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Variational equation approach
For the simpler case of single-satellite observations.

Observations

Satellite position r (from GNSS)
Force model r̈ (from accelerometer, background models, . . . )

Unknown variable:
Gravity field parameters

Equation of motion connects position and acting forces:

r =
x

r̈
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State transition matrix
Connection between satellite state at
each epoch and initial state:

Satellite state vector,
e.g. r0 , ṙ0 .
Start with undisturbed motion
r(t) = r0 + t · ṙ0
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State transition matrix
Integrate forces to velocity
and position.
Use integrated and observed position
to solve for satellite state parameters
and to adjust state transition
matrix.

Need to solve for 6 integration
constants
⇒ Variational problem.

Transition of Φ from linear
motion to perturbed motion.
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Connection to potential

Complete linearized observation equations for position
observations.
The observation equations represent a dynamic orbit.
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Connection to potential

Complete linearized observation equations for position
observations.
The observation equations represent a dynamic orbit.
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Ranging measurement from dynamic orbit
For range rate observation: Projection of differential velocity onto
baseline.
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Ranging measurement from dynamic orbit
For range rate observation: Projection of differential velocity onto
baseline.
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Observation equations for SST
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Observation equations for SST
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Reduction of ranging observations

Linearization impacts reduced observation and residuals.

Keplerian orbit
No noise on
observables

8

A BBBBBBB
True range rate



Reduction of ranging observations

Linearization impacts reduced observation and residuals.

Keplerian orbit
No noise on
observables

8

A BBBBBBB
True range rate

ρ

ρ

Δρ

Linearization:

Observation:

Reduced observation:

εResidual:

Adjusted observation: Δρ



Reduction of ranging observations

Linearization impacts reduced observation and residuals.

Keplerian orbit
No noise on
observables

8

A BBBBBBB
True range rate

ρ

ρ

Δρ

Linearization:

Observation:

Reduced observation:

εResidual:

Adjusted observation: Δρ



Reduction of ranging observations

Linearization impacts reduced observation and residuals.

Keplerian orbit
No noise on
observables

8

A BBBBBBB
True range rate

ρ

ρ

Δρ

Linearization:

Observation:

Reduced observation:

εResidual:

Adjusted observation: Δρ



Dynamic orbit error
Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference

These errors result solely from the processing method!
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Alternative approaches
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Elliptical parametrization
Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference

Example numeric values

Reference 6061682.767626133
Elliptical 6061682.767626132 ∼ 15 digits of precision
Linear 6061682.767613923 ∼ 11 digits of precision
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Adding noise
Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference

σ = 5 cm white noise for orbit observations.
σ = 1 × 10−10 m/s2 white noise for accelerometer observations.
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Repeated evaluation
Expectation: Dynamic orbit is invariant through multiple iterations.
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Repeated evaluation
Integrated dynamic orbit vs integrated dynamic orbit: X-coordinate difference

New processing shows improved internal consistency.
Better orbits→ better linearization→ reduced artifacts.
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Conclusion

Take-aways

We applied improved force model integration to dynamic orbit
computation.
Elliptical method shows promise for reducing processing artifacts in
adjusted SST observations and residuals.

Further investigations / To do

Analyze impact on real dynamic orbits.
Investigate effect on SST residuals.

Thank you for your attention!
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Backup
10 iterations of processing compared to the first: X-coordinate difference
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Real SST residuals
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