

Numerical effects in orbit determination for spaceborne gravimetry

Matthias Ellmer, Torsten Mayer-Gürr Institute of Geodesy, WG Theoretical Geodesy and Satellite Geodesy NAWI Graz, TU Graz

Geodetic Week 2015, Stuttgart

Variational equation approach

For the simpler case of single-satellite observations.

Observations

- Satellite position r (from GNSS)
- Force model \ddot{r} (from accelerometer, background models, ...)

Unknown variable:

Gravity field parameters

Equation of motion connects position and acting forces:

$$r = \iint \ddot{r}$$

State transition matrix

Connection between satellite state at each epoch and initial state:

- Start with undisturbed motion $r(t) = r_0 + t \cdot \dot{r}_0$

State transition matrix Φ

State transition matrix

- Integrate forces to velocity and position.
- Use integrated and observed position to solve for satellite state parameters and to adjust state transition matrix.

State transition matrix

- Integrate forces to velocity and position.
- Use integrated and observed position to solve for satellite state parameters and to adjust state transition matrix.

Need to solve for 6 integration constants

 \Rightarrow Variational problem.

Transition of ϕ from linear motion to perturbed motion.

- Complete linearized observation equations for position observations.
- The observation equations represent a dynamic orbit.

Observation equations for SST

Observation equations for SST

Linearization impacts reduced observation and residuals.

Linearization impacts reduced observation and residuals.

- Keplerian orbit
- No noise on observables

Dynamic orbit error

Dynamic orbit error

Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference

These errors result solely from the processing method!

Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference

Example numeric values

Linear

Reference 6061682.767626133 Elliptical 6061682.767626132

 \sim 15 digits of precision

6061682.767613923

 \sim 11 digits of precision

Adding noise

Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference

- $\sigma = 5$ cm white noise for orbit observations.
- $\sigma = 1 \times 10^{-10} \, \text{m/s}^2$ white noise for accelerometer observations.

Adding noise

Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference

- $\sigma = 5$ cm white noise for orbit observations.
- $\sigma = 1 \times 10^{-10} \, \text{m/s}^2$ white noise for accelerometer observations.

Adding noise

Integrated dynamic orbit vs Keplerian orbit: X-coordinate difference

- $\sigma = 5$ cm white noise for orbit observations.
- $\sigma = 1 \times 10^{-10} \, \text{m/s}^2$ white noise for accelerometer observations.

Expectation: Dynamic orbit is invariant through multiple iterations.

Integrated dynamic orbit vs integrated dynamic orbit: X-coordinate difference

Integrated dynamic orbit vs integrated dynamic orbit: X-coordinate difference

Integrated dynamic orbit vs integrated dynamic orbit: X-coordinate difference

- New processing shows improved internal consistency.
- Better orbits \rightarrow better linearization \rightarrow reduced artifacts.

Conclusion

Take-aways

- We applied improved force model integration to dynamic orbit computation.
- Elliptical method shows promise for reducing processing artifacts in adjusted SST observations and residuals.

Conclusion

Take-aways

- We applied improved force model integration to dynamic orbit computation.
- Elliptical method shows promise for reducing processing artifacts in adjusted SST observations and residuals.

Further investigations / To do

- Analyze impact on real dynamic orbits.
- Investigate effect on SST residuals.

Conclusion

Take-aways

- We applied improved force model integration to dynamic orbit computation.
- Elliptical method shows promise for reducing processing artifacts in adjusted SST observations and residuals.

Further investigations / To do

- Analyze impact on real dynamic orbits.
- Investigate effect on SST residuals.

Thank you for your attention!

Backup

10 iterations of processing compared to the first: X-coordinate difference

Backup

10 iterations of processing compared to the first: X-coordinate difference

Backup

10 iterations of processing compared to the first: X-coordinate difference

Real SST residuals

- initial
- elliptical
- difference