

Outlook

- Introduction
- Standard Characterisation Techniques
- Online Monitoring Techniques
 - State of Art Real Time Techniques (VM, CVM, EIS)
 - Current Mapping (CM)
 - Single Frequency Impedance Monitoring (sEIS)
 - Total Harmonic Distortion Analysis (THDA)
- New Approaches at TU Graz
 - Spatial Impedance Spectroscopy
 - Spatial THDA
- Conclusion

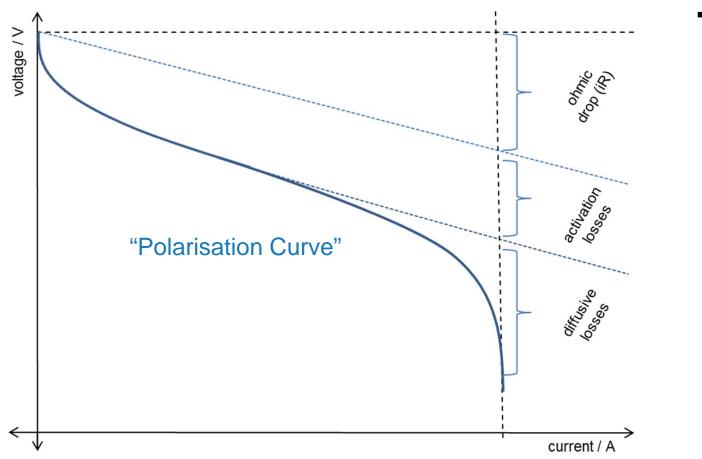
CEET

Reasons for Advanced Online Analysis

- Basis for improved Real Time Control Concepts
 - Static loads → Dynamic loads
- Avoiding critical states improves lifetime
 - No Flooding → Less Carbon Corrosion
 - No Drying → Increased Membrane Lifetime
- Advanced RT Analysis enables very efficient operation of fuel cells
 - Dead end operation → Higher fuel efficiencies
- Enables improved cell/stack design (Spatial information)
- Scientific Interests

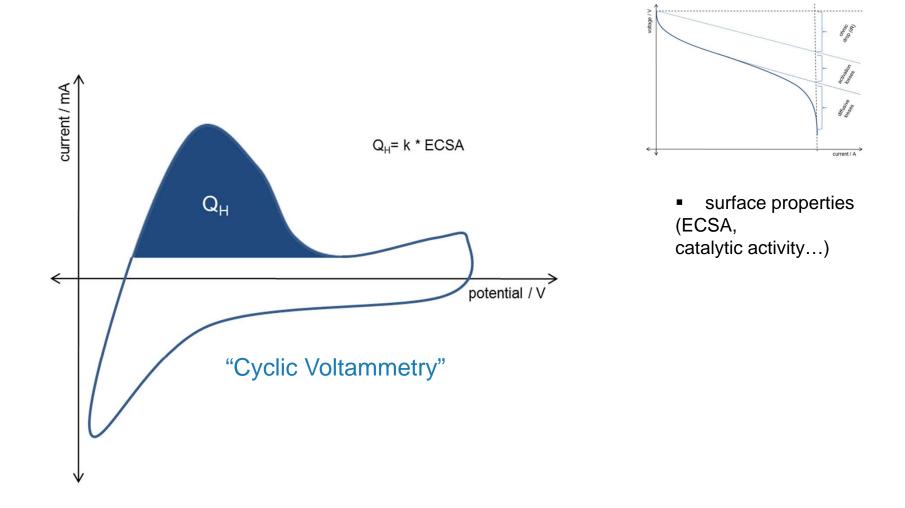
CEET

- What happens in a fuel cell stack?
- Spatial information could be compared with simulation results

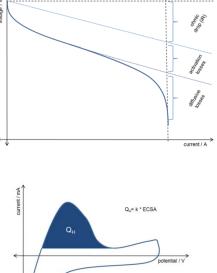


- Introduction
- Standard Characterisation Techniques
- Online Monitoring Techniques
 - State of Art Real Time Techniques (VM, CVM, EIS)
 - Current Mapping (CM)
 - Single Frequency Impedance Monitoring (sEIS)
 - Total Harmonic Distortion Analysis (THDA)
- New Approaches at TU Graz
 - Spatial Impedance Spectroscopy
 - Spatial THDA
- Conclusion

CEET



- performance
- efficiency



What are the most applicable methods for online/real time analysis of Fuel Cell Stacks? What is the benefit of that method?

