

T. Solis-Escalante y G. Pfurtscheller

Laboratory of Brain-Computer Interfaces Institute for Knowledge Discovery Graz University of Technology

En esta presentación

- Interfaces Cerebro-Computaroda
- Ritmos sensorimotores
- Brain switch asincrónico
- Estudios en línea

Interface Cerebro-Computadora (BCI)

 Es un sistema que otorga una nueva vía de comunicación no muscular entre el cerebro de una persona y una computadora

BCI no invasivas

basadas en EEG

potenciales eléctricos

campos magnéticos

basadas en fMRI niveles de oxigenación

ópticas etabólicos

cambios metabólicos (des)oxihemoglobina

BCI basadas en EEG

 Activas: No requieren de estimulación exógena y ninguna actividad muscular.

 Pasivas: Requieren de estimulación externa para evocar una respuesta y alguna actividad muscular.

Seminario de Bioingenieira, Elche, 1 y 2 Junio 2009

Ritmos sensorimotores

 Las oscilaciones de la corteza sensorimotora cambian de forma dinámica con la ejecución del movimiento de algún miembro

Lóbulos frontales

Lóbulos occipitales

(De)sincronía relacionada a eventos

ERD ERS

(De)sincronía relacionada a eventos

ERD ERS

(De)sincronía relacionada a eventos

ERD ERS

Patrones estables

- Los fenómenos ERD/ERS están presentes durante –movimiento voluntario,
 - -movimiento pasivo,
 - -imaginación de movimiento y
 - movimiento inducido por estimulación eléctrica funcional

Gerardin et. al. 2000

Müller-Putz 2003 and 2007

Imaginación de movimiento

Seminario de Bioingenieira, Elche, 1 y 2 Junio 2009

Características del Beta ERS o beta-rebound

- Organización somatotópica estrícta
- Componentes frecuenciales somatotopicamente específicos
- "Cross-talk" entre las áreas de representación y el área motora suplementaria

Seminario de Bioingenieira, Elche, 1 y 2 Junio 2009

Nuevas aplicaciones de BCIs

 En la acutalidad las BCI son atractivas como control alternativo para el público en general

Müller-Putz et. al. 2006 Nijholt 2008

Brain switch asincrónico

- Una BCI que detecta un único patrón en el EEG
- Problemas para un "uso fuera del lab"
 - Montaje sencillo
 - Estrategia simple para generar un classificador (confiable)
 - Retroalimentación rápida
 - Apropiada para usuarios sanos

soluciones

- conjunto reducido de electrodos : derivación Laplaciana
- uso de un patrón cerebral estable: beta ERS
- optimización rápida (clasificador y características): SVM / LDA + DSLVQ
- entrenamiento con ejecución real de movimiento: flexión balística de pies

Mason and Birch 2005

Fatourechi et. al. 2008

Esquema

Preguntas

- Es posible...
 - detectar la ejecución de movimiento con una sóla derivación Laplaciana? Solis-Escalante et. al. 2008

-utilizar la beta ERS para un brain switch?

Pfurtscheller and Solis-Escalante 2009

-detectar imaginación de movimiento (MI) con un clasificador entrenado con ejecución de movimiento (ME)?

Detección de ME

- 7 SUJETOS, clasificador: SVM + 29 características
- ERD/ERS independientemente

Uso de beta ERS para un brain switch

- 5 SUJETOS, clasificador: SVM + 29 características
- Clasificación de MI con ERD y ERS
- ERD con un TPR máximo de 0.39 (promedio 0.28)
- ERS con un TPR máximo de 0.79 (promedio 0.59)
- FPR fue mantenido abajo de 0.10

ME-MI

• 9 sujetos, clasificador: SVM + 29 características

Trade-off 0.83

Respuestas

- Es posible...
- detectar la ejecución de movimiento con una sóla derivación Laplaciana.

y ERD+ERS podría mejorar el desempeño

-utilizar la beta ERS para un brain switch.

ERS es una mejor característica que ERD

–detectar imaginación de movimiento (MI) con un clasificador entrenado con ejecución de movimiento (ME)?

con un trade-off de 83%

pudiendo mejorar con una actualización del clasificador y entrenamiento del usuario

Experimentos en línea

COST Neuromath

Leeb et. al. 2009

Müller-Putz et. al. 2008

- Brain switch de rápida configuración
- Control de una mano virtual con un brain switch

Diseño en 3 etapas

 ME guiada
 MI guiada
 MI guiada
 MI libre

 MI libre

Online 1 Online 2

Resultados

Brain switch de rápida configuración

 –4 sujetos, certeza promedio
 –clasificador: LDA + 1 característica

Resultados

- Control de una mano virtual con un brain switch
 –6 sujetos
 clasificador: LDA con 2 correctorícticos (con
 - -clasificador: LDA con 2 características (ERD + ERS)

Resumen

- Nuevas aplicaciones de BCI para usuarios sanos
- Los patrones ERD y ERS son similares entre diferentes tipos de movimiento
- Este trabajo presenta un brain switch con una FPR baja y de rápida configuración

Trabajo futuro

- Configuración automática
- Maximización del trade-off
- Combinación con otras BCI (BCI híbrida)

Financiamiento

Este trabajo ha sido parcialmente patrocinado por: PRESENCCIA (IST-2006-27731) FWF-Austria (P20848-NI5) Austrian Allgemeine Unfallversicherung Lorenz Böhler Gesellschaft Steirermärkische Landesregierung (GZ:A3-16B74-05/1)

Gracias

Gernot Müller-Putz, Clemens Brunner, Robert Leeb y Vera Kaiser

Laboratory of Brain-Computer Interfaces Institute for Knowledge Discovery Graz University of Technology Austria <u>http://bci.tugraz.at</u>/

Seminario de Bioingenieira, Elche, 1 y 2 Junio 2009