

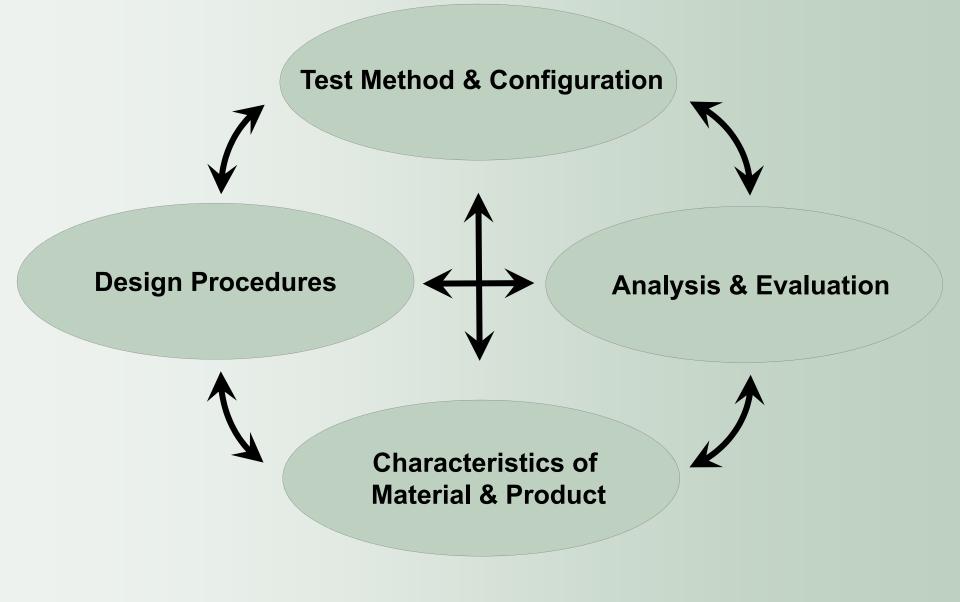
Determination of Shear Strength of Structural and Glued Laminated Timber

R. Brandner, W. Gatternig, G. Schickhofer

CIB-W18 Meeting 27th to 30th August 2012 Linnaeus University | Växjö | Sweden

Reinhard Brandner

CIB-W18 | Växjö Sweden | 27th-30th August 2012



- General Thoughts
- Test Program & Results
- Conclusions

- General Thoughts
- Test Program & Results
- Conclusions

Main Influences (generally and on Shear Characteristics)

- (i) Climatic Conditions
- (ii) Material Structure (Relationships; Size & Scale Effects)
- (iii) Test Method & Configuration
- (iv)Duration of Load & Cyclic and / or Dynamic Loading

Ad (i) Climatic Conditions

Literature source (<mark>f</mark> v)	Moisture Content (u)	Temperature (T)
Pine [Kollmann, 1951]	~2.4% / 1% Δ MC	
Southern Pine [Kretschmann & Green, 1994]	~2.7% / 1% Δ MC	
Douglas Fir & Southern Pine [Rammer & McLean, 1996]	~5.3% / 1% Δ MC	
[Gerhards, 1980]	~2.6% / 1% Δ MC	0.4% / Δ 1 C

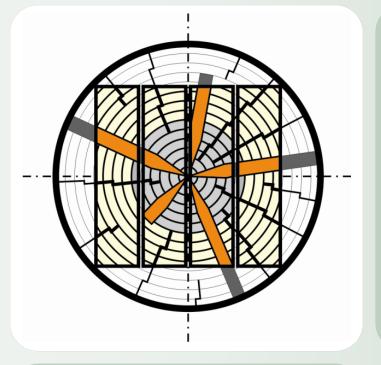
 PROPOSAL

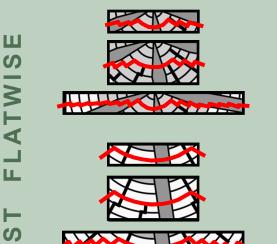
 $\rightarrow u_{ref} = 12\% | T_{ref} = 20^{\circ}C$
 $\rightarrow f_v$ -3% / +1% u, for $8\% \le u \le 20\% | -- / \pm 1^{\circ}C$, for $15^{\circ}C \le T \le 25^{\circ}C$
 $\rightarrow G_{090}$ -1% / +1% u, for $8\% \le u \le 20\%$

