
Consistent combination of satellite and terrestrial gravity field observations in regional geoid modeling

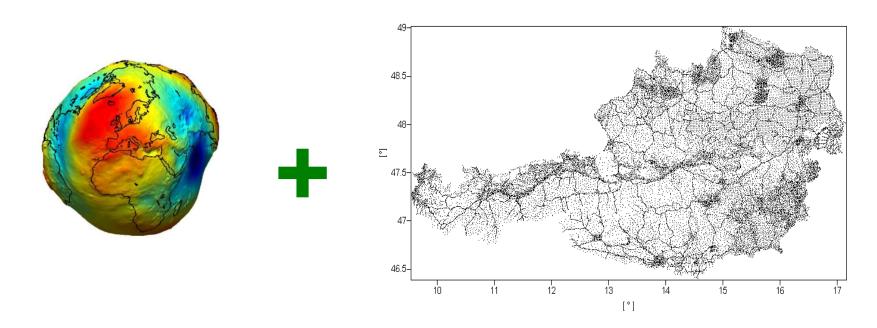
Christian Pock ¹, Torsten Mayer-Gürr ¹, Norbert Kühtreiber ²

- 1) Institute of Theoretical Geodesy and Satellite Geodesy
 - 2) Institute of Navigation

Graz University of Technology

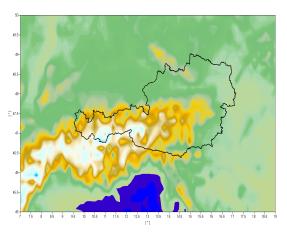
International Symposium on Gravity, Geoid and Height Systems 2012 Venice, Italy

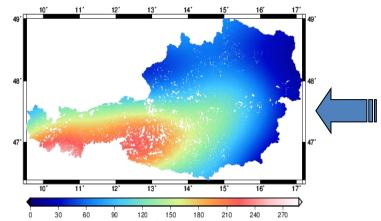
Introduction


- For regional geoid modeling the spatial resolution of satellite-only models is often insufficient and a higher resolution is required
- Local terrestrial data represent high-spectral components but lack from long- wavelength information
- Regional refinement of the global satellite models using Radial Basis Functions

Realization - Consistent Reduction

- Measured gravity has to be reduced
 - Satellite data (long-wavelength)
 - Topography (short-wavelength)
- Hence combining terrestrial gravity data with global satellite observations
 - In frame of Remove/Restore Technique





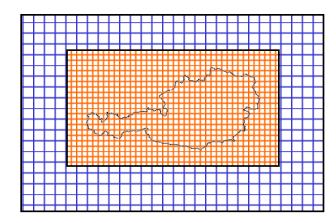
Realization - Consistent Reduction (1)

• Idea:

- Gravitational influence of topography is affecting global satellite models
- Avoid spectral overlap: $V(\lambda, \vartheta, r) = \sum_{n=0}^{250} Y_{nm}Global + \sum_{251}^{\infty} Y_{nm}DTM$
- Therefore using potential coefficients derived from topography
- Add gravity disturbances obtained from topography to Remove/Restore step