	Method	Information	Usability		
S.O.4	Polarisation curve	performance, efficiency	laboratory		
	Cyclic Voltammetry (CV)	surface properties (ECSA, catalytic activity)	laboratory		
	Cell Voltage Monitoring (CVM)	single cell voltages	laboratory, during operation		
× ×	Electrochemical Impedance Spectroscopy (EIS)	quantification of loss mechanisms	laboratory, during operation		
	Total Harmonic Distortion Analysis (THDA)	detection of critical states	laboratory, during operation		

- Introduction
- Standard Characterisation Techniques
- Online Monitoring Techniques
 - State of Art Online Techniques (VM, CVM, EIS)
 - Current Mapping (CM)
 - Single Frequency Impedance Monitoring (sEIS)
 - Total Harmonic Distortion Analysis (THDA)
- New Approaches at TU Graz
 - Spatial Impedance Spectroscopy
 - Spatial THDA
- Conclusion

CEET

Voltage Monitoring (VM)

- $\checkmark\,$ The simplest method for real time monitoring
- ✓ Sudden changes in voltage cannot be assigned to a certain phenomena

Cell Voltage Monitoring (CVM)

Impedance Spectroscopy (EIS)

Voltage Monitoring (VM)

Cell Voltage Monitoring (CVM)

- ✓ Very simple method for real time monitoring
- Sudden changes in voltage can be assigned to a certain cell
- $\checkmark\,$ Reason for voltage change stays unknown
- ✓ Increased efforts for wiring necessary

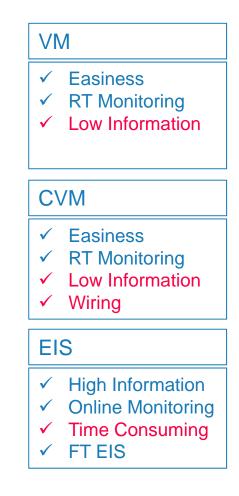
Impedance Spectroscopy (EIS)

CEET

VN	Л
	Easiness RT Monitoring Low Information

Voltage Monitoring (VM) Cell Voltage Monitoring (CVM)

Impedance Spectroscopy (EIS)

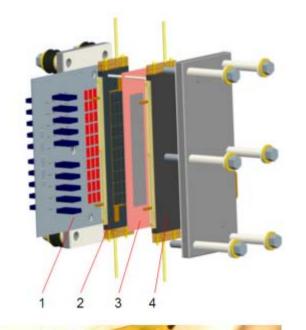

- ✓ High information content
- ✓ Possible during operation (Online)
- \checkmark Too time consuming for real time monitoring

V	N
✓ ✓ ✓	Easiness RT Monitoring Low Information
C'	VM
✓ ✓	Easiness RT Monitoring Low Information

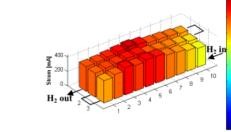
Voltage Monitoring (VM) Cell Voltage Monitoring (CVM) Impedance Spectroscopy (EIS)

Stockholm, 12th September 2013

CEET


- Introduction
- Standard Characterisation Techniques
- Online Monitoring Techniques
 - State of Art Online Techniques (VM, CVM, EIS)
 - Current Mapping (CM)
 - Single Frequency Impedance Monitoring (sEIS)
 - Total Harmonic Distortion Analysis (THDA)
- New Approaches at TU Graz
 - Spatial Impedance Spectroscopy
 - Spatial THDA
- Conclusion

CEET


Current Mapping

()==T

15

Air IN-	▶ 1	2	3	4	5	6	7	8	9	10	
	- 20	19	18	17	16	15	14	13	12	11	┙
	▶ 21	22	23	24	25	26	27	28	29	30	← → Air Out

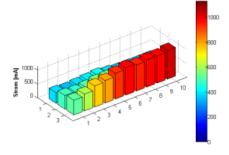
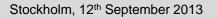



Abbildung 26: Versuchsreihe "A 1": 0 Zyklen: Stromverteilung während der Aufnahme der UI-Kennlinie bei 400mA/cm²

Abbildung 29: Versuchsreihe "A 1": Stromverteilung während eines Starvation-Intervalls bei Zyklus 0 bis 100

[Baumgartner, TU Graz] [Geymeyer, TU Graz]