Ad (ii) Material Structure (Relationships; Size & Scale Effects)

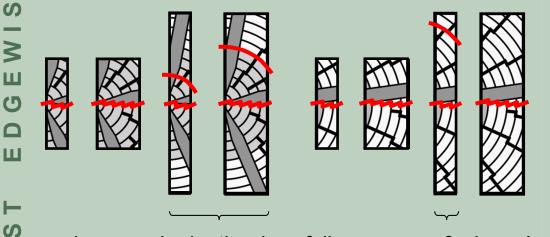
- f_{v,RL} positively correlated with ρ₁₂; f_{v,TL} ≠ f {ρ₁₂}
 → in TL failure in earlywood; in RL shearing of early- and latewood!
- f_v positively correlated with G₀₉₀
- f_{v,RL} significantly affected by σ₉₀; f_{v,TL} minor! (Keenan, 1973 & 1974)

Ad (ii) Material Structure (Relationships; Size & Scale Effects)


- contrary to EN 338 (ST) & EN 1194 (GLT)
 - f_v is not or solely minor positively correlated with f_m!
 - ➔ f_v not significantly influenced by timber quality!

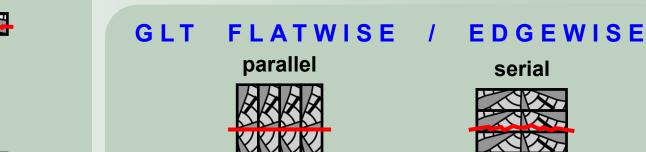

(e.g. Denzler & Glos, 2007; Gatternig, 2012; Schickhofer, 2001 (GLT); Rammer & Soltis, 1994)

- checks reduce f_v in RL; no or only minor effect on f_{v.TL}!
- knots increase f_v in TL; no or even a negative effect on f_{v,RL}!
 - ➔ f_v = f {radial position within the log; shear plane}



Ad (ii & iii): RADIAL POSITION | SHEAR PLANE | SIZE

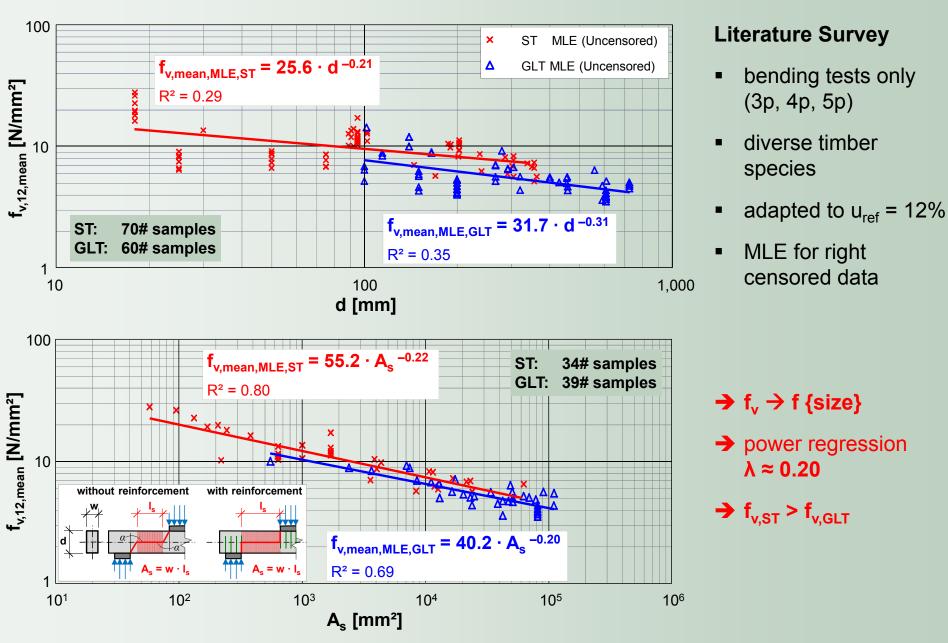
- \rightarrow shear failure mainly in RL!
- \rightarrow reduction of f_v by knots & checks!



