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Do we need a new definition of gravity anomalies?
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Goal: Geoid determination in Austria with cm accuracy

GARFIELD
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Input data: Gravimetric observations

72.723 observations

in and around Austria

Accuracy for most

data: << 0.1 mGal
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Fundamental equation of physical geodesy

“This error is [on a global average] on the order of ±20 cm in the geoidal height. 

This is one order of magnitude smaller than the accuracy implied by the present 

gravimetric and satellite data.”

Helmut Moritz (1980), Advanced physical geodesy:

“This spherical approximation causes an error which is negligible in most 

practical applications.”
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Connection

Is the fundamental equation of physical geodesy in linearized form

(with spherical approximation) accurate enough to model the observations?
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Observation equations

Linearization of non-linear observation equations
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ellipsoidal height = 

orthometric height + geoid height
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),,( hBLWx Unknown parameter Gravity potential

),,(0 hBLUx Taylor point Normal potential

),,(0 hBLTxx Difference Disturbance potential

),,()( hBLgxf Observed Observed absolute gravity

),,()( 0 hBLxf Computed Normal gravity

with 00 N
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with

Observation equations

Linearization of non-linear observation equations
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Observation equations

Linearization of non-linear observation equations
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Possible improvements of accuracy:

1. Better linearization

(without spherical approximation)
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Observation equations

Linearization of non-linear observation equations
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Possible improvements of accuracy:

1. Better linearization

(without spherical approximation)

2. Inlcude quadratic terms



Institute of Geodesy

Torsten Mayer-Gürr 9

Observation equations

Linearization of non-linear observation equations
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Possible improvements of accuracy:

1. Better linearization

(without spherical approximation)

2. Include quadratic terms
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Observation equations

Linearization of non-linear observation equations
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Possible improvements of accuracy:

1. Better linearization

(without spherical approximation)

2. Include quadratic terms

3. Better Taylor point
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Observation equations

Linearization of non-linear observation equations
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Possible improvements of accuracy:

1. Better linearization

(without spherical approximation)

2. Include quadratic terms

3. Better Taylor point
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Geoid Satellite model GOCO05s

Taylor point

Approximate values (Taylor point)

Classic ),,()( 00 NHBLxf  

),,()( 0 satsat NHBLgxf New approach

with 00 N
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Geoid Satellite model GOCO05s
),,(),,(),,( rZrVrW  Gravity potential:

Taylor point

Approximate values (Taylor point)

Classic ),,()( 00 NHBLxf  

),,()( 0 satsat NHBLgxf  satsat W gNew approach

with 00 N
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Reduced observations

 gg

Classic approach

satgg g

New approach
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Reduced observations

satggg  

Classic approach

satgg g

New approach
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satggg  

Reduced observations

Classic approach

satgg g

New approach

Difference
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Reduced observations

satggg  

Classic approach

satgg g

New approach
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Topography

Gravitational potential from topographic masses
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Satellite model includes topographic effect

Topography without satellite model part
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Reduced observations

satggg  

Classic approach

satgg g

New approach
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Reduced observations

Classic approach New approach

toposat gggg  
toposatgg gg 
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Reduced observations

Classic approach New approach

toposat gggg  
toposatgg gg 
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Reduced observations

Classic approach New approach

toposat gggg  
toposatgg gg 

Difference
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Reduced observations

Classic approach New approach

toposat gggg  
toposatgg gg 
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Estimated Geoid

Classic approach New approach

toposat gggg  
toposatgg gg 

 Residual geoid  Residual geoid
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Estimated Geoid

Classic approach New approach

toposat gggg  
toposatgg gg 

 Residual geoid  Residual geoidDifference
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Summary

 gg

 Not accurate enough for geoid computation

satgg g

Generalized definition:

Gravity anomalies = Observed absolute gravity

– Computed gravity from an approximate model

Classical definition:

Gravity anomalies = Observed absolute gravity

- Normal gravity


