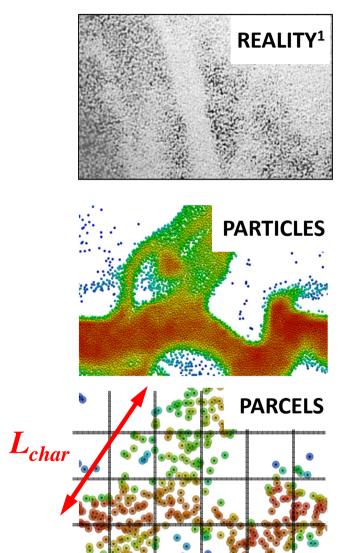


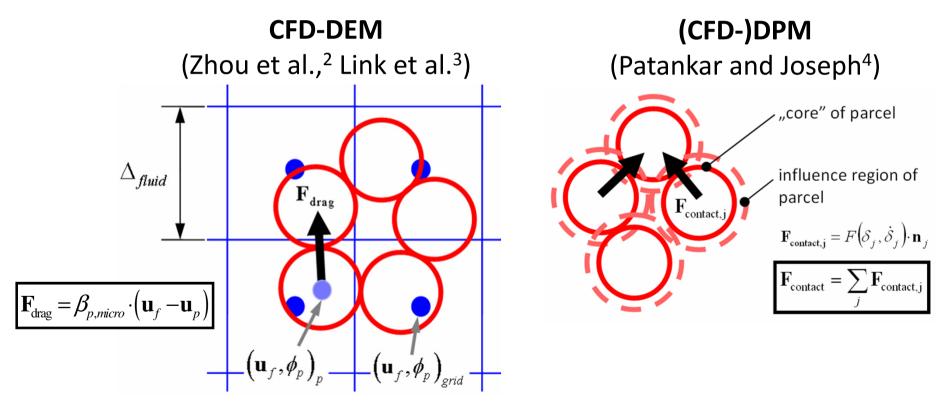
Coarse-Grid Simulations Using Parcels An Advanced Drag Model based on Filtered

CFD-DEM Data


<u>Stefan Radl</u> and Sankaran Sundaresan

Talk 5-4 Fluidization XIV Noordwijkerhout, The Netherlands

Outline


- Motivation
- Simulation Setup
- Drag Model Results
- A Short Review of Important Length Scales

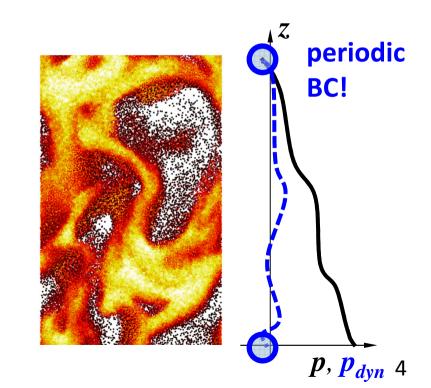
¹Courtesy: Franklin Shaffer, NETL, Morgantown, WV (2009).

Simulation Setup

- In the CFD-DEM^{2,3} the fluid flow is calculated on a **computational grid that is larger than the particles "microscopic" drag law**.
- In the CFD-DPM one computes virtual "contact" forces via a DEM-like tracking of parcel collisions.⁴ Microscopic draw law often not suitable.

Simulation Setup

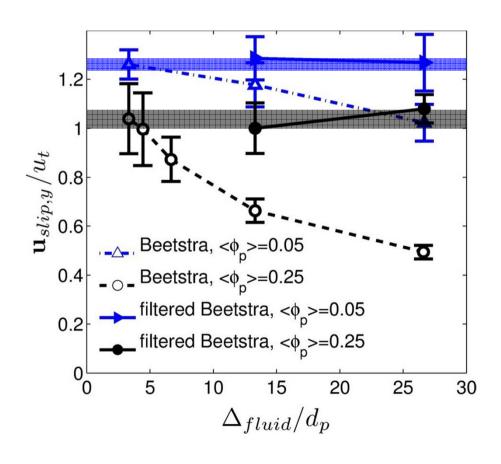
$$\nabla p = \nabla p_{dyn} + \rho_{mix} \mathbf{g}$$


Momentum Balance Equation in a Periodic Box

 $\partial_t \left(\phi_f \rho_f \mathbf{u}_f \right) + \nabla \cdot \left(\phi_f \rho_f \mathbf{u}_f \mathbf{u}_f \right) = -\phi_f \cdot \nabla p - \nabla \cdot \left(\phi_f \cdot \mathbf{\tau}_f \right) + \phi_f \rho_f \mathbf{g} + \mathbf{\Phi}_f \mathbf{g}$

 $\partial_t \left(\phi_f \rho_f \mathbf{u}_f \right) + \nabla \cdot \left(\phi_f \rho_f \mathbf{u}_f \mathbf{u}_f \right) = -\phi_f \cdot \nabla p_{dyn} - \nabla \cdot \left(\phi_f \cdot \boldsymbol{\tau}_f \right) + \phi_f \left(\rho_f - \rho_{mix} \right) \mathbf{g} + \Phi$

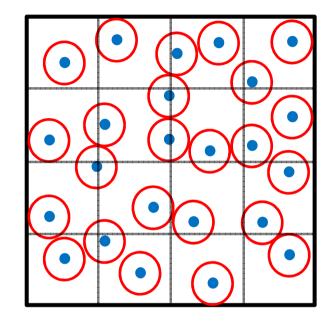
...pressure "as usual", but with different meaning!