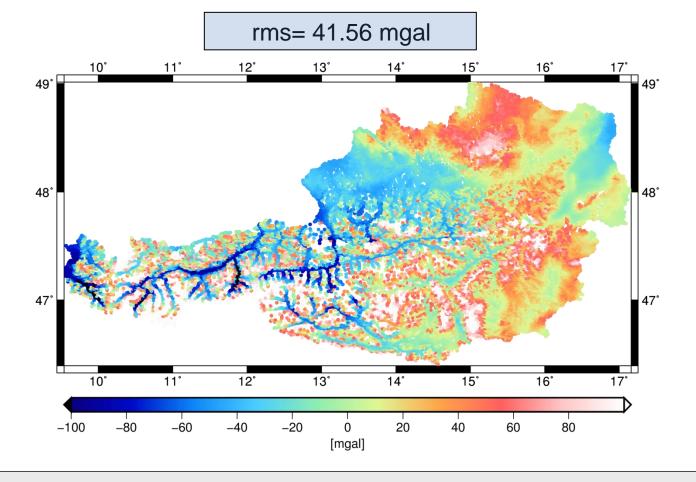
groops	s pote	ntia	lCoeffic	cients versio	n=1.1
modelname				GROOPS	
product_type				gravity_field	
earth_gravity_constant				3.9860044150e+14	
radius				6.3781363000e+06	
max_degree				250	
norm				fully_normalized	
errors				formal	
key	L M		C		S
end_o	f_head	===			
gfc	0	0	8.65780	07121139e-08	0.000000000000e+00
gfc	1	0	3.66074	13917028e-08	0.000000000000e+00
gfc	1	1	3.30880	03634487e-08	7.276150209311e-09
gfc	2	0	1.18633	36263775e-08	0.000000000000e+00
gfc	2	1	3.25017	71035949e-08	7.151406659581e-09
gfc	2	2	1.39696	50929671e-08	6.450844188304e-09
gfc	3	0	-3.67019	91281414e-09	0.000000000000e+00
afc	3	1	2.23402	23249920e-08	4.921918017090e-09

$$\begin{pmatrix} c_{nm} \\ s_{nm} \end{pmatrix} = \frac{1}{M(2n+1)} \iiint_{\Omega} \left(\frac{r'}{R} \right)^n \begin{pmatrix} C_{nm}(\theta', \lambda') \\ S_{nm}(\theta', \lambda') \end{pmatrix} \rho(r') d\Omega$$



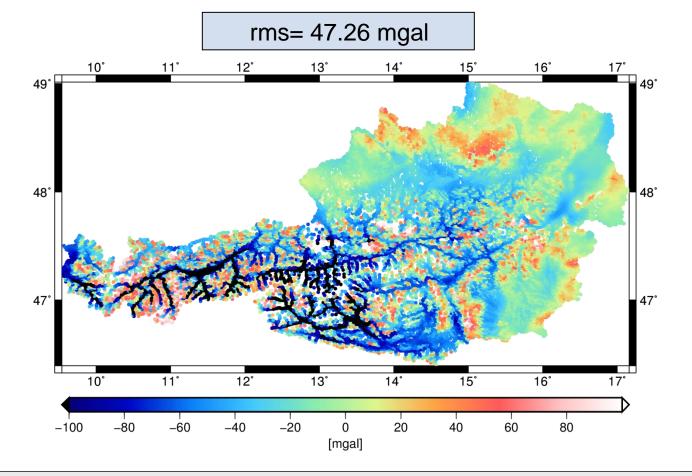
Realization - Computation Parameter (2)

- Input data: ~30.000 gravity measurements
- Used global gravity field model: GOCO03S [Mayer-Gürr T., et al. (2012)]
 - D/O 250
- Topographic reduction is done using the well known prism formula
 - Standard crustal density of 2.670 kg/m³
 - Without isostatic compensation
 - Coarse DTM: ~500 x 500m λ =5°- 22°, φ =43°- 53°


Dense DTM contains only height differences!

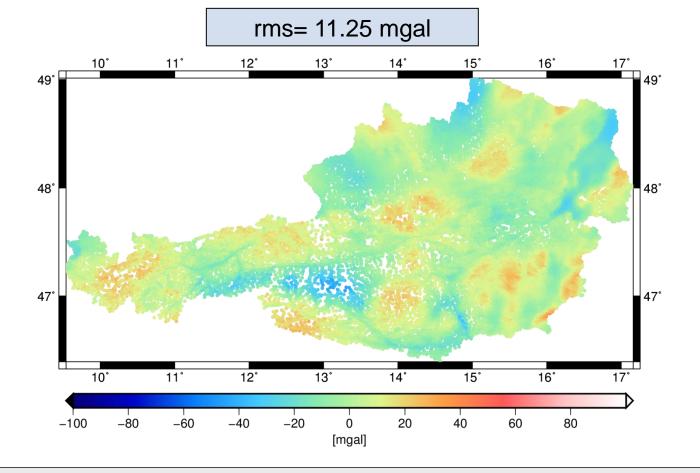
Realization - Consistent Reduction (3)

$$- \triangle g_{red} = g_{abs} - \gamma - \triangle g_{global} - (\delta g_{Coarse} - \delta g_{CoarseDTM250}) - (\delta g_{Dense} - \delta g_{DenseDTM250})$$