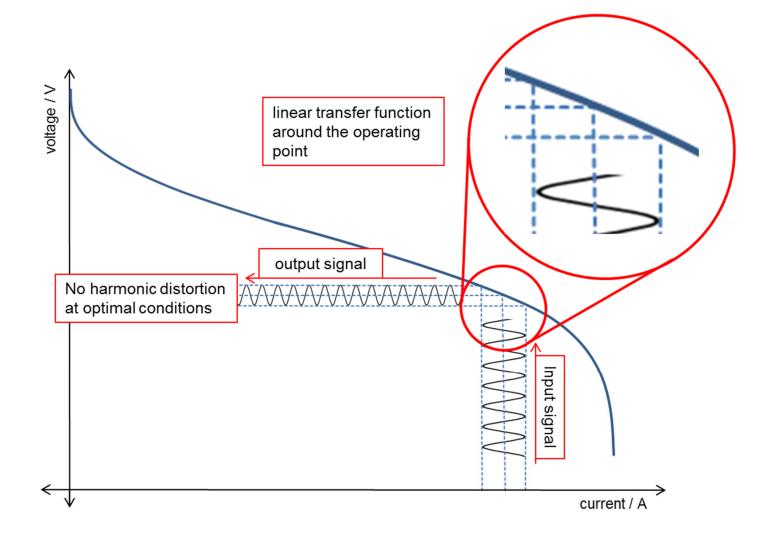
- Introduction
- Standard Characterisation Techniques
- Online Monitoring Techniques
 - State of Art Online Techniques (VM, CVM, EIS)
 - Current Mapping (CM)
 - Single Frequency Impedance Monitoring (sEIS)
 - Total Harmonic Distortion Analysis (THDA)
- New Approaches at TU Graz
 - Spatial Impedance Spectroscopy
 - Spatial THDA
- Conclusion

CEET

Graze

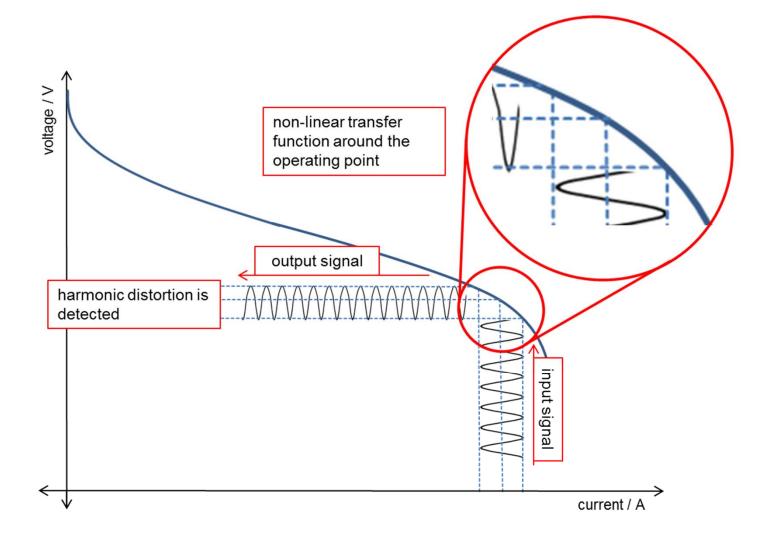
Single Frequency Impedance Spectroscopy

- The electrochemical impedance at one distinctive frequency is monitored
 - → Improved acquisition time
 - \rightarrow Lower information than in common EIS
 - ➔ Control variable?
- Changes in the stack/cell voltage may be assigned to certain phenomena
- Parallel superposition of a few frequencies and evaluation of the frequency response after FT is also possible


- Introduction
- Standard Characterisation Techniques
- Online Monitoring Techniques
 - State of Art Online Techniques (VM, CVM, EIS)
 - Current Mapping (CM)
 - Single Frequency Impedance Monitoring (sEIS)
 - Total Harmonic Distortion Analysis (THDA)
- New Approaches at TU Graz
 - Spatial Impedance Spectroscopy
 - Spatial THDA
- Conclusion

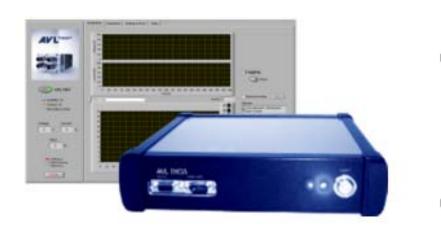
CEET

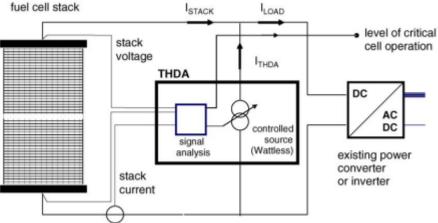
Total Harmonic Distortion Analysis (THDA)

