Sensitivity and robustness of designs for repeated measures accelerated degradation tests ENBIS15, Prague

Nikolaus Haselgruber / Ernst Stadlober

CIS - Consulting in Industrial Statistics / Graz University of Technology

September 6 - 10, 2015

Sensitivity

Robustness

Summary

Contents

Weaver and Meeker (2014): Methods for planning repeated measures accelerated degradation tests [WM2014]

- Optimal design to estimate p-quantile of the time t_p until the degradation measure exceeds degradation limit
- Haselgruber and Stadlober's (2014): discussion paper on sensitivity and robustness of optimal design

WM2014: Degradation Model with Random Effects

Degradation Y as a stochastic function of stress

$$Y = x_1\gamma_1 + x_2\gamma_2\tau + b_0 + b_1\tau + \epsilon$$
 with $\epsilon \stackrel{iid}{\sim} N(0, \sigma^2)$

• Unit-to-unit variability described by b_0 and b_1

$$\bullet (b_0, b_1)^T \sim N(\beta, \mathbf{V})$$

• mean $\beta_{-} = (\beta_0, \beta_1)^T$ and covariance matrix **V**

•
$$(b_0, b_1)^T$$
 is independent of ϵ

• ϵ is independent over time

Estimation of V based on the Fisher information matrix I

WM2014: Optimal Design

- Optimal and compromise designs in the style of Nelson (1990)
- Asymptotic variance determined by delta method is minimized

$$\mathsf{AVar}(\widehat{t}_{p}) = \mathbf{a}^{\mathcal{T}}\widehat{\mathbf{C}}\mathbf{a}$$

• $\widehat{\mathbf{C}}$ is large sample approximation of covariance matrix of MLE • $a_i = \partial t_p / \partial \theta_i$, $\boldsymbol{\theta}$ contains unknown model parameters

Directional derivative according to Whittle (1973)

$$\Lambda(\eta,\nu) = \mathbf{a}^{\mathsf{T}}(\mathbf{I}(\eta))^{-1}\mathbf{I}(\nu)(\mathbf{I}(\eta))^{-1}\mathbf{a} - \mathbf{a}^{\mathsf{T}}(\mathbf{I}(\eta))^{-1}\mathbf{a}$$

Design η has smaller AVar (\hat{t}_p) than design ν if $\Lambda(\eta, \nu) > 0$.

WM2014: Optimal Design for Examples 1 & 2

Carbon resistors, Shiomi & Yanagisawa (1979)

x	π	$\sqrt{\textit{AVar}(\hat{t}_{0.1})}$
50	0.050	
83	0.711	21808
173	0.239	

Nikolaus Haselgruber / Ernst Stadlober

Metal wear resistance, Meeker & Escobar (1998)

x	π	$\sqrt{\textit{AVar}(\hat{t}_{0.1})}$
10	0.05	1795
100	0.95	

Example 2

Sensitivity and robustness of designs for RMADT

Sensitivity and Robustness

- Optimal designs depend on model and on observed data
- Sensitivity investigated by comparing a grid of candidate designs with the optimal design
- Robustness of optimal solutions regarding the influence of the input data in using bootstrap simulations
 - Collection of continuous designs $\nu = (\mathbf{x}, \boldsymbol{\pi})$
 - Fixed boundary stress levels x_L (low) and x_H (high)
 - Fixed proportions at the bounds, π_L and π_H
 - Inner level x_M varied so that $x_L \le x_M \le x_H$ and $\sum_{j \in \{L,M,H\}} \pi_j = 1$ with $0 \le \pi_j < 1 \forall j$.

伺下 イヨト イヨト

Sensitivity Analysis of Example 1 (1)

Degradation as resistance in Ohms

$$y_{ijk} = \gamma_2 x_k \tau_{ij} + b_{0i} + b_{1i} \tau_{ij} + \epsilon_{ijk}, \ \epsilon_{ijk} \stackrel{iid}{\sim} N(0, \sigma^2)$$

Unit i = 1..29, time point j = 1..5, acceleration level k = 1..3
 Time τ = √Time in hours

• Arrhenius transformed stress x = -11605/(T in °C + 273.15)

- MLE with R function lme()
- Optimal 3-level design η with $\mathbf{x} = (50, 83, 173)$ and $\pi = (0.05, 0.711, 0.239)$
- Designs $\nu = (\mathbf{x}, \pi) = ((50, x_M, 173), (0.05, \pi_M, 0.95 \pi_M))$ with $x_M \in (50, 173)$ and $\pi_M \in [0.05, 0.9]$ investigated