increase in depth raises failure causes & planes!

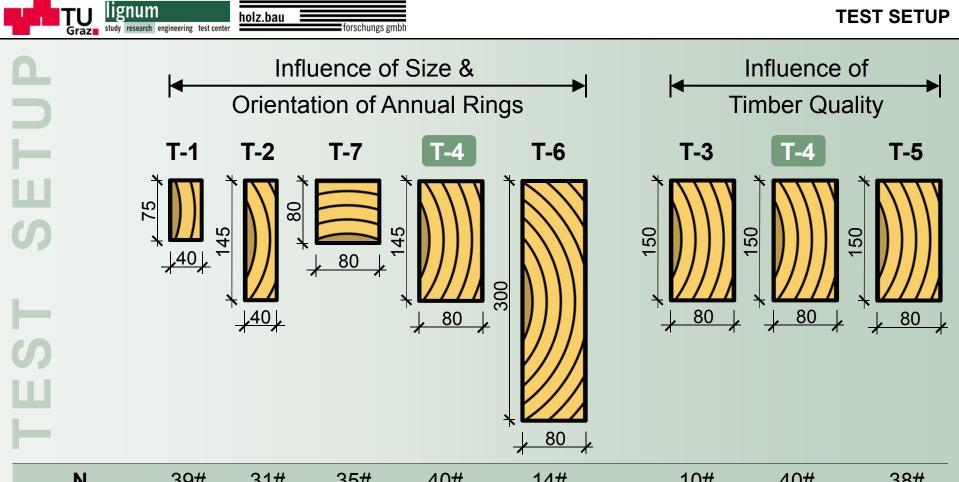
- \rightarrow shear failure mainly in TL & TL/RL!
- \rightarrow knots reinforce!