...treat as explicit term in the fluid's momentum balance equation

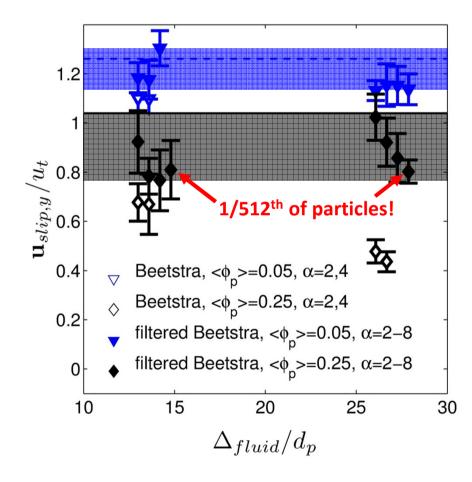
- 1. CFD-DEM
 - Fine fluid grid
 - Track all the particles
 - Micro-scale drag law
 - Obtain filtered drag law
- 2. Coarse Grid CFD-DEM
 - Coarse fluid grid
 - Track all the particles
 - Use filtered drag law

<u>i če</u>

Q: Do **CFD-DEM** and **Coarse Grid CFD-DEM** yield the same results?



- Large decrease of slip velocity if using "microscopic" drag law (Beetstra; -53% for $\langle \phi_p \rangle = 0.25$).
- Coarse Grid CFD-DEM with filtered drag law is within
 +2% (<φ_p>=0.05) and
 ±3.8% (<φ_p>=0.25) of wellresolved CFD-DEM!


75 μm particles, 8 x 32 x 8 mm domain, 0.46M - 2.32M particles.

- 3. CFD-DPM
 - Use filtered drag law
 - Coarse fluid grids
 - Track parcels of size

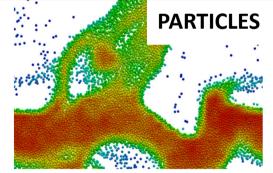
 $d_p = \alpha d_{prim}$

Q: Do **CFD-DEM** and **CFD-DPM** yield the same results?

- CFD-DPM with "microscopic" drag law significantly under-predicts slip (-58% for <φ_p>=0.25).
- Filtered drag law improves results, but still significant under prediction: -22% ($<\phi_p>=0.25$)
- Now, we introduce a correction to account for parcel size effects:

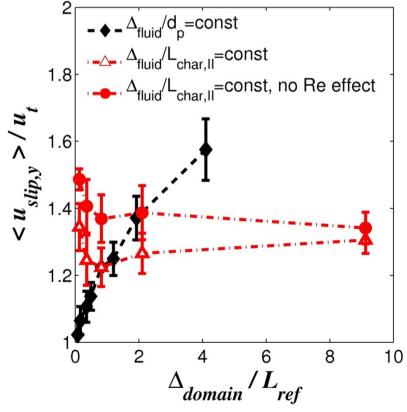
$$c_{corr} = \exp\left[-k\left(\alpha - 1\right)\right]$$

k = 0.05 (based on calibration)


75 μm particles, 8 x 32 x 8 mm domain, 0.46M -2.32M particles, pairs of symbols represent CFD-DPM result, horizontal lines are results of wellresolved CFD-DEM simulations.

Outline

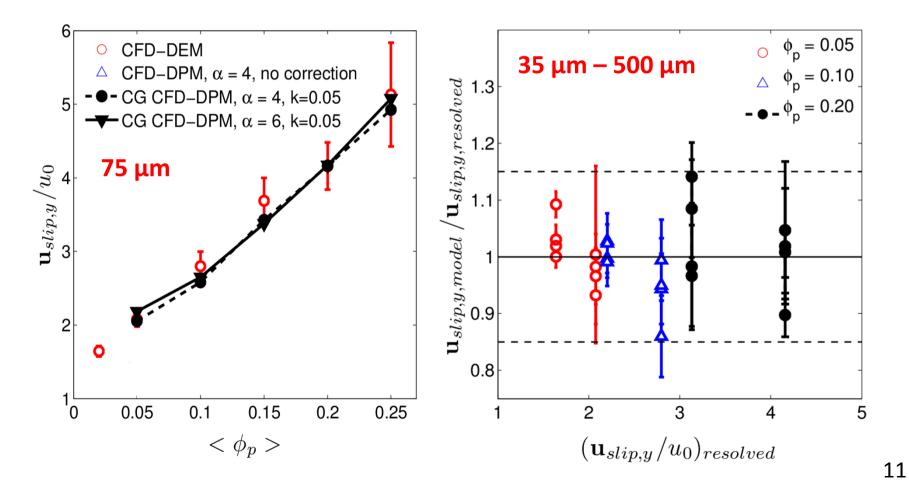
- Motivation
- Simulation Setup
- Drag Model Results
- A Short Review of Important Length Scales
 - What is the effective force on an ensemble of particles?
 - ➤ What is the characteristic size of a particle cluster... ...to make Δ_{fluid} dimensionless?


