

CLT Training Course In the frame of COST Action FP1004 April 15th - 17th 2014, Trento, Italy

Production and Technology of Cross Laminated Timber (CLT): A state-of-the-art Report

Reinhard Brandner

CLT Training Course in the frame of COST Action FP1004 University of Trento, 15th April 2014, Trento | Italy

Reinhard Brandner

CLT Training Course | 15th April 2014

Institute of Timber Engineering and Wood Technology | TU Graz

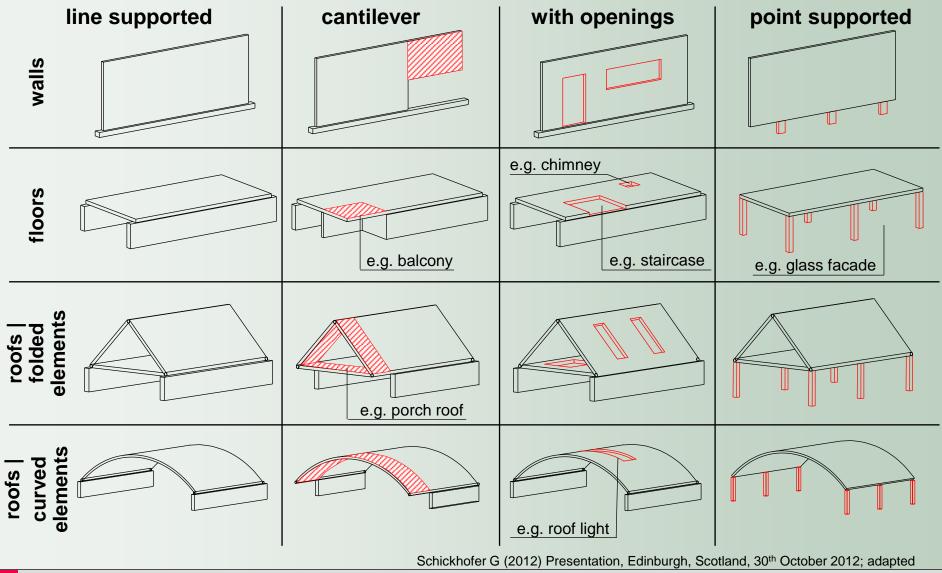
2

- Introduction
- Production
- FPC Requirements
- Customising
- Conclusions

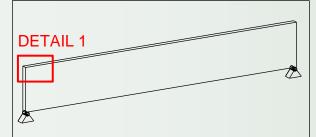
Introduction

- Production
- FPC Requirements
- Customising
- Conclusions

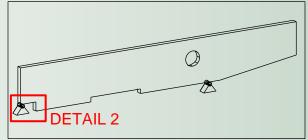
Cross Laminated Timber (CLT) is a ...

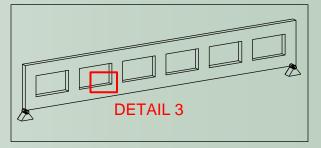

- plate-like engineering timber product, composed of an uneven number of crosswise layers → locking effect
- 2D & 1D product for load bearing in-plane and out-of-plane & as linear member
- used for large-sized wall and floor elements, ..., and for linear structural components

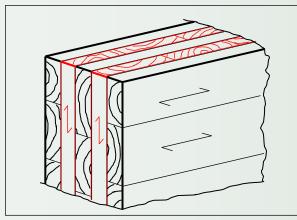
Cross Laminated Timber (CLT) as 2D-Element ...

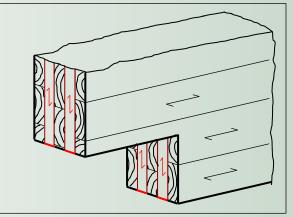


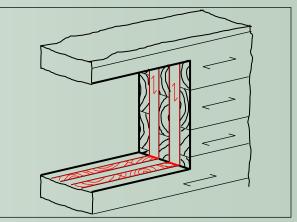
Institute of Timber Engineering and Wood Technology | TU Graz




Cross Laminated Timber (CLT) as 1D-Element ...


girder without openings


tapered girder with notched support and openings


Vierendeel girder

detail 1: 5-layered CLT-element

detail 2: notched support

detail 3: opening

→ cross-layers as reinforcement

→ increases resistance in shear and tension perp. to grain!

