Concentrated load introduction in CLT elements perpendicular to plane

EUROMECH Colloquium 556

May 27-29, 2015 Dresden, Germany Theoretical, Numerical and Experimental Analyses in Wood Mechanics http://556.euromech.org

Thomas Bogensperger

holz.bau forschungs gmbh Inffeldgasse 24/I, A-8010 Graz

Robert August Jöbstl

Haas Fertigbau Holzbauwerk GmbH & Co KG Haas Holzprodukte GmbH, Radersdorf 62, A-8263 Großwilfersdorf/Industriestraße 8, D-84326 Falkenberg

Das Kompetenzzentrum für Holzbau und Holztechnologie

im Bautechnikzentrum der Technischen Universität Graz

Introduction Cross Laminated Timber (CLT)

content

- Short introduction/motivation
- Verifications (ULS) of CLT plates under bending/shear (engineering level)
- Research of Mestek (PhD at Munich University of Technology, 2011)

Test configuration

forschungs gmbh

- bending configuration geometry, typ of CLT plate, chosen cross sections
- Inear elastic analysis
- ULS verifications (bending, shear), expected failure modes
- Outlook: shear configuration

Test results

holz.bau

- overview of test programm,
- load displacement curves & statistical evaluation of results
- observed failure mechanisms

Mechanical model

- Material parameters/length-effect of brittle material (timber tension members)
- Numerical model and comparison to test results

Summary and outlook

Overview & Cross Laminated Timber (CLT)

Cross Laminated **T**imber (CLT)

forschungs gmbh

London (UK) - 8F

and

. . . .

© Pirmin Jung

... examples of implementation

with / without transverse pressure in and / or across the direction of production

Overview & Cross Laminated Timber (CLT)

Cross Laminated Timber (CLT)

Verifications (ULS) of CLT plates under bending/shear (engineering level)

Research of P. Mestek (PhD at Munich University of Technology, 2011)

PhD Mestek: (punching) shear behaviour of (vacuum-pressed) CLT with reinforcement (45° screws) \rightarrow only few tests without reinforcement

Our focus: (punching) shear behaviour of CLT without reinforcement

Research of P. Mestek (PhD at Munich University of Technology, 2011)

Based on test results in Mestek an elastic **rolling shear strength** of 2,06 – 2,25 N/mm² can be concluded.

 $f_{v.90.05} \approx 2,25$ N/mm² (+80% for our investigations)

content

Introduction Cross Laminated Timber (CLT)

- Short introduction/motivation
- Verifications (ULS) of CLT plates under bending/shear (engineering level)
- Research of Mestek (PhD at Munich University of Technology, 2011)

Test configuration

forschungs gmbh

- bending configuration geometry, typ of CLT plate, chosen cross sections
- linear elastic analysis
- ULS verifications (bending, shear), expected failure modes
- Outlook: shear configuration
- Test results

- overview of test programm,
- load displacement curves & statistical evaluation of results
- observed failure mechanisms
- Mechanical model
 - Material parameters/length-effect of brittle material (timber tension members)
 - Numerical model and comparison to test results
- Summary and outlook

Parameters of test configuration

forschungs gmbh

- Failure mechanism (bending failure, shear (punching) failure)
- Size and thickness of test elements
- Number of layers (CLT 5s, CLT 7s)
- Support of CLT (two-four side boundary condition, ...)
- Load introduction (local reinforcement)

•

holz.bau

Numerical study (FEM) for investigation of these parameters

Test configuration in Graz

Test configuration Phd Mestek

bending configuration geometry CLT 7s

forschungs gmbh

- type of CLT plate
- chosen cross sections
- chosen load introduction (25/25 cm and reinforcement with screws)
- solution of support (tension rods)

CLT 5s

162 mm

ULS verifications (bending, shear), expected failure modes

type	calulated		m	x	m	l _y	q _x	q _y	
			[kNcr	i/cm]	[kNcr	ı/cm]	[kN/cm]	[kN/cm]	
	188,9	m_{\scriptscriptstyleEd}	102	.53	29,	16	1,57	1,05	
CLT-5s	kN	m_{Rd}	102,53		40, <mark>4</mark> 1		2,98	1,55	
		utilisation	100,	0%	72,	2%	52,7%	68,2%	
	304,50	m_{\scriptscriptstyleEd}	61,	06	67	87	1,55	1,59	
CLT-7s	KN	m _{Rd}	79,94		67,87 0		2,78	2,31	
		utilisation	76,2	4%	100	,0%	55,6%	69,1%	

CLT

conclusions:

forschungs gmbh

holz.bau

- CLT-5s support only along two short sides bending failure in main span direction can be predicted
- CLT-7s
 support along all four sides
 bending failure perpendicular to main span direction can be predicted