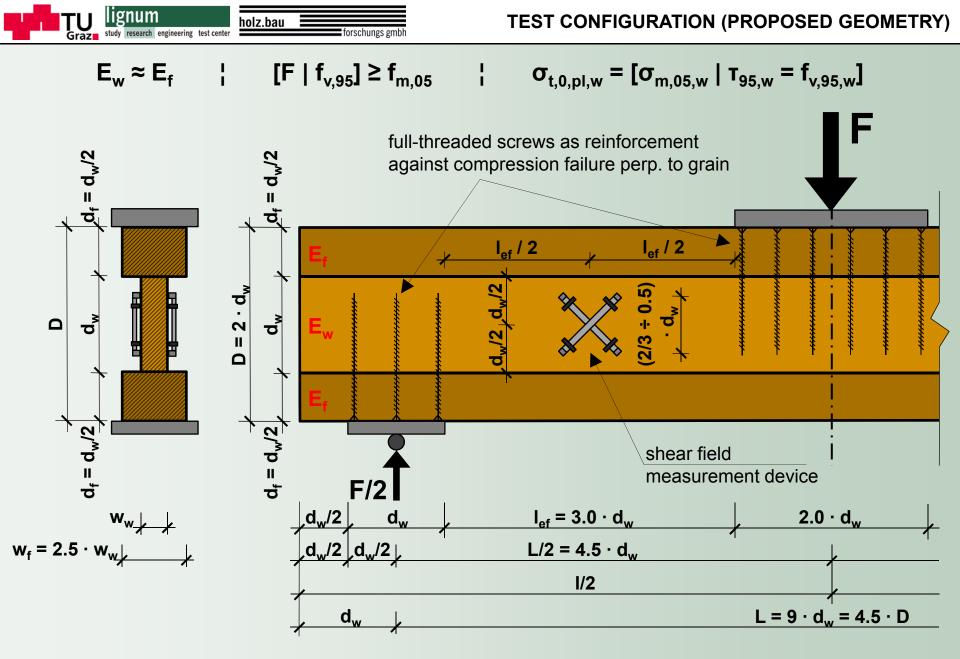
ш


C

Reinhard Brandner

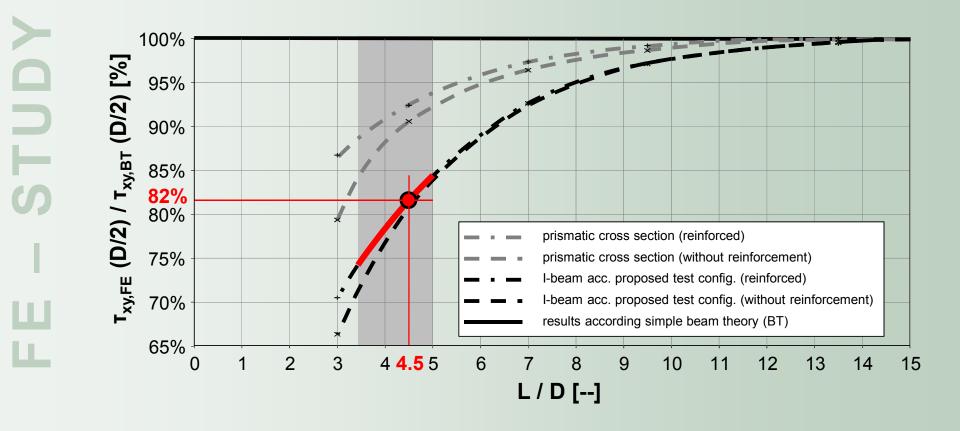
CIB-W18 | Växjö Sweden | 27th-30th August 2012

