many oriented and
deformed cells. This result confirms the influence on the mean value
in time of the Aoy, of both the haematocrit value H and the RBCs axes
ratio a,/b, before the deformation of such cells takes place.

The interaction effect is estimated by the difference between the
first- and total-order sensitivity indices. An analysis of the total order
Sobol’ indices ST of the same output (black bars in the top two figures
of Fig. 10), firstly highlights the presence of low interactions between
the parameters; thus the model could be considered additive in the
output 4cy;. Secondly, it drives the discussion in considering variables
as constant values for the model, i.e. applying the Factor Fixing setting,
since any variation in their value will not affect the considered model’s
response. Such variables are the viscosity of plasma ;,, the conductivity
of plasma Opis the flow rate ratio ¢, the heart rate f and the blood
density p.

Different behaviour is shown for the sensitivity analysis on the
amplitude of blood conductivity change 44y, see Fig. 10 bottom fig-
ures. Model (2) (left picture) confirms that the haematocrit value gives
the principal influence on the output H mainly and secondly the
volumetric flow rate Q,.,,. Such influence is explained by the presence
of H in both (16) for the computation of the viscosity of blood and
in the Maxwell-Fricke theory (4). Both equations form the basis for
calculating the blood conductivity and the fluid mechanical model, so
affecting the shear rate of the flow and then the RBCs deformation.
To be noticed is also the increment in interaction terms in the model
for this particular output, contrary to what was discussed for 4sy,, see
Fig. 10 left-top.

By looking at the sensitivity analysis results for the non-Newtonian
fluid model, Fig. 10 right-bottom, it is clear how the mechanics for the
computation of the electrical conductivity is altered. Here, the highest
first-order sensitivity indices are recorded in the flow rate ratio ¢, and
in the RBCs axes ratio a,/b,. Also, the haematocrit level H shows a high
influence on the model’s Qol, but its value is not the highest recorded.
The reason for such change of mechanics has to be found in the change
of formulation between the Newtonian and the non-Newtonian fluid
models. In the non-Newtonian formulation, the viscosity model of [2]
(16) is not implemented, given the non-linearity of the viscosity model.
Therefore, other factors act on the variation of the flow shear rate and
resulting shear stress. In particular, the flow rate ratio, as defined in
(29), which has a direct influence on the shear rate in the flow, which
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Fig. 11. Sensitivity indices of the global analysis between different model assumption
on the mean value of blood conductivity change (left) and on its amplitude (right).
The variables are sorted by first-order sensitivity index.

further influences the RBCs deformed configuration in (2). Besides, the
undeformed configuration of the RBCs a,/b, is as crucial as ¢ in the
final computation of the amplitude of blood conductivity change 46;.
Finally, once the deformation of the RBCs has taken place, the C factor
of (4) is consequently affected.

The sensitivity analysis among the model assumptions is presented
in Fig. 11. Again, the left part of the figure represents the first- and
total-order sensitivity indices of the cycle average of the blood con-
ductivity change 4o0},. In contrast, the right picture refers to the Qol
amplitude of blood conductivity change 46,;. As expected, the change
of the model assumptions affects both outputs largely, since the 7rigger
factor has the highest first-order sensitivity index. These results stress
the need for a clear identification of the model that is used for the
computation of both Qols. However, although the trigger’s first-order
sensitivity index .S; is dominant on the other indices for the computa-
tion of Ao, the first Sobol’ index of the same input random variable has
a much lower value for the amplitude of As,,. Furthermore, its value
shares a similar value to the indices of the blood haematocrit level H.

When computing the amplitude of blood conductivity change, the
model shows a high interaction between the input random variables, as
it is visible by the higher values of SI.T in Fig. 11 right with respect to
the .S;. This translates in non-additive model behaviour, besides being
non-linear. However, such high interaction effect seems to disappear
when it is about the QoI 4oy,.

5. Conclusions

The study showed how to reduce the uncertainty of electrical con-
ductivity of flowing blood and analysed the impact of different model
assumptions on such blood property. The conductivity model described
in Section 2.1 is coupled with three different fluid mechanics model
assumptions, namely Newtonian fluid and steady flow, Newtonian fluid
and harmonically pulsating flow, non-Newtonian fluid and harmoni-
cally pulsating flow. A global sensitivity analysis (gSA) is performed
within fluid mechanics models, and among them in order to better
understand the impact of such assumptions. Given the scope of the
study that is to reduce the variability in the model outputs, a variance-
based method and a surrogate model, i.e. polynomial chaos expansion,
are employed. The surrogate model is solved either with ordinary least
square (OLS) or with the least-angle regression (LARS), which selection
is due to the computational cost of each model assumption. The com-
putation of the Sobol indices as quantitative measures of input factors
sensitivity is performed through the solution of the surrogate model.
Other sensitivity analysis methods, e.g. non-parametric or density-
based, are discarded from this study due to the unclear behaviour of
the model prior to the analysis.

Two outputs are considered as quantities of interest: the average
value over one cardiac cycle of the blood conductivity change Aoy, and
its amplitude, namely 4o}, and 46y,.
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Initial analysis of the distribution of the results underlines the
inability of a steady flow model assumption in representing the natural
behaviour of the blood conductivity changes and, as might be expected,
its amplitude response. Therefore, a steady flow model assumption is
left out from the sensitivity analysis and considered inadequate for the
aim of the study.

The sensitivity analysis shows that the haematocrit level of the
blood generally has the highest effect on the average value of the
conductivity change of blood for both a Newtonian and non-Newtonian
formulation of the fluid. Such a result is confirmed by the theoretical
formulation of the problem that has been primarily investigated in
the past literature. These research works stress indeed the effect that
non-conductive red blood cells have on the computation of blood con-
ductivity. However, switching to a shear-thinning generalized model
for the computation of the conductivity change amplitude, the effect of
the haematocrit level of the blood loses its dominance in the influence
of the model in favour of the flow rate ratio between pulsating and
steady flow and the undeformed RBCs axes ratio. This change in model
mechanics better represents the physicality of the electrical character-
istics of blood. Therefore, the non-Newtonian formulation enables a
different path for the computation of the changes in the conductivity
of blood, considering the pulsation of the flow and the patient-specific
characteristics of the RBCs. This random variable was demonstrated to
be more influential than the haematocrit level. In conclusion, given
the different results from the sensitivity analysis for the two model
responses, the choice of the quantity of interest for any further compu-
tation has to be thoughtfully considered. Further development of the
flow model, including physiologically accurate volumetric flow rates
and elasticity of the pipe wall, may deepen these investigations and
initiate to new scientific challenges.
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