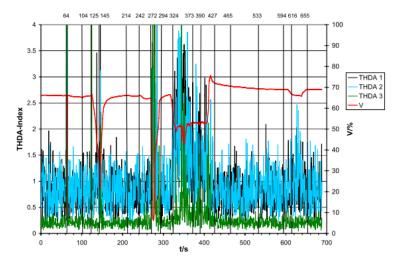


GEET

Total Harmonic Distortion Analysis (THDA)



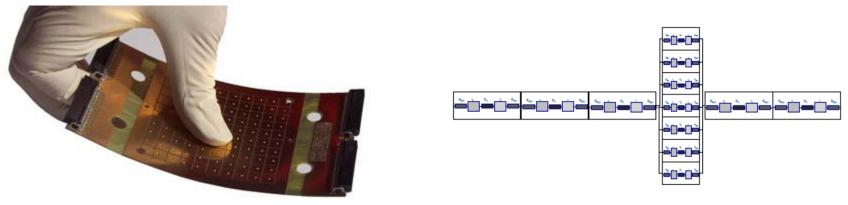

GEET



Total Harmonic Distortion Analysis (THDA)

→ THDA (nonlinear response)
→ FT EIS (linear response)

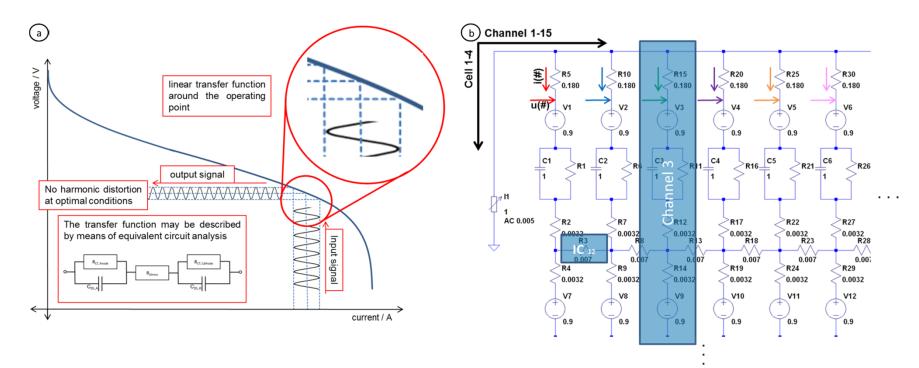
- Introduction
- Standard Characterisation Techniques
- Real Time Monitoring Techniques
 - State of Art Real Time Techniques (VM, CVM, EIS)
 - Current Mapping (CM)
 - Single Frequency Impedance Monitoring (sEIS)
 - Total Harmonic Distortion Analysis (THDA)
- New Approaches at TU Graz
 - Spatial Impedance Spectroscopy
 - Spatial THDA
- Conclusion


CEET

Spatial Approaches

- Based on a previous THDA project a new hardware device is developed and tested at TU Graz
- The basic idea is to extend the THDA and EIS approach from 0D to 2D and consequently to 3D
- Therefore a special data acquisition hardware is necessary
- Two sensor plates plus two different hardware interfaces for preprocessing
- Signal is imposed on the whole stack