Schickhofer G (2012) Presentation, Edinburgh, Scotland, 30th October 2012; adapted

Institute of Timber Engineering and Wood Technology | TU Graz

Cross Laminated Timber (CLT) ...

- opens new dimensions in timber engineering (e.g. monolithic buildings)
 - high degree and accuracy in pre-fabrication
 - dry and clean construction sites
 - short erection times
- in comparison to light-weight timber structures ...
 - clear separation of load bearing, insulation & installation layers
 - building physics: air permeability, specific storage capacity (humidity, temp.)
 - independence of a modular dimension for window / door openings & fastening of furniture
- substitute for reinforced concrete, brick, ...

→ SOLID TIMBER CONSTRUCTION TECHNIQUE IN CLT !

Reinhard Brandner

7

Development of CLT production volume – internationally

- 2013 more than 35 production sites worldwide
- currently roughly 95 % of the production volume in Central Europa
 - Austria (~ 63 %)
 - Germany (~ 26 %)
 - Switzerland (~ 6 %)
- 550 Tsd. m³ production volume 2013

need for standardisation!

- production & testing
- design & joining
- construction

➔ prEN 16351

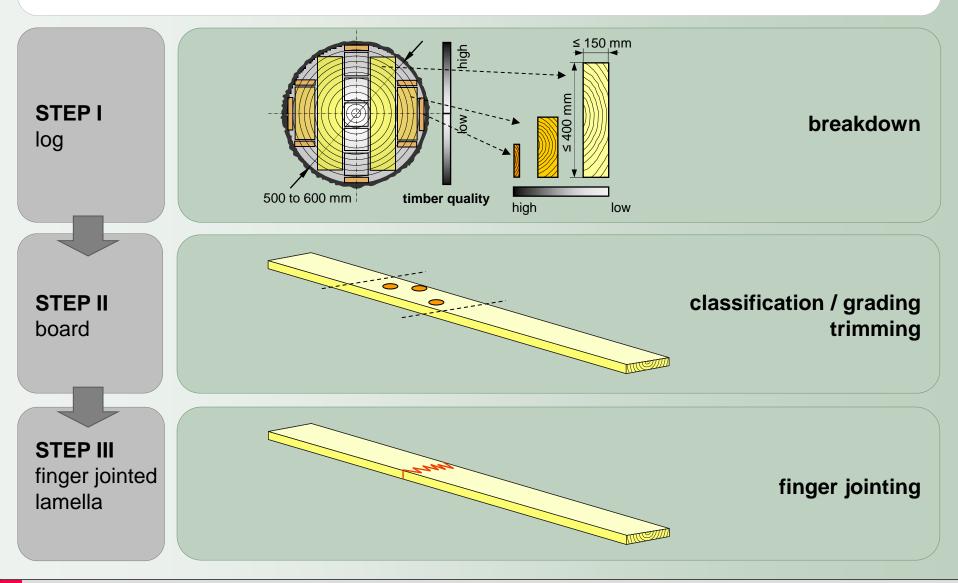
- Introduction
- Production
- FPC Requirements
- Customising
- Conclusions

Cross Laminated Timber (CLT) composed as ...

