

Verification of CLT-plates under loads in plane

Technology | AT

Thomas Bogensperger

holz.bau forschungs gmb

CONTENT

- Introduction to Cross Laminated Timber (CLT)
- Shear Stiffness of CLT Elements
- Shear Strength of CLT Elements
- Summary and Outlook

Timber Solid Construction: Single family house Styria/Austria 2007

Timber Solid Construction: Wiskeymaker's house in St. Nikolai Styria/Austria

Foto-Quelle: Arch. G. Mitterberger, Graz

<u>holz.bau</u>

forschungs gmbh

Definition: Cross Laminated Timber (CLT)

- Large-sized laminar structure
- Build up by odd number of layers
- Each layer consists of parallel timber boards
- orientation of timber boards in two adjacent layers is orthogonal
- Layers are glued together

Definition: Cross Laminated Timber (CLT)

- Large-sized laminar structure
- Build up by odd number of layers
- Each layer consists of parallel timber boards
- orientation of timber boards in two adjacent layers is orthogonal
- Layers are glued together
- Narrow faces of boards
 - with small gaps
 - only contact
 - Glued
- Product development since ~ 1995

holz.bau	forschungs gmbh

tudy research engineering test center

Detailed look at 7-layered CLT

CLT – general specifications (small variation possible – depending on manufacturer)

- industrial production
- Assurance in quality
- max size ~ 3,0 m x 18(24) m
- max thickness ~ 300 mm
- Max number of layers: 7

Foto-Quelle: Mayr Melnhof, Gaishorn, Stmk

holz.bau	forschungs gmbh

- Introduction to Cross Laminated Timber (CLT)
- Shear Stiffness of CLT Elements
- Shear Strength of CLT Elements
- Summary and Outlook

RVE/RVSE for CLT Elements

forschungs gmbh

holz.bau

WCTE 2006: Moosbrugger/Guggenberger/Bogensperger: "Cross-Laminated Timber Wall Segments under homogenous Shear – with and without Openings"

Thomas Bogensperger

holz.bau

forschungs gmb

holz.bau	
	forschungs gmbh

Shear Stiffness for CLT Elements with boundary effect

2010: diploma thesis G. Silly "Numerical studies to twisting stiffness and shear stiffness of CLT elements"

Thomas Bogensperger

holz.bau	forschungs gmbh

Shear Stiffness for CLT Elements with boundary effect

Shear Stiffness for CLT Elements with boundary effect

holz.bau	forschungs gmbh

- Introduction to Cross Laminated Timber (CLT)
- Shear Stiffness of CLT Elements
- Shear Strength of CLT Elements
- Summary and Outlook

holz.bau	
	forschungs gmbh

Shear Stresses in RVSE

τ₀ nominal shear stress in plane

 $\tau_{\rm V}^{}$ shear stress in cross section

 $\tau_v = 2 \cdot \tau_0$

а

τ_T shear stress due to torsional moment in gluing interface

Shear Stresses in CLT Elements

study research engineering test center

Shear Stresses in CLT Elements

Ideal thickness t_i*for regular RVSE's

- Simple approach
- Conservativ

# of RVSE	t,*
2	$=min(t_2,t_3)$
3	$=min(t_3,t_4)$

holz.bau	
	forschungs gmbh

study research engineering test center

Shear Stresses in CLT Elements

Ideal thickness t_i* for both outer RVSE's

- Simple approach
- Outer boards with double thickness!

# of RVSE	t [*]
1	$= min(2 \cdot t_1, t_2)$
4	$= min(t_4, 2, t_5)$

holz hau	
	forschungs gmbł

tudy research engineering test center

а

Shear Stresses in CLT Elements

 τ_0^* ideal shear stress in plane $\tau_0^* = \frac{n_{xy}}{\sum_{i=1}^{n-1} t_i^*}$

 $\tau_v^* = 2 \cdot \tau_0^*$

а

 $\tau_T^* = 3 \cdot \tau_0^* \cdot \frac{\tau_1}{a}$ $\tau_T^* \text{ ideal shear stress } due \text{ to torsional } moment \text{ in gluing } interface \text{ of RVSE#i}}$

holz.bau	forschungs gmbl

Shear Strength tests – mechanism 1

Test configuration

Local failure

Shear forces

CIB 2008: In-Plane Shear Strength of Cross Laminated Timber Jöbstl/Bogensperger/Schickhofer

Thomas Bogensperger

holz.bau	
	forschungs gmbh

Shear Strength tests – mechanism 1

Local failure

CIB 2008: In-Plane Shear Strength of Cross Laminated Timber Jöbstl/Bogensperger/Schickhofer

holz.bau	forschungs gmbh

study research engineering test center

Force - Displacement - Diagramm

Load — displacement behaviour

Shear	Stre	ngth	value
for r	nech	anis	m 1

$$f_{v,k} = 10 \text{ [N/mm^2]}$$

Remark: Value still in discussion!

