

Impact toughness of steel after electrochemical Hydrogenation

Materials Day 2014 Michael Freiberger, Rudolf Vallant

Goal/Motivation

- Artificial reduction of impact toughness of steel samples due to electrochemical hydrogenation (C45E, unalloyed tempering steel)
- Investigation of failure mechanisms/comparison to literature
- Establishing a simple setup and testing method

Outline

- Introduction to theory
- Setup & parameters
- Results
- Fractography
- Summary & outlook

Freiberger, Gölles: Schadensanalyse gebrochener Schrauben, IWS - VI/2013

Theory

4

Generally: reduced ductility and tensile strength → brittle, intergranular fractures

Hydrogen and Charpy-V

- Usually HE is a mid/long-term process similar to Stress Corrosion Cracking
- Higher DBT-temperature
- The tougher the steel, the bigger the difference of CVN energy after Hydrogen charging
- Mobility (effusibility) of H has to be considered
- Dependent on type of steel (microstructure)

Experiment

Specimen preparation C45E steel

С	Si	Mn	S
0,45	0,25	0,65	<0,03

- Charpy-V-Notch samples (10x10x55mm)
- Hardening temperature 850°C; 0,5h; quenched in water
- Tempered at 600°C; 1h; cooled in air
- Grinded (K120) for uniform surface
- H-Loading according to setup
- 2 Lots of heat treatment

(Lot A and B)

Microstructure

Hydrogen charging

- Potentiostat: Autolab PGSTAT128N
- Cathode: Charpy-V specimen
- Anode: Pt-plated grid-electrode
- Alumel wire
- Electrolyte: H₂SO₄ (0,5M)
- Additive: Thiourea (CH₄N₂S)

$H_3O^+ + e^- \to H_{ads} + H_2O$

Parameters for H-Charging

	U	P1	P2	P3	P4
Current [mA/cm ²]	0	33	20	20	20
Time [h]	0	1	1	3	1
Thiourea [mg/L]	0	0	10	10	10
Heat treatment [°C;h]	-	-	-	-	250; 12

Results of Charpy-V-notch test

Instrumented Charpy-V / F-t

12

Instrumented Charpy-V / F-s

13

Fractography

Uncharged B_1

Fractography

Charged B-P2_2 20mA/cm²; 1h

5 mm

Fractography

Impact toughness of steel after electrochemical Hydrogenation - Materials Day 2014

100 µm

Fractography

Charged B-P2_2 20mA/cm²; 1h

Charged B-P4_3 20mA/cm²; 1h + HT

Summary

- Charpy-V:
 - Reproducible results
 - Faster plastic deformation at reduced toughness
 - Dynamic yield strength and max. force remain the same
 - Crosscheck: Effusion at elevated temperature
 - Difference between Hydrogenation parameters is insignificant
- Fractography:
 - 100% ductile fracture
 - No difference in fracture behavior

 no fractographic signs of Hydrogen embrittlement

→ With given parameters reduced impact toughness only

Outlook

- Steel: S960QL (1.8933) high strength steel
- Planned investigations/considerations
 - Comparison of charged and uncharged basematerial
 – same for HAZ samples
 - Change of DBT temperature
 - Instrumented Charpy-V: Change of crack initiation and arrest of (partially) brittle samples
 - Quasistatic tensile test
 - Quantification via Hot Gas Extraction (also for optimization of charging parameters → specimen saturation with H)

www.tugraz.at

Questions?

Impact toughness of steel after electrochemical Hydrogenation - Materials Day 2014

20