

GOCE gravity gradients for a new Austrian Geoid solution -

A status report

Daniel Rieser, Christian Pock, Torsten Mayer-Guerr Institute of Theoretical Geodesy and Satellite Geodesy TU Graz

5th GOCE User Workshop 2014

Paris, 27.11.2014

Content

- Introduction / Motivation
- Methods
 - Remove-Compute-Restore
- Data
 - Terrestrial data
 - GOCE gravity gradients
- Results and validation with GPS/Leveling
- Summary and conclusion

Introduction

State-of-the-art Austrian Geoid solution

- Based on Least Squares Collocation (LSC)
 - 14000 gravity stations
 - 670 deflections
 - 170 precise GPS/Leveling stations
 - EIGEN-GL04S to D/O 70
- Shortcomings
 - Inconsistencies between gravimetric
 Geoid and GPS/Leveling
 - Official solution forced to match GPS/Leveling stations

Introduction

Current research project GARFIELD

(Geoid for Austria – Regional gravity FIELD improved)

- Aims:
 - Optimum combination of global and terrestrial data
 - Use of more (all) available input data
 - Consistent Remove/Restore concept
 - Avoid a correction surface
 - Revised GPS/Leveling points for validation only

Introduction

- Two strategies
 - Gauß-Markov model parametrized with Radial Basis Functions (RBF)
 - Least Squares Collocation (LSC)

Prediction

$$s = C_{sl} \left(C_{ll} + C_{nn} \right)^{-1} l$$

• Aim of this study:

Can GOCE gravity gradients support the gravimetric solution?

Methods

Remove-Compute-Restore

Long-wavelength effects \rightarrow GOCO03s \rightarrow to which degree/order? ullet

Methods

Remove-Compute-Restore

- Short-wavelength effects → topographic reduction
 - Prism formula
 - Input DTM 173x195 [m]
- Double consideration topographic reduction / GOCO03s
 - SHC analysis of topographic effect
 - Add back to D/O 120
- Use GOCO03s instead of normal gravity
 - GOCO03s geoid is reference surface

Methods

Remove-Compute-Restore

- Isostatic compensation
 - Airy-Heiskanen model based on DTM with density contrast $\Delta \rho = 350 \text{ kg/m}^3$, T = 30 km
 - D/O 121 to 720 subtracted

Data - terrestrial

Reduced terrestrial data

• 22841 gravity stations (subset of available data)

$\Delta \mathbf{g}_{red}$	[mGal]
min	-60.2
max	45.0
rms	16.5

GOCE gravity gradients

- Level 2 products
 - EGG_NOM_2 gradients (in GRF)
 - SST_PSO_orbits
 - Quaternions
- Preprocessing due to
 - − Errors in V_{xy} and V_{yz} → only use main diagonal in GRF
 - Colored noise on measurements

$$\nabla V = \begin{pmatrix} V_{xx} & V_{xy} & V_{xz} \\ V_{xy} & V_{yy} & V_{yz} \\ V_{xz} & V_{yz} & V_{zz} \end{pmatrix}$$

12

Reduced GOCE gravity gradients

- Topographic / isostatic effect from d/o 121 to 360 subtracted lacksquare
- 2804 (x 3) stations (2 months, 5s sampling)

Vzz _{red}	[mE]
min	-28.9
max	31.5
rms	7.4

Data - covariance function

Covariance function (CF) modeling

• Adapted Tscherning-Rapp Model Covariance Function (MCF)

$$C = \sum_{n=2}^{N_{EGM}} \left(\frac{R_b^2}{rr'}\right)^{n+1} \epsilon_n P_n(\cos\psi) + \sum_{n=N_{EGM}+1}^{N_{max}} \left(\frac{R_b^2}{rr'}\right)^{n+1} k_n P_n(\cos\psi)$$

GOC003s error degree variances

$$\epsilon_n = \sum_m \left(\sigma_{c_{nm}}^2 + \sigma_{s_{nm}}^2\right)$$

Fitted degree variances

$$k_n = \frac{A}{(n-1)(n-2)(n+B)}$$

 Fit A, R_b and B to Empirical Covariance Function (ECF) of reduced gravity data

Data - covariance function

Covariance function (CF) modeling

• Adapted Tscherning-Rapp Model Covariance Function (MCF)

Paris, 27.11.2014

[cm]

 σ_{N}

Results and validation

Solution with terrestrial data only

• 22841 gravity stations ($\sigma = 1 \text{ mGal}$)

Solution with terrestrial and GOCE gradient data combined

192 precise GPS/Leveling stations from BEV

Accuracy 2-3 cm (?)

Rieser et al.

Absolute Geoid heights

Validation with GPS/Leveling - terrestrial data only

Geoid height differences

Solution with terrestrial and GOCE gradient data combined

Geoid height differences

terrestrial only

N	[cm]
min	-18.0
max	10.7
rms	6.5

combined

Ν	[cm]
min	-13.6
max	9.5
rms	5.1

Summary and conclusions

- Incorporating GOCE gradients can improve gravimetric solution
 - proper preprocessing steps necessary
 - covariance function should cover all data types

- Compared to a RBF solution, LSC has high computational costs
 - dimension of C_{ll} number observations
 - currently, LSC resolution is limited to N_{max} =2160
- There are still rather high deviations from GPS/Leveling stations
 - strongly correlated with topography

Outlook / further work

- Achieve better consistency in topographic/isostatic reduction between gradients and terrestrial data
- Improve topographic reduction with density information
- Improve terrestrial data weighting
- Include more data

Thank you for your attention!

Daniel Rieser, Christian Pock, Torsten Mayer-Gürr

Institute of Theoretical Geodesy and Satellite Geodesy TU Graz

This work was accomplished in the frame of the project GARFIELD (Geoid for Austria – Regional gravity FIELD improved) funded by the Austrian Science Fund (FWF): P 25222-N29

Der Wissenschaftsfonds.