

Jahrestreffen der Fachgruppe Computational Fluid Dynamics, Mischvorgänge und Rheologie

Predictive Capabilities of Microscopic Models for Conductive

Transport in Sheared Particle Beds

Bhageshvar Mohan, Johannes G.Khinast, Stefan Radl

February 24, 2014

Talk: 5371

Würzburg, Germany

(20mins)

Outline

- Introduction
- Proposed models
- Single particle-particle collision
- Sheared particle beds
- Conclusions

Introduction

- Granular materials show extremely complex flow features.
- Prediction of wet granular flow difficult due to difficulties in describing liquid exchange during particle-particle collisions.
- A more rigorous model that is valid for all regimes would be of paramount industrial importance, e.g., to predict the distribution of liquid between particles more reliably in a
 - granulation,
 - mixing,
 - drying or coating applications
- Four liquid transfer models to predict the formation and rupture of liquid bridges and model for the conductive liquid flux for different flow regimes.

Model – A

 Conduction based simple liquid transfer rate model^[1]

Model – B1

 Instantaneous liquid transfer model based on surface contact of particles^[2]

Model – B2

Instantaneous liquid bridge formation and rupture

Model – C

 Filling rate based model for drainage of liquid into the bridge

Model A

Transfer rate based on Γ

Model B1

Calculation of bridge volume^[2]

Transfer of liquid between particles instantaneously

Formation of liquid bridge

Model B2

Explicit Calculation of bridge volume^[2]

Instantaneous transfer of liquid into the bridge

Model C

Drainage of liquid from the film into the bridge based on t_{ref}

$$t_{ref} = r_{eff} \cdot \frac{\mu_l}{\sigma_l}$$

Backflow of liquid from the bridge to liquid film is possible

Rupture of liquid bridges

Calculation of rupture distance

$$s_c = \|\boldsymbol{\delta}\| - r_i - r_j$$

$$s_r = (1 + 0.5\theta) V_b^{1/3}$$

$$s_c \geq s_r$$

On rupture of liquid bridges

$$Q_i = \frac{V_b \cdot n}{\wedge t}$$

$$Q_j = \frac{V_b \cdot (1 - n)}{\triangle t}$$

Key differences	Model A	Model B1	Model B2	Model C
Account of liquid Film thickness	No	No	Yes	Yes
Explicit calculation of Bridge volume	No	Not really (just at the end of collision)	Yes	Yes
Rupture distance	No	No	Yes	Yes
Effect of liquid viscosity and surface tension	Yes	No	No	Yes

Dimensional analysis

$$\gamma^* = \gamma d_p^{3/2} / \sqrt{k_n / \rho_p}$$

Dimensionless shear rate Range^[4]: **10**⁻⁴ **to 1**

Based on dimensional analysis of main influencing parameters, we get two dimensionless numbers

$$\Gamma = t_{ref}/t_{shear} = \gamma \cdot r_{eff} \cdot \mu_l/\sigma_l$$

$$\varepsilon = h_o/r_{eff}$$

Range: 10⁻³ to 1

Dimensionless liquid film thickness

Model setup

Single particle-particle collision setup

- Smooth
- Equal sized particles
- No force models

Simulation Setup

$$\mathbf{q}^{cond} = \frac{1}{V} \sum_{c} Q \cdot \mathbf{r}_{ij}$$
$$q_{s} = -\gamma \cdot \nabla_{y} L_{p,i} / d_{p}$$

- •Particles placed in a **periodic box** ($H/d_p=15$).
- •Particles stiffness based on dimensionless shear rate
- •Volume of liquid on the particle based on dimensionless liquid film thickness.
- •Particles near the top boundary were fixed to be wet $(L_p^* = 1)$ and near the bottom boundary were fixed to be dry $(L_p^* = 0)$.
- •Lees-Edwards boundary conditions^[5] used.
- •Conductive liquid flux (q_y^{cond}) made dimensionless using q_s as the reference conductive liquid flux in the solid material the particles are made of.

Summary of conductive liquid flux vs dimensionless shear rate

$$\varepsilon = 2.6 \cdot 10^{-6}$$

$$\Gamma = 10^{-1}, 1$$

Summary of scaled conductive liquid flux vs dimensionless scaled shear rate

$$\varepsilon = 2.6 \cdot 10^{-6}$$

$$\Gamma = 10^{-3}$$

$$q_y^{cond*} / \left| \phi_p - \phi_c \right|^a = k^{inert} \left(\gamma^* / \left| \phi_p - \phi_c \right|^b \right)^{5/4}$$

Average Coordination number (bridge and contact)

$$\overline{Z}_c = 2N_{c,tot} / N_p \quad \overline{Z}_b = 2N_{b,tot} / N_p$$

Results

Summary of scaled conductive liquid flux vs dimensionless scaled shear rate

Thermal transport

$$Pe = \gamma \frac{\left(d_p / 2\right)^2}{K / \rho_p c_p}$$

Liquid transport

$$\Gamma = \gamma r_{eff} \mu_l / \sigma_l$$

Conclusions

- Simplified models for liquid transfer based on different definitions of liquid transfer rates that predicts the liquid bridge formation and rupture.
- Filling rate based model for drainage of liquid into the bridge, with explicit calculation of individual liquid bridge volumes, formation and rupture.
- Effect of dimensionless liquid film thickness on the average bridge coordination number and critical particle volume fraction
- Analogy between the thermal and liquid transport
- Reference time scale for the liquid bridge filling process

$$t_{ref} = r_{eff} \cdot \frac{\mu_l}{\sigma_l}$$

Jahrestreffen der Fachgruppe Computational Fluid Dynamics, Mischvorgänge und Rheologie

Predictive Capabilities of Microscopic Models for Conductive Transport in Sheared Particle Beds

Acknowledgement

Austrian Science Foundation (FWF)