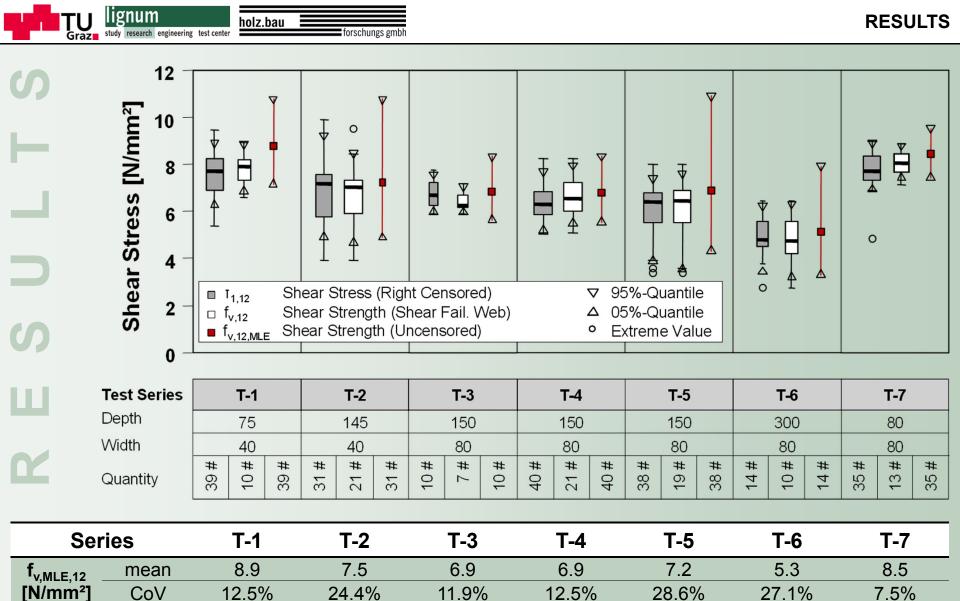



General Thoughts

Test Program & Results

Conclusions


Ν	39#	31#	35#	40#	14#	10#	40#	38#
NGC	C24	C24	C24	C24	C24	"C16"	C24	"C40"
L/D	4.8	4.3	3.5	4.4	4.8 / 5.0	3.4	4.4	4.8
ρ_{12,mean} [kg/m³]	447	449	430	414	417	389	414	467
E _{t,0,12,est,mean} [N/mm²]	11,310	12,190	10,750	11,420	11,710	8,510	11,420	14,250



ISO/FDIS 8375:2008 (prismatic) I_{ef} ≥ 2.0 · D | Schickhofer (2001; I-beam) I_{ef} = 3.3 · d_w; L = 5 · D

- FE-analysis in RFEM (4.xx): prismatic & I-beams acc. proposed test configuration
- w_{w,ref} / d_{w,ref} = 80mm / 150mm
- orthotropic material C24; 2D

74%

5.1

16.1%

81%

5.6

15.4%

t_{v,MLE,adj,12}

[N/mm²]

adj.