FLEXIBLE composite

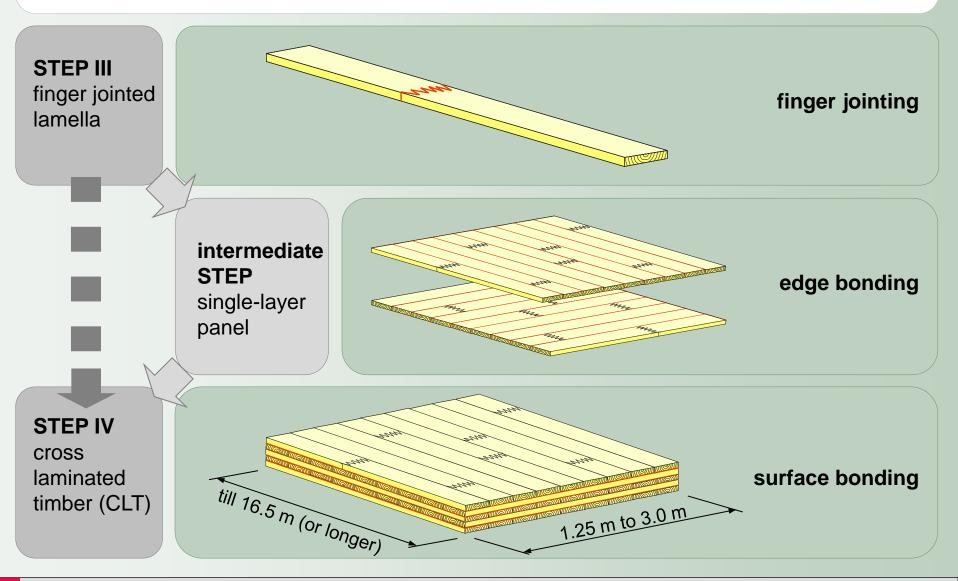
- ring-shank nails (e.g. MHM-wall elements | Z-9.1-602)
- metal brackets, screws, …
- hardwood dowels (e.g. THOMA-Holz 100 | Z-9.1-574)
- hardwood screws (e.g. Rombach Bauholz+Abbund GmbH | ETA-11/0338)

RIGID composite


- by surface bonding enabled by
 - hydraulic / pneumatic / vacuum press facilities (→ pressure "globally")
 - □ screws, brackets or nails (→ pressure "locally")

FOCUS: CLT as rigid composite product !

STEPs intermediate products | steps in production



STEPs

intermediate products | steps in production

Requirements on the BASE MATERIAL (boards) ...

- strength / stiffness graded C24 (C16) acc. to EN 338 (bending !)
 - → classification acc. tensile properties, e.g. **T14 E11.0**, recommended !
 - stiffness grading + compliance criteria to fulfil minimum requirements on strength (e.g. proof loading) recommended !

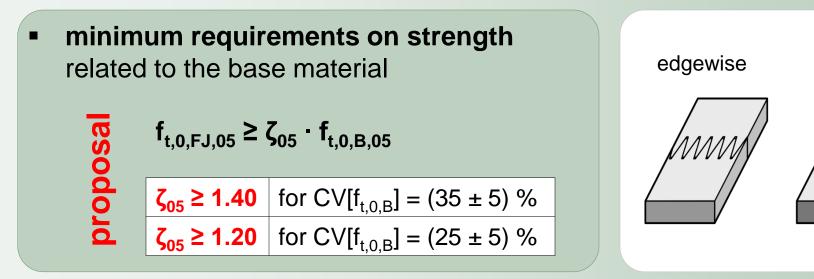
dimensions

- t_B = (12 to 45) mm; standard layers: t_B = (20, 30, 40) mm
- $w_B = (40 \text{ to } 300) \text{ mm}; w_B / t_B ≥ 4; w_{B,ref} = 150 \text{ mm recommended!}$
- edges prismatic or with profiling \rightarrow shadow gaps

Requirements on the BASE MATERIAL (boards) ...