• • = • • = •

Sensitivity Analysis of Example 1 (2)

• is WM2014 optimal design η with (x_M, π_M) = (83, 0.711).
η has highest x_M among all designs on isoline Λ(η, ν) = 0
∀ x_M ∈ [63, 83) ∃ two optimal designs with different π_M
Equivalent 2-level design is x = (50, 173), π = (0.366, 0.634)

Sensitivity Analysis of Example 2 (1)

Degradation of log microns as

$$y_{ijk} = \gamma_1 x_{1k} + \gamma_2 x_{2k} \tau_{ij} + b_{0i} + b_{1i} \tau_{ij} + \epsilon_{ijk}, \ \epsilon_{ijk} \stackrel{iid}{\sim} N(0, \sigma^2)$$

- Unit i = 1..12, time point j = 1..8, acceleration level k = 1..3
- Time $\tau = \log(\text{Time in kilocycles})$
- Stress $x_1 = x_2 = x$ as weight in grams
- MLE with R function lme()
- Optimal 2-level design η with $\mathbf{x} = (10, 100), \ \pi = (0.95, 0.05)$
- Designs $(\mathbf{x}, \pi) = ((x_M \ge 5, 100), (\pi_M \ge 0.05, 1 \pi_M))$ with $\pi_L = 0$ investigated

b 4 3 b 4 3 b

Sensitivity Analysis of Example 2 (1)

 is optimal design η with x_M = 10, π_M = 0.95 (π_L = 0)
 Equivalent optimal designs between x = (5, 100), π = (0.853, 0.147) and x = (10, 100), π = (0.95, 0.05)
 Given x_L = 10 provides unique optimum (x_M, π_M) = (10, 0.95)

Robustness of the Designs

- AVar (\hat{t}_p) strongly depends on the input data.
- Robustness checked by bootstrap simulation
 - Select randomly m_k data records with replication on each stress level k where m_k is the number of specimens tested at stress level k in the original data set.
 - MLE with generated data
 - Estimate $AVar(\hat{t}_p)$ for each candidate design (\mathbf{x}, π) on the grid
 - Check the directional derivative on the grid with respect to the optimal design.

Summary

Robustness of Example 1 (1)

- *b*₀ was estimated very precisely
- CV (:= 100% * standard error/estimate) = 0 for x_M and π_M
- \blacksquare CV for other parameters between 10% and 30%

Summary

Robustness of Example 1 (2)

All bootstrap simulation runs provided the identical optimal design which indicates high robustness against the input data

Summary

Robustness of Example 2 (1)

Fixed effects γ₁, γ₂ and b₀ estimated precisely (CV ≈ 2%)
CV for variance related parameters between 5% and 72%

Nikolaus Haselgruber / Ernst Stadlober Sensitivity and robustness of designs for RMADT

Summary

Robustness of Example 2 (2)

Optimal designs found over all bootstrap simulations between $\pi_{M_1} = \pi_{M_2} = 0.95$ and $x_{M_1} = 9.995$, $x_{M_2} = 10$ (tight range, maybe numerical uncertainty)

Summary

- Random effects reduce error in degradation model
- Optimal design is robust against variability in input data
- Sensitivity analyses provide useful overview of equivalent optimal alternatives even among 2- and 3-level designs

References

- B. Weaver and W.Q. Meeker (2014): Methods for planning repeated measures accelerated degradation tests. Applied Stochastic Models in Business and Industry 2014 / 30, 658-71.
- N. Haselgruber and E. Stadlober (2014): Discussion of Methods for planning repeated measures accelerated degradation tests. Applied Stochastic Models in Business and Industry 2014 / 30, 680-85.
- H. Shiomi, T. Yanagisawa (1979). On distribution parameter during accelerated life test for a carbon film resistor. Bulletin of the Electrotechnical Laboratory 1979 / 43, 330-345.
- W.Q. Meeker and L.A. Escobar (1998): Statistical Methods for Reliability Data. Wiley, New York.
- W. Nelson (1990): Accelerated Testing. Wiley, New York.
- P. Whittle (1973): Some general points in the theory of optimal experimental design. Journal of the Royal Statistical Society, Series B 1973 / 35, 123-130.