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Figure 1: Schematic CLC process
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Optimization Study

Motivation 

 Three phase particles including phase 

change models

Figure 3: Temperature distribution in 
a sheared particle bed 

ParScale

Figure 2: Basic scope of ParScale 
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 Open-source library for intra-particle 

transport processes

 Variety of chemical models, relevant 

physical phenomena, grain effects

 Comprehensive user/theoretical  

documentation

 Stand-Alone, Coupled mode 

(LIGGGHTS,CFDEMcoupling)

 Available on Github
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CFD-DEM
simulation to 

picture flow physics

ParScale
for intra-particle 

transport 

processes

Figure 4: DNS of fixed particle bed 
(Federico Municchi, TU Graz)
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Numerical model for optimal parameters for first 

order reaction

 Single reaction model

o 0th order w.r.t solid, 1st order w.r.t gas 

o No grain effect

Table 1. 

Base case para-

meters used for 

optimization.

 Optimization by

o Maximze ks (surface-area specific reaction rate)

o Maximize ci  (gas concentration)

o Minimize grain diameter

o Maximize (ε η), with η = f(Bi,Thiele) 

20152015

Parameter Value Paramet

er

Value

ε 0.5 ν -4

τ 1.5 T 1089 [K]

dp 100 [µm] p 1 [bar]

dpore 20 ... 1000 [nm] Sh 2

θ 0.5 gas prop. CH4 in N2
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 Slow reacting systems

o optimal solid loading close to 

maximum solid loading

 Fast reacting systems

o optimal solid loading 40 to 50 % 

of maximum solid loading

 Minor effect of pore size

 Knudsen diffusion increases for 

smaller pore size

 Should always be considered 

(ψopt << 1)
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Numerical model for optimal metal oxide loading 

for the reduction of hematite

4 2 3 3 4 2 2 24CH 27Fe O 18Fe O 2CO 2CO 3H O 5H     

4 3 4 2 2 23CH 8Fe O 24FeO 2CO CO 3H O 3H     
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Fe O

Fe O ,

Fe O

1
i t is X

MW

 
 Molar Reaction Rate 

Parameter Value Parameter Value

ε 0.5 yCH4 0.2

τ 1.5 T 1089 [K]

dp 1 [mm] p 1 [bar]

(R.1)   treact 60 [s] Bi ∞

sFe2O3 0.11 [kmol/m³/s] RR1 4.10-3 [kmol/m³/s]

Table 2. 

Case parameters 

for reduction of 

hematite
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Figure 4. Normalized concentration profiles of gas (blue dots) and Fe2O3 (red circles, t = 10, 

30, 50 [s] from top to bottom; Left: εs / εs,max = 0.9,  = 1.70; Right: εs / εs,max = 0.96,  = 

3.39.

 Sharp hematite concentration front at r/R = 0.3 (right panel)

o due to relatively high Thiele modulus  diffusion limitation

 Sharp front vanish for smaller Thiele modulus, uniform concentration profiles

 Significant gradient in gas concentration

o due to insensitivity of reaction rate on methane concentration (small n)
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Figure 5. Normalized metal consumption as a function 

of the relative metal loading and pore size of the support

 , ,0ress t s s resc c X t
,0 /s s s sc MW 

Optimal solids loadding

with (tres =100 s) 

 Optimal solids loading close 

to maximum solid loading

 No influence for ≤ 80 %

 Depending on pore size

≈ 84 % for 20 nm

≈ 90 % for 50 nm

≈ 95 % for 200 nm
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 Model for reacting-diffusion problems in porous particles

 Included in ParScale, published under LGPL

 Linkable to any open-source and commercial particle-based flow solver

o LIGGGHTS, CFDEMcoupling

 Active solid optimal loading close to porosity of support 

o 85% - 95% depending on pore size

 If solid is highly active (i.e., high Thiele Modulus)

o 45% of pore volume should be filled
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T. FORGBER

J. R. TOLCHARD

A. ZAABOUT

P. I. DAHL

S. RADL Thank you!

OPTIMAL PARTICLE PARAMETERS 

FOR CLC AND CLR PROCESSES
PREDICTIONS BY INTRA-PARTICLE TRANSPORT 

MODELS AND EXPERIMENTAL VALIDATION
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