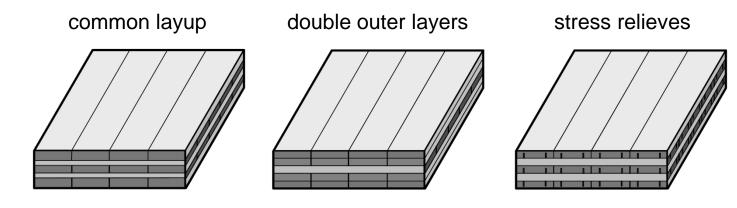
- species mainly softwoods; primary Norway spruce; u = (12 ± 2) %
- Juse or combination with other species (e.g. hardwoods) for optimising e.g.
 - bending strength / stiffness
 - rolling shear modulus and strength

e.g. birch, ash, eucalyptus, ...



flatwise

Requirements on FINGER JOINTS ...


- economical approach for joining graded board segments longitudinally !
- position of finger joints ...
 - edgewise (common in GLT)
 - flatwise (higher appearance quality)
- production & FPC regulations EN 385, DIN 1052, prEN 16351
- common adhesives: MUF, 1K-PUR

LAYUP of CLT

- symmetrical ! → if additional layers, counteracting layers recommended
- a layer can be of ...
 - single (finger jointed) boards / lamellas with / without relieves
 - single-layer panels of boards or EWPs
- \rightarrow double or triple layers possible \rightarrow resistance in bending, fire, ...
- → mechanical properties of the layer shall be defined by the lowest quality of the used base material !

Gaps between boards

- <u>currently</u> top layers ≤ 2(3) mm; core layers ≤ 4(6) mm
- some approvals allow gaps ≤ 10 mm!
- gaps have a negative influence on ...
 - building physics (e.g. fire design, airborne sound, air tightness)
 - joining technique, i.e. pin-shaped fasteners
 - appearance quality

→ AIM: minimising gaps !

Single-layer panels vs. single lamellas: PROS & CONS

PROS of single-layer panels

- gaps minimised
- lower requirements
 - [□] $w_P/t_P \ge 4$ even when $w_B/t_P < 4$
 - surface bonding pressure
- building physics, joining technique, appearance

CONS of single-layer panels

- swelling / shrinkage !
 - → irregular pattern of cracks (appearance !)
 - reduced properties in building physics
 - relativization of $w_B/t_P < 4$
- ➔ smaller gaps with thinner top layers !

Single-layer panels: several possibilities

edge bonding of boards / lamellas

- strength / stiffness graded base material continuously joined to endless plates by edge bonding; w_B / t_P ≥ 4
- homogenisation of physical properties → system effects

single-layer panels acc. to EN 13986

- w_P / t_P ≥ 4; no specific requirements on the base material
 → adequate quality assurance for classification / grading of the panels required!
- no additional homogenisation effects; single-layer panels already homogenised!

axial splitting of glulam

- $w_P / t_P \ge 4$; splitting of homogeneous glulam
- strength grading performed on base material for glulam invalid !
 > adequate quality assurance for classification / grading of the panels required!
- no additional homogenisation effects; single-layer panels already homogenised!

Excursus: requirements on bonding pressure

➔ theoretically no bonding pressure required !

minimum requirements depending on ...

- surface quality of adherends
 - \rightarrow flatness, roughness, warp, twist, ...
 - \rightarrow thickness tolerances $\rightarrow \leq (\pm 0.1 \text{ mm})$ recommended !

adhesive system

- \rightarrow swelling (e.g. PUR) vs. shrinking adhesives (e.g. MUF)
- → "close contact" (e.g. 1K-PUR) vs. "gap-filling" adhesives (e.g. MUF, 2K-PUR)
- adhesive application system: line-wise application common !
 - → complete wetting required !
- stiffness of adherends against deflection (longitudinal & transverse) and torsion