0

Outlook: shear configuration

forschungs gmbh

Properties of
chosen CLT
sections

holz.bau

element	E ₀	E ₉₀	G ₀	G ₉₀	#	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t _{ges}
	N/mm²	N/mm²	N/mm²	N/mm²		mm	mm	mm	mm	mm	mm	mm	mm
CLT-5s	11.600	300	690	50	5	34	30	34	30	34	-	-	162
CLT-7s	11.600	300	690	50	7	19	30	19	30	19	30	19	166

content

Introduction Cross Laminated Timber (CLT)

- Short introduction/motivation
- Verifications (ULS) of CLT plates under bending/shear (engineering level)
- Research of Mestek (PhD at Munich University of Technology, 2011)

Test configuration

forschungs gmbh

- bending configuration geometry, typ of CLT plate, chosen cross sections
- linear elastic analysis
- ULS verifications (bending, shear), expected failure modes
- Outlook: shear configuration

Test results

holz.bau

- overview of test programm,
- load displacement curves & statistical evaluation of results
- observed failure mechanisms

Mechanical model

- Material parameters/length-effect of brittle material (timber tension members)
- Numerical model and comparison to test results
- Summary and outlook

Executed test program

forschungs gmbh

holz.bau

5-layered, uniaxial loaded CLT (CLT 5s)

7-layered, biaxial loaded CLT (CLT 7s)

cross sections of CLT elements

CLT	producer	quantity	#layers	t _{ges}	t,	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇
		[-]	[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
B_B_5s	producer 1	3	5	162	34	30	34	30	34		
B_B_7s	producer 1	3	7	166	19	30	19	30	19	30	19
C_B_7s	producer 2	3	7	170	20	30	20	30	20	30	20
Sum		9 pieces									

Thomas Bogensperger | R. A. Jöbstl

Experimental load – displacement curves for CLT 5s

holz.bau

Experimental load – displacement curves for CLT 7s

holz.bau

forschungs gmbh

Test results versus linear elastic FEM predictions

	F _{failure} [kN]	Observed failure in labor	Predicted failure based on FEM	F _{0,05} [kN] (Prediction)
5s-1 (producer 1)	229,5	Bending (longitudinal, finger joint)	Longitudinal bending	
5s-2 (producer 1)	242,7	Bending (longitudinal, finger joint)	Longitudinal bending	
5s-3 (producer 1)	241,0	Bending (longitudinal, knot failure)	Longitudinal bending	
Mean value	237,7	$\sim \sim 26\%$	、	199.0
COV [%]	3,0	$\leftarrow \leftarrow \sim 20 / 0 \rightarrow$	100,9	
7s-1 (producer 1)	281,8	Bending (longitudinal, finger joint)	transverse bending	
7s-2 (producer 1)	317,1	Bending (transverse)	transverse bending	
7s-3 (producer 1)	338,6	Bending (transverse)	Transverse bending	
Mean value	312,5			227.0
COV [%] 9,2		$\leftarrow \leftarrow 30\% \rightarrow -$	227,0	
7s-1 (producer 2)	336,4	Bending (longitudinal)	transverse bending	
7s-2 (producer 2)	353,0	Bending (longitudinal)	transverse bending	
7s-3 (producer 2)	393,1	Bending (longitudinal)	transverse bending	
Mean value	360,8			
COV [%]	8,1			

Observed primary failures of CLT 5s

uniaxial load behaviour Bending failure in top layer (primary failure) Failure due to rolling shear (secondary failure)

failure of CLT 5s

Observed primary failures of CLT 7s

Bending failure in top layer (primary failure, 4x) Bending failure in second layer (primary failure, 2x)

Failure due to rolling shear (secondary failure)

failure of CLT 7s

Observed secondary rolling shear failures (e.g. CLT 7s)

cross section perpendicular to top/bottom lamella

cross section parallel to top/bottom lamella

holz.bau

content

Introduction Cross Laminated Timber (CLT)

- Short introduction/motivation
- Verifications (ULS) of CLT plates under bending/shear (engineering level)
- Research of Mestek (PhD at Munich University of Technology, 2011)

Test configuration

forschungs gmbh

- bending configuration geometry, typ of CLT plate, chosen cross sections
- linear elastic analysis
- ULS verifications (bending, shear), expected failure modes
- Outlook: shear configuration

Test results

holz.bau

- overview of test programm,
- load displacement curves & statistical evaluation of results
- observed failure mechanisms

Mechanical model

- Material parameters/length-effect of brittle material (timber tension members)
- Numerical model and comparison to test results
- Summary and outlook

Elastic values and mean tension strength (in fibre direction)

Elastic constants of CLT

Stiffness	value
E _o	12000 N/mm ²
E ₉₀	370 N/mm²
G ₀	690 N/mm²
$G_{90}(G_R)$	50 N/mm²

Various tests results bending tension of CLT

client	Number	Mean value N/mm²
1	4	44,2
1	8	40,6
2	10	56,46
3	41	37,2
3	20	39,4
4	9	37,4

Effects due to poisson numbers are neglected!