mean

CoV

84%

7.4

15.0%

80%

6.0

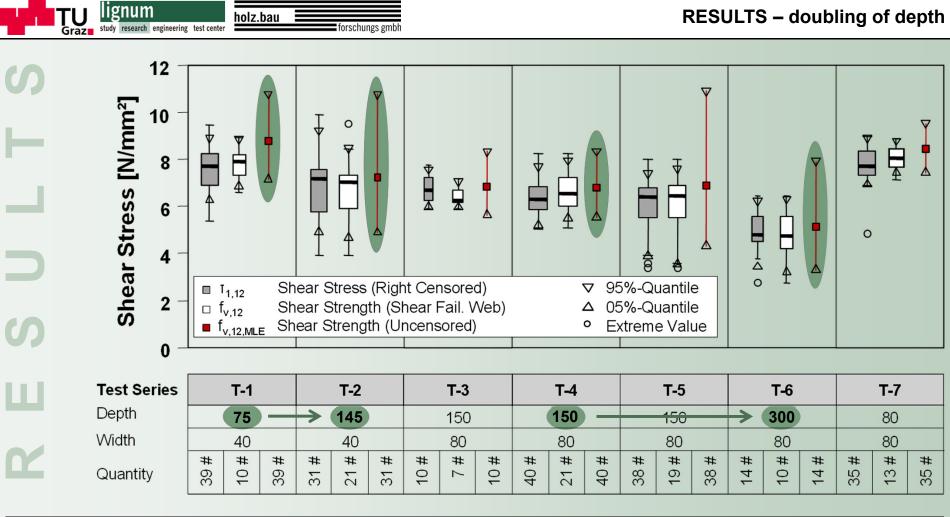
30.4%

84%

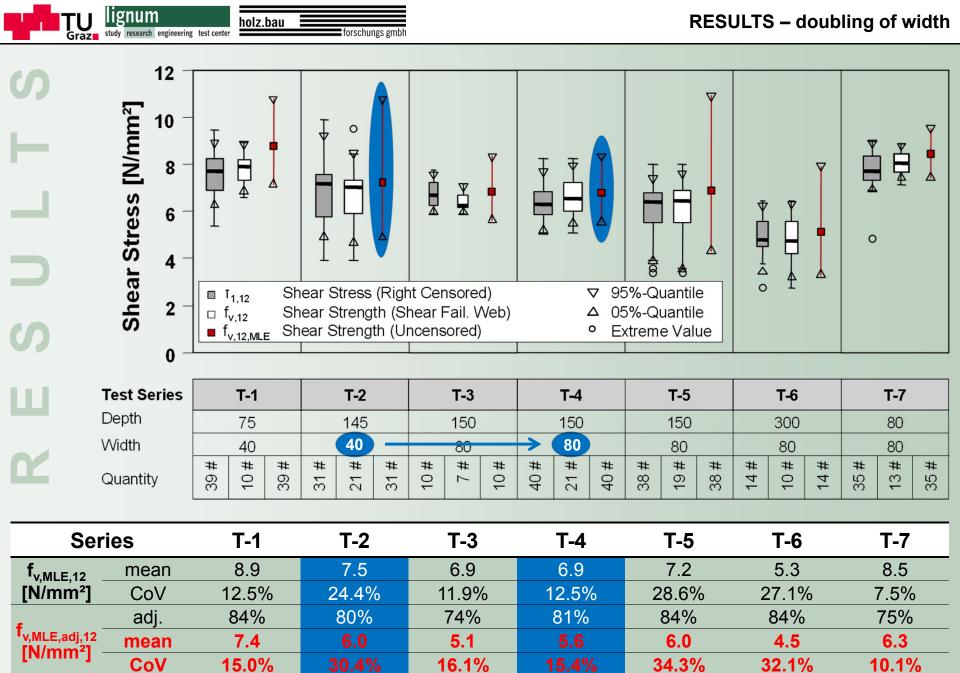
4.5

32.1%

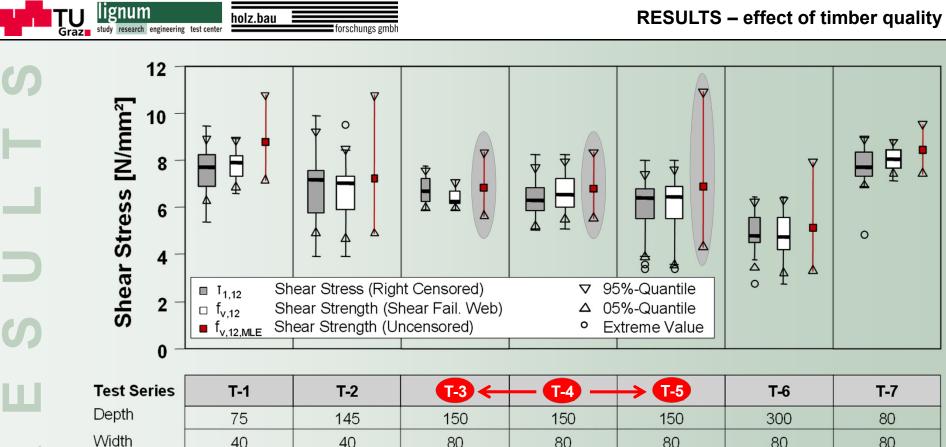
75%


6.3

10.1%


84%

6.0


34.3%

Seri	es	T-1	T-2	T-3	T-4	T-5	T-6	T-7
f _{v,MLE,12}	mean	8.9	7.5	6.9	6.9	7.2	5.3	8.5
[N/mm²]	CoV	12.5%	24.4%	11.9%	12.5%	28.6%	27.1%	7.5%
£	adj.	84%	80%	74%	81%	84%	84%	75%
v,MLE,adj,12	mean	7.4	6.0	5.1	5.6	6.0	4.5	6.3
[N/mm ²] -	CoV	15.0%	30.4%	16.1%	15.4%	34.3%	32.1%	10.1%

CIB-W18 | Växjö Sweden | 27th-30th August 2012

(Quantity

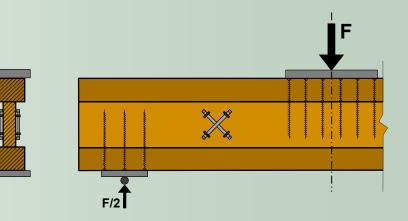
Series		1-1			1-2			-3	-		-4		\rightarrow	1-5			1-6			1-7	
th		75			145			150			150		150		300			80			
th		40			40			80			80			80	80 80		80				
ntity	39 #	10 #	39 #	31 #	21 #	31 #	10 #	# 2	10 #	40 #	21#	40 #	38 #	19 #	38 #	14 #	10 #	14 #	35 #	13 #	35 #