Excursus: requirements on bonding pressure

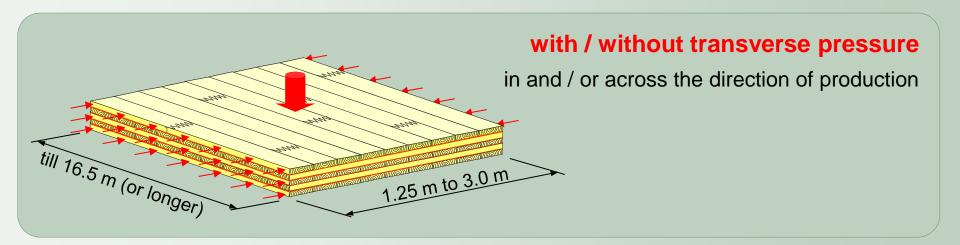
upper limits determined by the timber species

crushing of adherend's surfaces

 \rightarrow reduces penetration and resistances, e.g. in shear

Conclusions for Norway spruce

→ recommended to limit internal pressure to ≤ 1.0 N/mm² (Baumann & Marian, 1961)


→ damage of cell structure and decrease in shear strength at ≥ 0.40 N/mm² (radially) and ≥ 1.0 N/mm² (tangentially) (Wassipaul, 1982)

→ p ≤ (0.4 to 0.6) N/mm² recommended !

Possibilities for surface bonding ...

- continuously by press facilities
 - hydraulic (pneumatic) press (0.10 to 1.00) N/mm²
 - vacuum press (0.05 to 0.10) N/mm²
- discontinuously by pin-shaped fasteners
 - pressing with screws, nails or brackets (0.01 to 0.20) N/mm²

CONS

Bracket, nail or screw pressing

small productions | minor investments | primary manual production

- curved, shaped CLT elements
- on-site bonding

- limited bonding pressure
- damage of tools by fasteners

Vacuum press equipment

medium productions | medium investments | semi-mechanical production

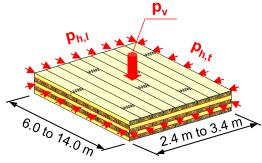
 curved, shaped CLT or composite elements (box-beams or rib floors)

- limited bonding pressure
- stress relieves
- limited layer thickness and/or species

Hydraulic (pneumatic) press equipment

medium to large productions | high investments | semi-mech. to automated production

- flexibility in bonding pressure
- specific edge pressure possible
- flexibility in automation


- restricted to even, straight elements
- limited possibility to balance local unevenness or thickness deviations

Examples of hydraulic press facilities ...

		MINDA "CLT press" (G)	Kallesoe "CLT press" (DK)	
CLT dimensions		l = (6.0 to 18.0) m w = (2.1 to 3.5) m t = (70 to 400) mm	l = (4.0 to 20.0) m w = (2.2 to 3.2) m t = (60 to 400) mm	
type of press system		hydraulic, continuous	hydraulic, discontinuous high frequency press	
bonding pressure	vertical, p_v	(0.4 to 0.6 (0.8)) N/mm ²	≤ 1.0 N/mm²	
	horizontal transverse, p_{h,t}	10 kN/m	available	
	horizontal lengthwise, p_{h,l}	45 kN	available	

© Minda Industrieanlagen GmbH

© Kallesoe Maschinery A/S

24

Schickhofer G (2012) Presentation, Edinburgh, Scotland, 30th October 2012; adapted

Institute of Timber Engineering and Wood Technology | TU Graz

Further CLT-press producers ...

SPRINGER (AT) | LEISSE (G) | LEDINEK (SLO) | WEINIG GROUP (G) | WOODTEC Fankhauser (vacuum press) (CH) | SORMEC (IT) | ...

Latest developments ...