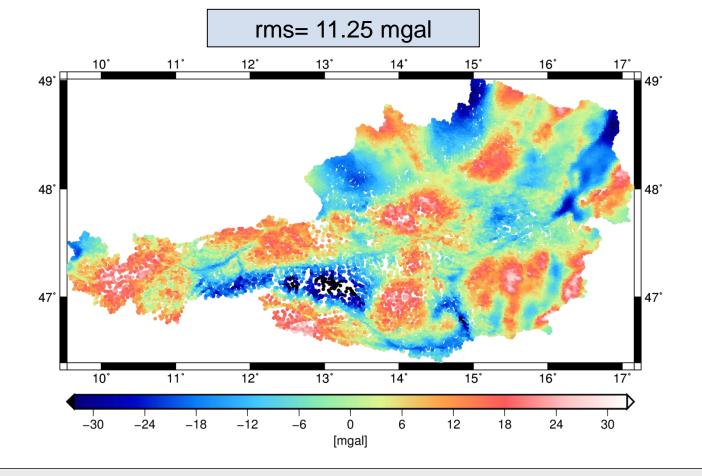
Realization - Consistent Reduction (4)

$$- \Delta g_{red} = g_{abs} - \gamma - \Delta g_{global} - (\delta g_{Coarse} - \delta g_{CoarseDTM250}) - (\delta g_{Dense} - \delta g_{DenseDTM250})$$



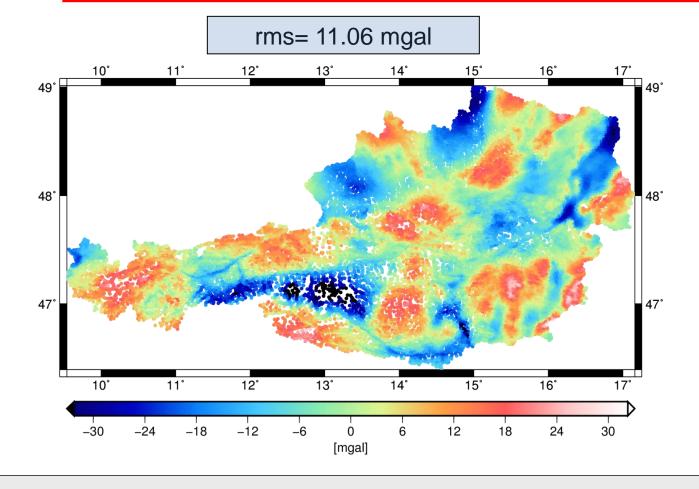
Realization - Consistent Reduction (5)

-
$$\triangle g_{red} = g_{abs} - \gamma - \triangle g_{global} - (\delta g_{Coarse} - \delta g_{CoarseDTM250}) - (\delta g_{Dense} - \delta g_{DenseDTM250})$$



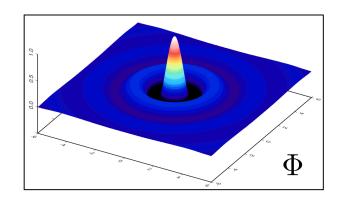
Realization - Consistent Reduction (6)

-
$$\triangle g_{red} = g_{abs} - \gamma - \triangle g_{global} - (\delta g_{Coarse} - \delta g_{CoarseDTM250}) - (\delta g_{Dense} - \delta g_{DenseDTM250})$$



Realization - Consistent Reduction (7)

-
$$\triangle g_{red} = g_{abs} - \gamma - \triangle g_{global} - (\delta g_{Coarse} - \delta g_{CoarseDTM250}) - (\delta g_{Dense} - \delta g_{DenseDTM250})$$


