

Contributions of different gravity field quantities to the geoid computation

Christian Pock¹, Torsten Mayer-Gürr¹, Daniel Rieser¹, Norbert Kühtreiber²

1) Institute of Theoretical Geodesy and Satellite Geodesy

2) Institute of Navigation

Graz University of Technology

International Association of Geodesy Scientific Assembly 2013 Potsdam, Germany

Introduction

 Current Austrian geoid initiative "Geoid for Austria - Regional gravity FIELD improved" (GARFIELD) - P25222-N29

- Combination of global gravity field models with terrestrial gravity field observations
- Questions:
 - Which gravity field data is used?
 - How is the data combined?

Computation Parameters

- Remove-Compute-Restore Technique
- Terrestrial input data
 - 41490 gravity measurements
 - 672 deflections of the vertical
 - **192** GPS/Leveling observations
- Global gravity field model
 - GOCO03s [Mayer-Gürr T., et al. (2012)]
- Topographic reduction: Prism formula
 - Coarse & Dense digital terrain models
 - Standard crustal density of 2.670 kg/m³
- Computation: Least squares approach
 - Radial Basis Function parametrization

Realization - Consistent Reduction (1)

- Measured gravity reduced by:
 - Global gravity field model
 - Topographic effects

Realization - Consistent Reduction (2)

- Measured deflection of the vertical ξ (North-South component) reduced by:
 - Global gravity field model
 - Topographic effects

rms = 1.8 sec

Realization - Consistent Reduction (3)

- Measured deflection of the vertical η (East-West component) reduced by:
 - Global gravity field model
 - Topographic effects

rms = 1.7 sec

Weighting (1)

- **Previous** Austrian geoid computation
 - Assumption about accuracy

$\sigma_{AUT_{EMP}}$ [mgal]	$\sigma_{Neigh_{EMP}}$ [mgal]
1.00	1.00

Question:

- Can these empirically determined a-priori accuracies be confirmed using VCE?

 $\sigma_{\xi,\eta_{EMP}}$ ["]

0.30

Weighting (2)

- **Previous** Austrian geoid computation
 - Assumption about accuracy

$\sigma_{AUT_{EMP}}$	$\sigma_{Neigh_{EMP}}$
[mgal]	[mgal]
1.00	1.00

Question:

- Can these empirically determined a-priori accuracies be confirmed using VCE?

- New solution
 - Using Variance Component Estimation

Answer:

- Yes for gravity data
- No for deflections of the vertical

Radial Basis Functions (RBF)

Computed Geoid N_{RBF} relative to GOCO03s

50

Gravimetric geoid

- 41491 gravity anomalies

Astrogeodetic geoid - 672 deflections of the vertical

Only 3.2% of input data as compared to gravity anomalies!

Computed Geoid N_{RBF} relative to GOCO03s

Contribution to a Combined Solution (1)

- Pure gravimetric and astrogeodetic geoids have been computed
- Variance component estimation provided a proper weighting between different observation groups
- Still to do
 - Compute combined geoid solution

Question:

- What is the contribution of each individual gravity field quantity to a combined geoid solution?

Contribution to a Combined Solution (2)

IAG 2013

Contribution to a Combined Solution (3)

- · Contribution by normal equations
 - Regularization based on GOCO model \rightarrow 37891 RBF parameter
 - $[\mathbf{N}_{GOCO} \ \mathbf{N}_{total}^{-1}]_{ii}$ with $\mathbf{N}_{total} = \mathbf{N}_{\triangle g} + \mathbf{N}_{\xi,\eta} + \mathbf{N}_{GOCO}$

Contribution to a Combined Solution (4)

Validation (1)

- Full Restore step
- Different solutions
 - Astrogeodetic geoid based on 672 deflections of the vertical
 - **Gravimetric** geoid based on 41490 gravity anomalies
 - Combined solution (Astrogravimetric)

Questions:

- Which is the best solution compared to GPS/Leveling?
- Is there a significant impact on the combined solution caused by deflections of the vertical?

TU Graz

Validation (2)

- Estimated geoid heights based on RBF parametrization full Restore step
 - 192 GPS/Leveling points compared to the astrogeodetic geoid

TU Graz

Validation (3)

- Estimated geoid heights based on RBF parametrization full Restore step
 - 192 GPS/Leveling points compared to the gravimetric geoid

Validation (4)

- Estimated geoid heights based on RBF parametrization full Restore step
 - 192 GPS/Leveling points compared to the combined solution

Summary

- Astrogeodetic geoid
 - Sparse observations provide a reasonable geoid
 - Solution is not competitive to the gravimetric geoid
- Gravimetric geoid •
 - Huge number of gravity observations available -
 - Results make us confident for further computation
- **Combined solution**
 - Solution is dominated by gravity observations
 - Number of deflections is not sufficient to provide significant contributions to a combined solution

Further investigations

- 1:1 ratio of input observations: *Deflections of the vertical perform better*
- 6x more gravity observations are needed to provide a solution of equal quality

Contributions of different gravity field quantities to the geoid computation

Christian Pock¹, Torsten Mayer-Gürr¹, Daniel Rieser¹, Norbert Kühtreiber²

1) Institute of Theoretical Geodesy and Satellite Geodesy

2) Institute of Navigation

Graz University of Technology

International Association of Geodesy Scientific Assembly 2013 Potsdam, Germany