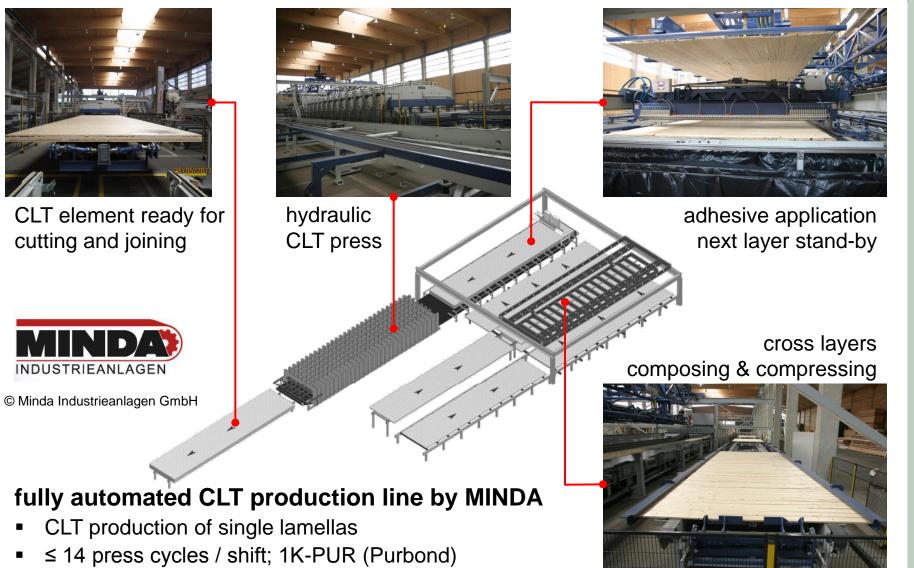
modular production lines, e.g. MINDA

- BASIC 1 hydraulic press & manual feeding 2 to 3 press cycles / shift
- STEP I 1 hydraulic press & automated feeding 5 to 6 press cycles / shift
- STEP II 2 hydraulic press & automated feeding 10 to 12 press cycles / shift

flexible production lines

- CLT composed of loose boards / lamellas
- CLT composed of single-layer panels
- CLT including door & window openings

high frequency CLT press


- adapted adhesive application system
- discretely adapted surface pressure

CLT Training Course In the frame of COST Action FP1004 April 15th - 17th 2014, Trento, Italy

≈ 20 TSD m³ / shift / year

Schickhofer G (2011) Presentation, Zurich, Switzerland, 25th October 2011; adapted

Reinhard Brandner

Institute of Timber Engineering and Wood Technology | TU Graz

26

- Introduction
- Production
- FPC Requirements
- Customising
- Conclusions

- climatic conditions during production
 - \rightarrow min. requirements on temperature and rel. humidity!
- control of adhesives
 - \rightarrow appropriateness: type I; load bearing
- control of base material (grading; strength class)
 - → following EN 14081-1
 - \rightarrow < 10 % of base material per layer may be < 35 % below the declared strengths parallel to grain
- finger joint strength
 - \rightarrow min. requirements | testing in bending or tension II

- large finger joint strength
 - \rightarrow min. requirements | bending test acc. to EN 408
 - → "gap-filling" adhesives (e.g. MUF: $t_{glue line} \le 0.5$ mm, 1K-PUR: $t_{glue line} \le 0.3$ mm)
 - → $f_{m,LFJ,k} \ge 0.75 \cdot f_{m,B,k}$ (German approvals)

edge bonding

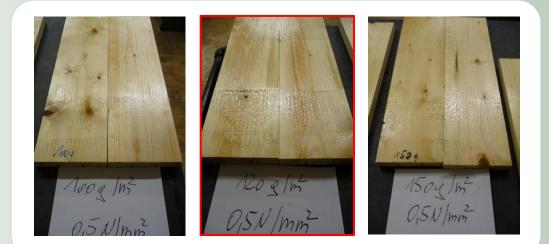
- \rightarrow min. requirements | testing in block shear
- \rightarrow testing of <u>bond-line thickness</u>
- \rightarrow <u>shear strength</u> requirements related to share of wood fracture (WF)

	average value			single value		
f _v [N/mm²]	6.0	8.0	≥ 11.0	4.0 to 6.0	6.0	≥ 10.0
WF [%]	≥ 90 %	≥ 72 %	≥ 45 %	100 %	≥ 74 %	≥ 20 %