Radial Basis Functions (RBF)

Used approach is based on [Eicker A. (2008)]

Signal:

$$s(x) = \sum_{i=1}^{N} a_i \Phi(x, x_i)$$

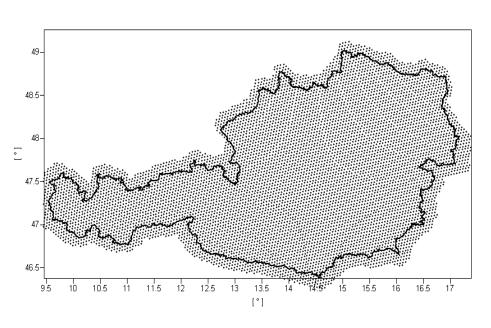
Unknown parameter a_i

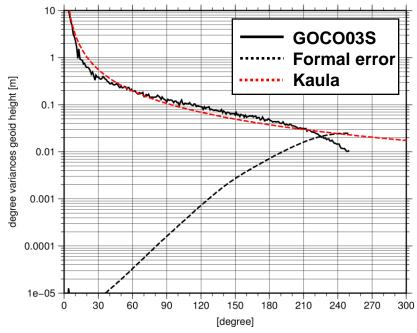
RBF:

$$\Phi(\mathbf{x}, \mathbf{x}_i) = \sum_{n=2}^{\infty} \sum_{m=-n}^{n} k_n Y_{nm}(\mathbf{x}) Y_{nm}(\mathbf{x}_i)$$
Shape coefficients k_n
Spherical harmonics Y_{nm}
Grid points i

Shape coefficients k_n Grid points i

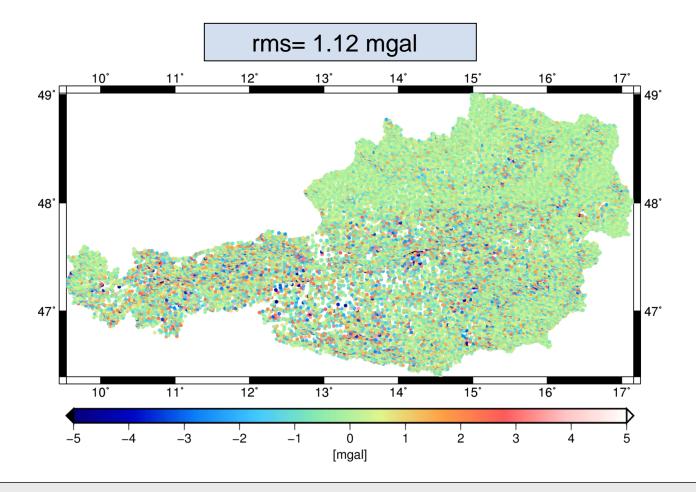
Shape coefficients:


$$k_n = \frac{\sigma_n}{\sqrt{2n+1}} \sim \frac{1}{n^2}$$


Degree variances σ_n Kaula's rule beyond max. D/O

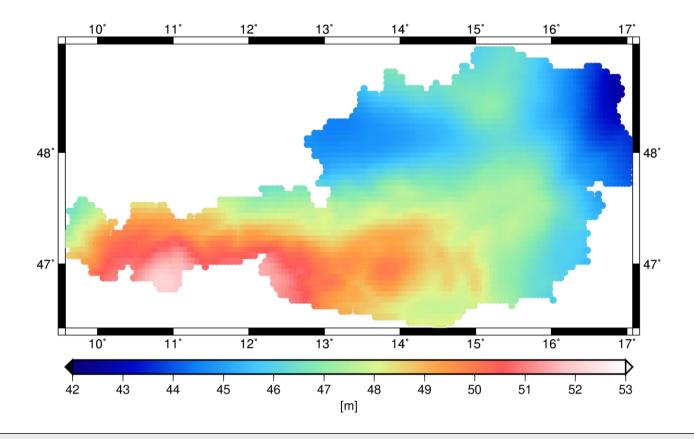
Radial Basis Functions (RBF)