¹Courtesy: Franklin Shaffer, NETL, Morgantown, WV (2009).

$$\frac{\overline{\beta}_{p}}{\beta_{p,micro}} = c_{corr} \left(\alpha \right) \left[1 - f \left(\Delta_{fluid}, \overline{\phi}_{p} \right) h \left(\overline{\phi}_{p} \right) \right]$$

Drag Model Tests (CFD-DEM)

• Test 1: Use d_p or $L_{char,II} = u_t^2 / g Fr_p^{-2/3} = const$ and test sensitivity to $L_{ref} = u_t^2 / g$ • $\Delta_{fluid}/d_p = const$ does NOT



- Δ_{fluid}/d_p = const does NOT yield results independent of L_{ref} . Same is true for Δ_{fluid}/d_p = const.
- Δ_{fluid}/L_{char,II} = const works much better! This is true with/without Reynolds number dependent drag.
- L_{char,II} seems to be a useful reference length WHY?

Domain-averaged slip velocity for constant $L_{char,II}$, and variation of particle diameter & density ($\langle \phi_D \rangle = 0.05$).

Drag Model Tests

• Test 2: Use $L_{char,II} = u_t^2 / g Fr_p^{-2/3} = const$ and test sensitivity to d_{prim} and d_p for various $\langle \phi_p \rangle$

Review of Length Scales

Inspiration from Continuum-Based Theory

• Particle-Phase Momentum Balance*

$$\rho_p u_t^2 \left[\frac{1}{u_t} \partial_t (\phi_p \mathbf{u}_p^*) + \nabla \cdot (\phi_p \mathbf{u}_p^* \mathbf{u}_p^*) \right] = -\nabla \cdot \boldsymbol{\sigma}_p - \phi_p \nabla \cdot \boldsymbol{\sigma}_g + \beta u_t \mathbf{u}_{slip}^* + \rho_p \phi_p g \mathbf{g}^*$$

• **Estimate** for the **granular temperature** (shear production vs. dissipation) d_n

$$\sqrt{T} \approx \frac{d_p}{L_{visc,II}} u_t$$

A length scale based on the balance of *viscous particle stress* & gravity is:

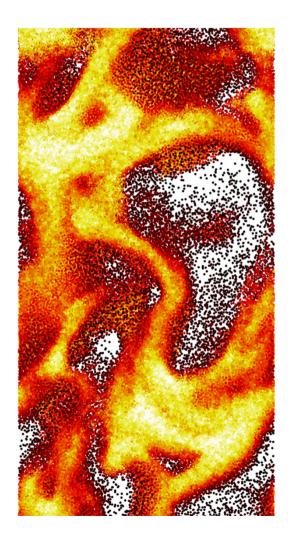
$$L_{visc,II}{}^{3}\mathbf{g}^{*} = \left(\frac{u_{t}^{2}}{g}\right)^{3} \left(\frac{d_{p}g}{u_{t}^{2}}\right)^{2} \frac{1}{\phi_{p}} \cdot \nabla^{*} \cdot \left[2C_{KT}F_{diss}{}^{*}\left(\nabla^{*}\mathbf{u}_{p}^{*} + \nabla\mathbf{u}_{p}^{*T}\right)\right] \qquad \mathbf{n} = -2/3$$

Summary

- The advanced drag model takes the effect of grid resolution, parcels size, local particle concentration and particle properties into account. It is valid for flow situations far away from walls.
- For the smallest length relevant for particle clustering, our simulations suggest (tested for $Re_p = O(1)...O(100)$):

$$L_{char,II} = \frac{u_t^2}{g} F r_p^{-2/3}$$

 L_{char,II} appears to be the key reference length scale for the fluid grid size in coarse-grid simulations, in case particle inertia is not that important (compared to ρ_pT).



Coarse-Grid Simulations Using Parcels

An Advanced Drag Model based on Filtered CFD-DEM Data

<u>Stefan Radl</u> and Sankaran Sundaresan

Talk 5-4 Fluidization XIV Noordwijkerhout, The Netherlands