- surface bonding
 - \rightarrow delamination tests
 - \rightarrow specific climatic conditions (submerged + vacuum + pressure + drying)

\rightarrow delamination

 $delam_{max} = I_{max,delam} / I_{glue line} \le 40 \%$ $delam_{tot} = I_{tot,delam} / I_{tot,glue line} \le 10 \%$ if not fulfilled $A_{delam,max} \le 50 \% | A_{delam,mean} \le 30 \%$



FPC: excursus surface bonding

Excursus: surface bonding | specifications & tests

- surface pressure (SP; 3 levels)
- climatic cycles (CC; 3 levels)
- climate varied weekly u = 12 % to 17 %
- 5 tests rolling shear & 10 tests delamination
- IK PUR

Excursus: surface bonding | results & discussion

- → CV[A_{delam,max}] << CV[delam_{max}]
 → A_{delam,max} more stable !
- delamination result vs.
 real expositions
 - → missing link !
 - → limits base on experience !
- delaminated bond lines
 & delaminated surfaces
 - → combined judgement !

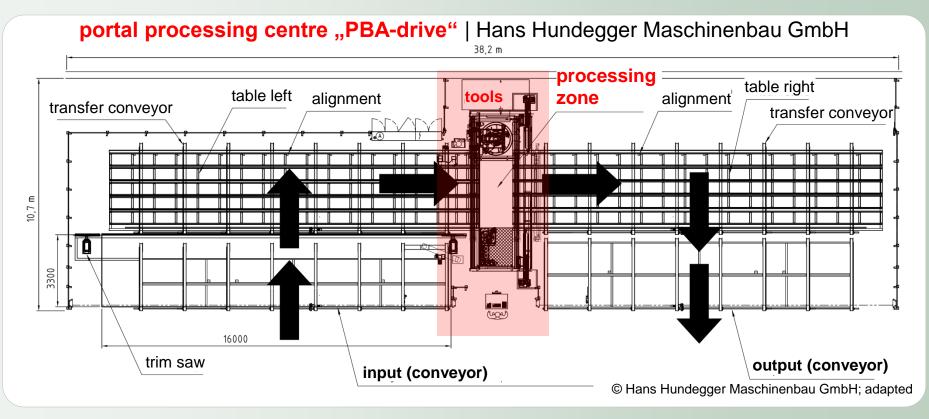
- bond-line thickness
 - \rightarrow for aminoplast- and phenoplast-adhesives:

 $t_{bond line,max} = 0.6 \text{ mm}$ for combined application of resin & hardener $t_{bond line,max} = 0.3 \text{ mm}$ for separate application of resin & hardener \rightarrow for 1K PUR $t_{bond line,max} = 0.3 \text{ mm}$

- rolling shear strength of CLT elements (German approvals)
 - → bending test acc. to EN 408, $I_{span} \ge 15 \cdot t_{CLT}$ (≥ 12 · t_{CLT} proposed !)