- Shape coefficients are obtained from GOCO03S satellite-only model
 - D/O 250: above padded by Kaula's rule
- RBF spatial distribution
 - Global spherical grid limited by Austrian borders: n=6000 ~ 3 x 3 km
- Estimation of the unknown parameter using a Gauß-Markov Model



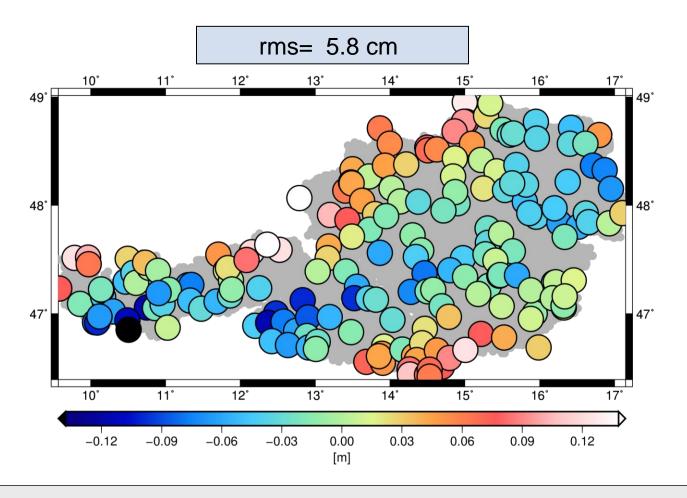
Radial Basis Functions - First results

- Estimated gravity anomalies based on RBF parametrization
 - Residuals between reduced and estimated gravity anomalies $v=l-\hat{l}$



Radial Basis Functions - First results (1)

- Estimated gravimetric geoid based on RBF full Restore step
 - Gravimetric geoid based on 4 x 4 km grid
 - Quality of solution?



Radial Basis Functions - First results (2)

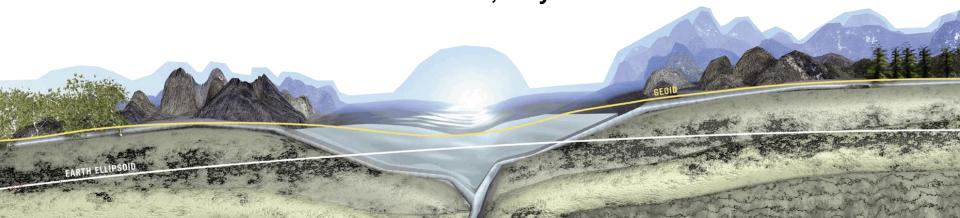
- Estimated geoid heights based on RBF parametrization full Restore step
 - 192 GPS/Leveling points are currently available to check the solution

Summary & Outlook

- First results make us confident for further computation
- Full GOCO information is used in our approach
- Succeeding GOCO models will improve the solution
- Combined calculation with other gravity field quantities
 - Deflections of the vertical ξ, η
 - GPS/Leveling observations
- Global DTM model (DTM 2006) can contribute to an improvement

References

- Mayer-Gürr T., et al. (2012): The new combined satellite only model GOCO03S.
 Presentation at GGHS 2012, Venice, October 2012
- Pail R., et al. (2010): Combined satellite gravity field model GOCO01S derived from GOCE and GRACE, Geophys. Res. Lett., 37, doi:10.1029/2010GL044906
- Eicker A. (2010): Gravity Field Refinement by Radial Basis Functions from Satellite
 Data. EGU General Assembly, Wien 2010
- Eicker A. (2008): Gravity Field Refinements by Radial Basis Functions from In-situ
 Satellite Data, Dissertation, Bonn 2008


Consistent combination of satellite and terrestrial gravity field observations in regional geoid modeling

Christian Pock ¹, Torsten Mayer-Gürr ¹, Norbert Kühtreiber ²

- 1) Institute of Theoretical Geodesy and Satellite Geodesy
 - 2) Institute of Navigation

Graz University of Technology

International Symposium on Gravity, Geoid and Height Systems 2012 Venice, Italy