 \rightarrow mean value over all tests: 39 N/mm²

Mean Tension and compression strength in fibre direction perpendicula

Sources for strength values:

- in fibre direction: scientific test program (Comet P01, LS0231) at competence centre holz.bau forschung and Diploma thesis RULI 2008 at Institut for timber engineering and wood technology at TU GRAZ
- Perpendicular to fibre direction: Diploma thesis RULI 2008/Master thesis STUEFER 2011

holz.bau

Shear failure happens subsequently \rightarrow softening behaviour not considered in models with bending failure

Sources for strength values:

- in fibre direction: G. Schickhofer: Determination of Shear Strength Values for GLT using Visual and Machine Graded Spruce Laminations, CIB W18 34th, Venice, 2001
- **Perpendicular to fibre direction:** Master thesis **Ehrhard** 2014 Institut for timber engineering and wood technology at TU GRAZ

holz.bau

forschungs gmbh

Length effect

Test site/arrangement for experimental investigation of length effect of brittle materials (2005-07)

Illustration of mean size effect of brittle materials (acc. to Bažant)

Length effect

forschungs gmbh

FEM Model: shell-solid elements

holz.bau

FEM Model: shell-solid elements

holz.bau

FEM Model: shell-solid elements CLT 5s (two side support)

In tension zone: one row of elements with softening material behaviour

holz.bau

FEM Model: shell-solid elements CLT 5s (two side support)

holz.bau

FEM Model: shell-solid elements CLT 7s (all side support)

holz.bau

content

Introduction Cross Laminated Timber (CLT)

- Short introduction/motivation
- Verifications (ULS) of CLT plates under bending/shear (engineering level)
- Research of Mestek (PhD at Munich University of Technology, 2011)

Test configuration

forschungs gmbh

- bending configuration geometry, typ of CLT plate, chosen cross sections
- linear elastic analysis
- ULS verifications (bending, shear), expected failure modes
- Outlook: shear configuration

Test results

holz.bau

- overview of test programm,
- load displacement curves & statistical evaluation of results
- observed failure mechanisms

Mechanical model

- Material parameters/length-effect of brittle material (timber tension members)
- Numerical model and comparison to test results

Summary and outlook

Summary

forschungs gmbh

- Developed test configurations and test results of local concentrated load introduction into CLT plates were shown. An observed apparently ducility can be explained with the ductility of compression perpendicular to grain.
- Expected and observed failures and load capacities were presented.
- Bending tests were computed with a numerical FE model. All implemented strength values are deducted from a pool of test results (various research programs, master and diploma thesis).
- Well known length effect is applied to brittle tension strength.
- Good congruence between test tesults and numerical results can be achieved.
- Numerical results are about 15% higher than results from experimental

... and outlook

forschungs gmbh

holz.bau

- This disagreement between numerical model and test results (~15%) can be explained with lack of interaction conditions in strenth model.
 - \rightarrow IMPLEMENTATION of MATERIAL with full coupled stress interactions
- Transverse bending strength seems to be higher than well known bending strength in main direction
 - \rightarrow stress redistribution possible at both sides of layer
 - \rightarrow can be expected up to 20%
 - \rightarrow OPEN field for scientists:

experimental and/or theoretical based proof is still missing

Contact

DI Dr.techn. Thomas Bogensperger

holz.bau forschungs gmbh +43 (0) 316 873-4608 bogensperger@tugraz.at Inffeldgasse 24/I, A-8010 Graz

Das Kompetenzzentrum für Holzbau und Holztechnologie

im Bautechnikzentrum der Technischen Universität Graz

Properties of	elemen t	E ₀	E ₉₀	G ₀	G ₉₀	#	t,	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t _{ges}
elected CLT sections		N/mm²	N/mm²	N/mm²	N/mm²		mm	mm	mm	mm	mm	mm	mm	mm
	CLT-5s	11.600	300	690	50	5	34	30	34	30	34	-	-	162
Thomas Bogensperger R. A.	<u> Jöbstl</u>													

Experimental load displacement curves for CLT 5s

holz.bau

Experimental load displacement curves for CLT 7s

holz.bau