Series		T-1	T-2	T-3	T-4	T-5	T-6	T-7
f _{v,MLE,12}	mean	8.9	7.5	6.9	6.9	7.2	5.3	8.5
[N/mm²]	CoV	12.5%	24.4%	11.9%	12.5%	28.6%	27.1%	7.5%
	adj.	84%	80%	74%	81%	84%	84%	75%
^I v,MLE,adj,12 [N/mm ²] -	mean	7.4	6.0	5.1	5.6	6.0	4.5	6.3
[w/mm-] -	CoV	15.0%	30.4%	16.1%	15.4%	34.3%	32.1%	10.1%

- General Thoughts
- Test Program & Results
- Conclusions

TEST METHOD & CONFIGURATION

- 3pB-test
- visually unchecked beams
- reference cross sections

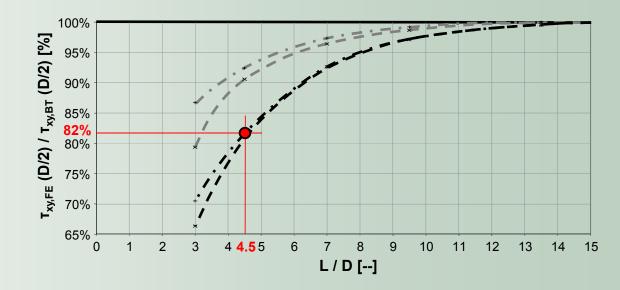

→ ST: $w_{ref} / d_{ref} = 80 \text{ mm} / 150 \text{ mm}$ → GLT: $w_{ref} / d_{ref} = 150 \text{ mm} / 600 \text{ mm}$

reinforced I-beam

→ minor conservative shear strengths → G_{090}

adaptations for climatic influences

→ $f_v = -3\% / +1\% \text{ u}$, for $8\% \le u \le 20\%$ → $G_{090} -1\% / +1\% \text{ u}$, for $8\% \le u \le 20\%$



ANALYSIS & EVALUATION

- registration of main failure cause & region
- evaluation acc. simple beam theory (BT) + correction acc. diagram
- MLE for right censored data

 \rightarrow only "first" shear failures within the test section as "ok"

 \rightarrow assumption: f_v ~ 2pLND

CHARACTERISTICS OF MATERIAL & PRODUCT

- f_v depends on built up & direction of loading (edgewise vs. flatwise)
- no significant relationship found between f_v and f_{m,exp} or E_{0,EF}
 → f_v constant over all strength classes of ST & GLT!
- reference climate conditions [T = 20°C, u_{ref} = 12%] & reference dimensions

→ CoV[f_v] = 15% (literature survey) → k_{size} (e.g. k_h)

ST:
$$f_{v,k} = f_{v,k,ref} \cdot k_d = \min\left\{4.0 \cdot \left(\frac{150}{d}\right)^{0.2}; 4.5\right\}$$

DESIGN PROCEDURES

- material & product characteristics (→ laboratory values)
- characteristic values for material & products in use (\rightarrow engineering values)

→ climatic influences not considerable by k_{mod}
 → need: long term shear strengths of material & products exposed to dynamical climatic conditions!

k_{size} (e.g. k_h)

ST:
$$f_{v,k} = f_{v,k,ref} \cdot k_d = \min\left\{4.0 \cdot \left(\frac{150}{d}\right)^{0.2}; 4.5\right\}$$

THANK YOU FOR YOUR ATTENTION!

Contact: Dipl.-Ing. (FH) Dr.techn. Reinhard Brandner Institute of Timber Engineering and Wood Technology | Graz University of Technology | AT

Competence Centre holz.bau forschungs gmbh Graz | AT

Inffeldgasse 24/I A-8010 Graz

reinhard.brandner@tugraz.at +43 316 873 4605