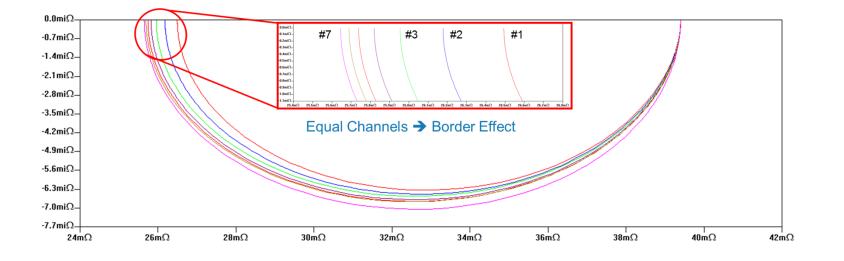
CEE



CEET

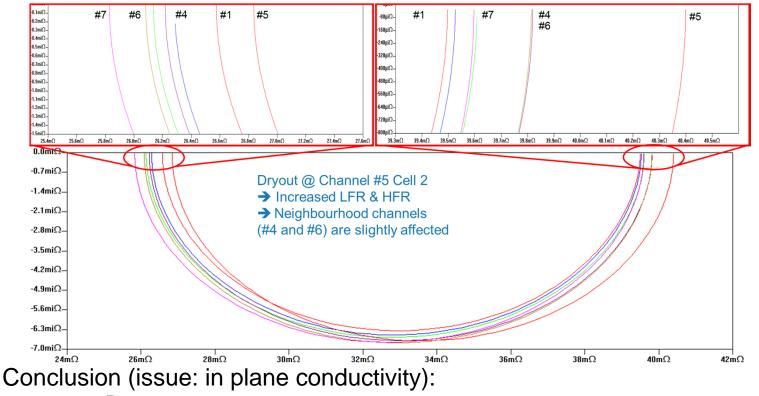
Spatial Impedance spectroscopy

- Spatial approach needs a spatial equivalent circuit (lab scale)
- Online/Real Time Analysis needs an assumption of the current distribution


 \rightarrow In plane conductivities have to be taken into account

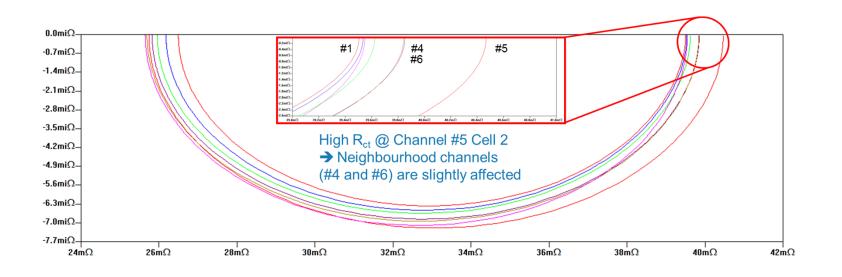
[Weinberger]

ণের্র্বা 24



Conclusion (issue: in plane conductivity):

- → Higher HFR at outer segments compared to isolated segments
- →Inner segments show less effect of in plane conductivity (equal segments)


→ Higher HFR at outer segments compared to isolated segments

➔Inner segments show less effect of in plane conductivity (equal segments) Conclusion (issue: membrane dry out):

- →Increased HFR and LFR at affected "channel"
- → Adjacent channels show a little increase at HFR and LFR

Conclusion (issue: in plane conductivity):

→ Higher HFR at outer segments compared to isolated segments

→Inner segments show less effect of in plane conductivity (equal segments) Conclusion (issue: membrane dry out):

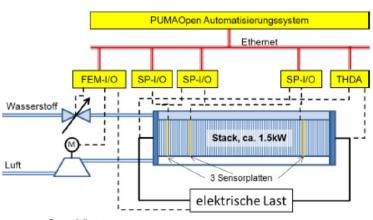
→Increased HFR and LFR at affected "channel"

→ Adjacent channels show a little increase at HFR and LFR

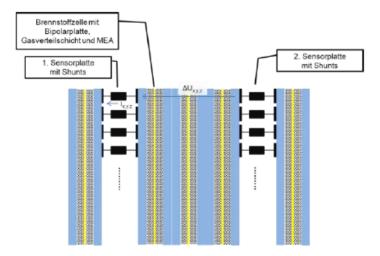
Conclusion (issue: increased charge transfer resistance):

➔Increased LFR at affected "channel"

→ Adjacent channels show a little increase at LFR


CEET

Spatial THDA


- First measurements will be conducted with an Air Cooled stack from Intelligent Energy at TU Graz and at UCL
- 1.5 kW stack equipped with the new technology will be tested at AVL consequently
- Results coming soon

CEET

28

[AVL]

Conclusion

ICEET

- Advanced Online Analysis leads to a better understanding of Fuel cells
 - → Continuous State of Health monitoring
 - ➔ Comparison to Simulation Results
- Real Time Analysis enables very efficient operation of FCs
- Critical Operating states may be avoided
 Increased Lifetime
- Enables further improvements of stack/cell design

QUESTIONS?

CEET Research Activities ANNEX 27

Stephan Weinberger stephan.weinberger@tugraz.at

Institute of Chemical Engineering and Environmental Technology Graz University of Technology

(933)

31

TU Graz | Institute of Chemical Engineering and Environmental Technology

