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Variational equation approach
For the simpler case of single-satellite observations.

Observations

= Satellite position r (from GNSS)
= Force model 7 (from accelerometer, background models, ...)

Unknown variable:
Gravity field parameters

Equation of motion connects position and acting forces:

r= [



State transition matrix
Connection between satellite state at
each epoch and initial state:
= Satellite state vector,
e.g. ro, ro.
= Start with undisturbed motion
r(t)=ro+t-ro

Satellite state
parameters \

State transition
matrix ®



State transition matrix

= Integrate forces to velocity
and position.

= Use integrated and observed position
to solve for satellite state parameters
and to adjust state transition
matrix.



State transition matrix

= |ntegrate forces to velocity
and position.

= Use integrated and observed position
to solve for satellite state parameters
and to adjust state transition
matrix.

Need to solve for 6 integration
constants
= Variational problem.

Transition of ¢ from linear
motion to perturbed motion.



Connection to potential
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Connection to potential

Parameter sensitivity matrix

State transition matrix
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Connection to potential

Parameter senS|t|V|ty matrix

State transmon matrix

= Complete linearized observation equations for position
observations.

= The observation equations represent a dynamic orbit.

GNSS —

Observations Gravity field

parameters

—__Satellite state
parameters




Ranging measurement from dynamic orbit
For range rate observation: Projection of differential velocity onto

baseline.
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Ranging measurement from dynamic orbit

For range rate observation: Projection of differential velocity onto
baseline.




Observation equations for SST




Observation equations for SST

I\,I

Gravity field

Ranging —
Observations parameters
Satellite A state
___parameters

—__Satellite B state
parameters



Reduction of ranging observations
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Reduction of ranging observations

Linearization: 0 =&

Observation: P B S—
Reduced observation: Ap |«

Adjusted observation: AB ‘J<—
Residual: £

Linearization impacts reduced observation and residuals.

= Keplerian orbit

= NoO noise on
observables




Dynamic orbit error
Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference
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Dynamic orbit error
Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference
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These errors result solely from the processing method!
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Elliptical parametrization

Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference
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Elliptical parametrization
Integrated dynamic orblt VS Keplerlan orbit: X- coordlnate dlfference
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Elliptical parametrization
Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference
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Elliptical parametrization
Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference
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Example numeric values
Reference 6061682.767626133

Elliptical 6061682.767626132 ~ 15 digits of precision
Linear 6061682.767613923 ~ 11 digits of precision



Adding noise

Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference

= ¢ = 5cm white noise for orbit observations.
» 0 =1 x 107'%m/s2 white noise for accelerometer observations.
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Adding noise

Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference
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= ¢ = 5cm white noise for orbit observations.
» 0 =1 x 107'°m/s? white noise for accelerometer observations.



Repeated evaluation

Expectation: Dynamic orbit is invariant through multiple iterations.

Initial
Orbit

ACC GPS




Repeated evaluation
Integrated dynamic orbit vs integrated dynamic orbit: X-coordinate difference
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Repeated evaluation

Integrated dynamic orbit vs integrated dynamic orbit: X-coordinate difference
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Repeated evaluation
Integrated dynamic orbit vs integrated dynamic orbit: X-coordinate difference
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= New processing shows improved internal consistency.
= Better orbits — better linearization — reduced artifacts.



Conclusion

= We applied improved force model integration to dynamic orbit
computation.

= Elliptical method shows promise for reducing processing artifacts in
adjusted SST observations and residuals.
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Conclusion

= We applied improved force model integration to dynamic orbit
computation.

= Elliptical method shows promise for reducing processing artifacts in
adjusted SST observations and residuals.

Further investigations / To do

= Analyze impact on real dynamic orbits.
= Investigate effect on SST residuals.

Thank you for your attention!



Backup
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Real SST residuals

Real SST residuals
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