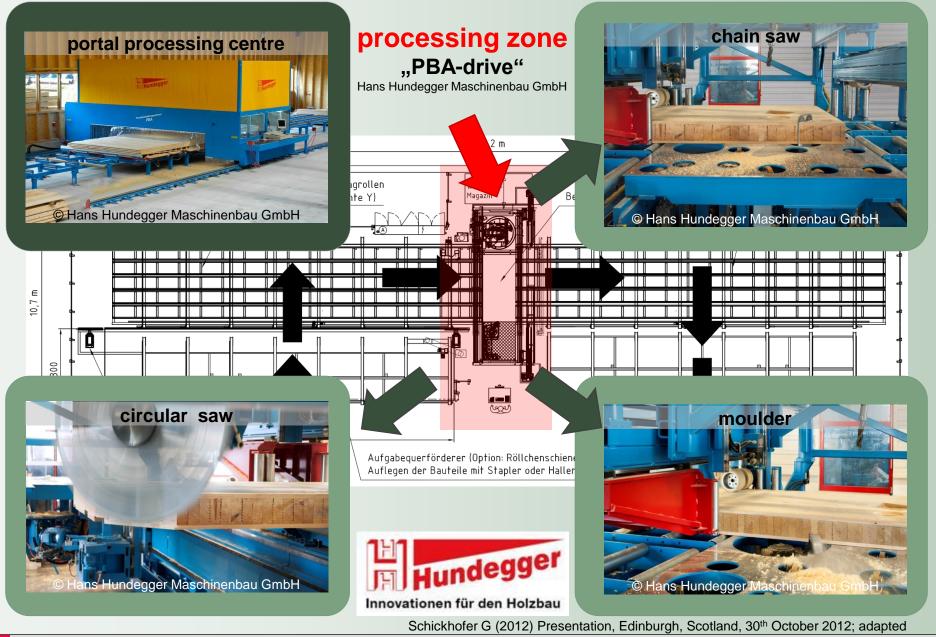
additional requirements

→ e.g. timber species, durability of base material, preservative treatments, fire resistance, dimensions, assembly, release of formaldehyde and other harmful agents


- Introduction
- Production
- FPC Requirements
- Customising
- Conclusions

CNC cutting and joining → customising !

 \rightarrow cutting | trimming | joining | milling (e.g. for connection technique)



- "throughfeed processing" on all surfaces and edges
- element dimensions: I = (2.5 to 16.0) m | w = (0.625 to 4.0) m | t ≤ 350 mm

CUTTING & JOINING: processing centre

Reinhard Brandner

CLT Training Course | 15th April 2014

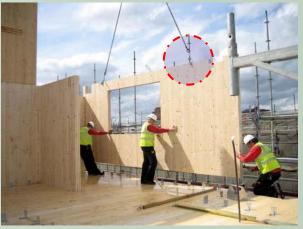
Institute of Timber Engineering and Wood Technology | TU Graz

36

Transport & Assembling ...

storage (production site)

charging and transport


discharging (building site)

assembling of roof elements

assembling of ceiling elements

assembling of wall elements

37

Schickhofer G (2012) Presentation, Edinburgh, Scotland, 30th October 2012, adapted

- Introduction
- Production
- FPC Requirements
- Customising
- Conclusions

Concluding remarks | outlook ...

- further standardisation and harmonisation required !
 - → prEN 16351; t_L = 20, 30, 40 mm; ...
- aim on reducing gap width solved by latest press systems (3D pressure)
- some machine manufacturers provide licences for CLT production

Concluding remarks | outlook ...

- vertical extension of CLT production lines
 - assembling stations for composing whole wall and floor elements, including insulation, installation, doors and windows
- horizontal extension
 - establishment of own / close cooperation with engineering offices

 further establishment and densification of small and medium scale CLT productions

- \rightarrow added value regionally
- → CLT produced of locally available timber species

Concluding remarks | outlook ...

- renaissance of timber in our cities !
 - → CLT as increasing competitor of mineral building products multi-storey buildings → exceeding the boarder of high-rise buildings
 - development of building systems "Solid Timber Construction Technique with CLT"
 - ATTENTION ! Peculiarities of timber as building material e.g. vulnerability in context with moisture !

MANY THANKS !

Acknowledgement

- Minda-Industrieanlagen GmbH / DE
- Hans Hundegger Maschinenbau GmbH / DE

THANK YOU FOR YOUR ATTENTION!

Contact Ass.Prof. Dipl.-Ing.(FH) Dr.techn. Reinhard Brandner

Institute of Timber Engineering and Wood Technology, Graz University of Technology | Graz | Austria Competence Centre holz.bau forschungs gmbh | Graz | Austria

Inffeldg<mark>asse 24/I</mark> A-8010 Graz

reinhard.brandner@tugraz.at P: +43 316 873 4605