

New approach to estimate time variable gravity fields from high-low satellite tracking data

Norbert Zehentner & Torsten Mayer-Gürr

Institute of Theoretical Geodesy and Satellite Geodesy Graz University of Technology

International Symposium on Gravity, Geoid and Height Systems 2012

Venice, Italy

GOCE monthly solution

- SST-hl only solution using the acceleration approach
- based on official orbit product
- 500 km Gaussian filter applied

Difference to GOCO02S (Oct. 2010)

Problems

- Systematic deficiencies in current precise orbit products
 - Similar for CHAMP, GRACE and GOCE
- Mostly related to the earth's geomagnetic equator
 - Cause?
- Reduced systematic effects would enable estimation of time variable gravity fields

Norbert Zehentner 3/15 10. October 2012

Degree variances

New approach to estimate kinematic orbits

Basic concept:

- Use of all available observations
 - Code and Phase on all Frequencies
- No formation
 - of differences
 - of linear combinations (lonosphere free, ...)
- Accounting for all known influences
 - Phase wind-up, relativistic effects, antenna offsets and attitude for receiver and transmitter, ...
- Remaining influences included as additional parameters
 - Ionosphere, antenna center variations, ...

Norbert Zehentner 5/15 10. October 2012

Observation equation

Code observation

- All known Influences are corrected
- Remaining Parameters are estimated!

System of normal equations

Assembling of observation equations features kite-structure

Norbert Zehentner 7/15 10. October 2012

Extended normal equations

Extended normal equations

First results

- Dataset: GRACE A and B
- Precise GPS orbit and clock information
 - orbit and 5 s clock corrections from CODE
- Difference to official orbit product (GNV1B)

Norbert Zehentner 10/15 10. October 2012

Receiver antenna center variations GRACE A

Norbert Zehentner 11/15 10. October 2012

Example

Example

Solution filtered with 500 km Gaussian filter

Norbert Zehentner 13/15 10. October 2012

Summary

- Systematic effects degrade actual gravity field solutions based on orbit positions (SST-hl)
- New approach for precise orbit determination
- Method works
- First results are encouraging
 - Still problems to be solved!
- Clustered processing of several satellites (CHAMP, GRACE, GOCE and others)
 - Could enable estimation of time variable gravity fields

New approach to estimate time variable gravity fields from high-low satellite tracking data

Norbert Zehentner & Torsten Mayer-Gürr

Institute of Theoretical Geodesy and Satellite Geodesy Graz University of Technology

International Symposium on Gravity, Geoid and Height Systems 2012

Venice, Italy