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Motivation

Mathematical modelling of sound insulation by porous plates

Mathematical modelling of the dynamical behaviour of poroelastic plates

In classical theories, kinematic assumptions are introduced
→ Kirchhoff plate
→ Mindlin plate

Can the classical assumptions be transferred to poroelasticity, especially to the
pore pressure?

An assumption–free derivation is used
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The poroelastic continuum

Biot’s theory of poroelasticity in frequency domain
→ u, p as degrees of freedom

porosity : φ = V f

V ; full saturation assumed

µ∆û + (µ + λ)∇∇ · û− (α−β)∇p̂ + ω
2(ρ−ρf ) û = β f̂f − F̂

β

iωρf
∆p̂− iω

φ2

R
p̂− iω(α−β)∇ · û =

β

iωρf
f̂f

Total energy stored in the system : Π = Π(u,p)

A variation from a state of equilibrium involves no change in energy

δΠ =
Z

Ω

δUΩ dΩ +
Z

Γ

δUΓ dΓ
!

= 0

δΠ = δΠ(u,δu,p,δp) δU = δU(u,δu,p,δp)

An integration over the thickness coordinate is needed to deduce the plate
equations
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Deducing the plate-problem

Geometry of the plate

x1

x2
x3

x3 =− h
2

x3 = + h
2

A−

A+

S
nβ

n3

u = u(x,ω)

p = p(x,ω)

Substitution of δu and δp by a power series in x3-direction

δu(x1,x2,x3) =
∞

∑
`=0

δ
`
u(x1,x2) x`

3

δp(x1,x2,x3) =
∞

∑
`=0

δ
`
p(x1,x2) x`

3

δ
`
u(x1,x2),δ

`
p(x1,x2). . . Unknown functions of order `
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Approximation by power series

Integration over the plate thicknessZ
Ω

δUΩ (u,δu,p,δp) dΩ

∞

∑
k=0

∞

∑
`=0

Z
A

h
2Z

− h
2

δUΩ

(
k
u,δ

`
u,

k
p,δ

`
p,P (x3)

)
dx3 dA

→
∞

∑
k=0

∞

∑
`=0

Z
A

δUΩ

(
k
u,δ

`
u,

k
p,δ

`
p,P (h)

)
dA

Extract plate problem (identify and decouple plate and disc quantities)

Poroelastic case does not impinge on the decoupling of plate and disc problem

Truncation of the power series
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Approximation by power series

The plate quantities
k

u3 → k := 0,2,4, ... Vertical displacement of the cross section (
k
w)

k
uα → k := 1,3,5, ... Rotation of the cross section (

k
ψα)

k
p → k := 1,3,5, ... Pore pressure distribution over the cross section

Truncation with respect to a specific order of k

Truncation with respect to the order of the plate thickness h plate parameter(
c2
)n

=
(

h2

12

)n
n ∈ N

n = 0 → Theory of zeroth order
n = 1 → Theory of first order
n = 2 → Theory of second order
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The PDE operators

Zeroth order L0
3×3u = f with u = [

0
w ,

1
ψψψ,

1
p]>

→ rigid body motions

First order L1
6×6u = f with u = [

0
w ,

1
ψψψ,

1
p,

2
w ,

3
ψψψ,

3
p]>

→ Fourth order PDE

Second order L2
9×9u = f with u = [

0
w ,

1
ψψψ,

1
p,

2
w ,

3
ψψψ,

3
p,

4
w ,

5
ψψψ,

5
p]>

→ Sixth order PDE

The factor c2 has to be involved when reducing the system, e.g.

c2(∇
0
w +

1
ψψψ) = O(c4)≈ 0

∇
0
w +

1
ψψψ = O(c2)

Problems arise when trying to solve the full system right away
→ Reducing before solving
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The PDE operators

Linear ansatz in k L3×3u = f with u = [
0
w ,

1
ψψψ,

1
p]>

→ sixth order PDE

Quadratic ansatz in k L4×4u = f with u = [
0
w ,

1
ψψψ,

1
p,

2
w , ]>

→ eighth order PDE

Cubic ansatz in k L6×6u = f with u = [
0
w ,

1
ψψψ,

1
p,

2
w ,

3
ψψψ,

3
p]>

→ twelfth order PDE

System can be solved as a whole, without beeing reduced

At least a quadratic ansatz in k is needed to model a Kirchhoff-type equation
(extended by higher order terms)
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First order problem

The reduced First Order Problem with
0
w := w and

1
p := p[

D∆∆−hω2ρβ h(B1∆−β)

iωh(B1∆−β) −hB2

][
w

p

]
=

[
F

Q

]

Weak form :Z
A

[
D [(1−ν)∇∇w : ∇∇v + ν∆w∆v]−h ω

2
ρβ wv + h(B1 p∆v−βpv)−Fv

]
dA−

Z
Γ

[
Vnv−Mnn

∂v
∂n

]
dΓ + [Mnsv]ȳx̄ = 0 x̄, ȳ ∈ Γ

Z
A

[
iωh(B1∆wq−βwq)−hB2 pq−Qq

]
dA = 0
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Numerical results
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Conclusions and Outlook

Conclusion
Derivation of poroelastic plate equations by using series expansions in thickness
direction
Different treatment of the system depending on chosen kind of truncation
Numerical solution of the First Order Problem

Outlook
Necessity to investigate higher order theories
Analyse the full system concerning a stable numerical solution
Compare the results to a 3D solution
Coupling the plate with an acoustic fluid
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