Series	Value	
#	20	[-]
Height a	200	[mm]
Thickness t	10	[mm]
$f_{v,d}$ - mean value	12.8	$[N/mm^2]$
Standard deviation	1.45	$[N/mm^2]$
COV	11.3%	[-]
$f_{v,d}$ 5% - Quantile		$[N/mm^2]$
normal distribution	10.4	
$f_{v,d}$ 5% - Quantile		$[N/mm^2]$
log normal distribution	10.6	
$f_{v,d}$ 5% - Quantile		$[N/mm^2]$
EN 14358	10.3	•

holz.bau	forschungs amb
	10120101162 6110

shear strength tests – mechanism 2

Test configuration

Detail of test specimen shear stresses in the gluing interface

$$\tau_{\max} = \frac{M_T}{I_P} \cdot \frac{1}{2} \cdot a$$

 M_{T} Torsional moment I_{P} polar sectional moment of gluing interface $I_{P} = \frac{a}{6}$ a dimension of RVE

2004: diploma thesis G. Jeitler "Versuchstechnische Ermittlung der Verdrehungskenngrössen von orthogonal verklebten Brettlamellen"

Thomas Bogensperger

Coverage of tests

Variation of glued surface geometry

Shear strength value for mechanism 2

$f_{T,k} = 2.5 \text{ [N/mm^2]}$

Remark: Value generally accepted!

Shear stresses in the gluing interface

<u> </u>	
Series	Annual ring 5%
	orient. Quantile
А	Edge-grained 3.67 [N/mm ²]
А	Flat grained [2.79] [N/mm ²]
В	Edge-grained 3.20 [N/mm ²]
В	Flat grained 2.69 [N/mm ²]
С	Edge-grained 2.98 [N/mm ²]
С	Flat grained 3.10 [N/mm ²]

Thomas Bogensperger

holz.bau	
	forschungs gmbh

Examples and further references

CLThandbook

Editors:

Schickhofer/Bogensperger/Moosbrugger 2. Edition 2010 380 pages

Language Actual: german English translation is intended

Publisher: Publisher of Graz University of Technology ISBN 978-3-85125-109-8

BSPhandbuch

Holz-Massivbauweise in Brettsperrholz

Nachweise auf Basis des neuen europäischen Normenkonzepts

Einleitung | Einsatzbereiche | Technologie | Modellbildung und Nachweisverfahren | Verbindungstechnik | Bauphysik | Anhang

Technische Universität Graz holz.bau forschungs gmbh Karlsruher Institut für Technologie Technische Universität München Eidgenössische Technische Hochschule Zürich

Autorenschaft Augustin | Blaß | Bogensperger | Ebner | Ferk | Fontana | Frangi | Hamm | Jöbstl Moosbrugger | Richter | Schickhofer | Thiel | Traetta | Uibel

Thomas Bogensperger

holz.bau	forschungs ambh
	forschungs gmbh

- Introduction to Cross Laminated Timber (CLT)
- Shear Stiffness of CLT Elements
- Shear Strength of CLT Elements
- Summary and Outlook

holz.bau	forschungs gmb

- Shear stiffness for CLT is verified
- Proposal for Shear strength verification has been given
- Minimum condition is on the conservative side improvements in stress calculation are possible
- Shear strength value for mechanism 1 is still in discussion – further investigations are ongoing ...
- Shear strength value for mechanism 2 is widely accepted
- Shear strength verifications for walls under shear with large openings and their typical elastic stress peaks in corners is still an open question

holz.bau	
	forschungs gmbh

Thank you for your attention!

Contact:

Dipl.-Ing. Dr. techn. Thomas Bogensperger Competence Centre holz.bau forschungs gmbh Graz | AT

Inffeldgasse 24/I 8010 Graz, AUSTRIA

bogensperger@tugraz.at phone.: +43 316 873 4600

Thomas Bogensperger