
User-centered Security Management of API-based
Data Integration Workflows

Bojan Suzic
Institute for Applied Information Processing and Communications

Graz, Austria
Email: bojan.suzic@iaik.tugraz.at

Abstract—One of the consequences of the present adoption of
cloud-based services among organizations is the increasing rate of
outsourcing of business and technical functions to third parties.
The recent approaches such as cloud integration platforms (iPaaS)
facilitate this trend even further. In this scenario, users’ resources
distributed across different cloud systems are accessed, shared
and processed completely in the cloud, at third-party premises,
effectively transferring the execution of entire business processes
to the cloud. In this work, we approach security challenges and
issues that arise from data and resource integrations of such scale.
Our contribution aims at advancing privacy and confidentiality
in collaboration flows of distributed, cross-domain systems. We
focus on the perspective of resource owners, enabling automated,
structured discovery and security orchestration of their resources
hosted at various cloud premises. We furthermore consider
the perspective of integration clients that access and process
distributed resources on behalf of resource owners, providing
the model for discovery, integration and fine-grained constraints
of sharing requests. Our contribution is examined on a basis of
the focused prototype that allows proxy-based integration with
existing systems and web authorization protocols.

I. INTRODUCTION

The fast-paced development and broad adoption of cloud
services enabled the enterprises to transform their businesses
and practices, taking advantages of lowered entry barriers
and accelerated innovation processes introduced by the new
paradigm. By relying on component reuse and delivering the
benefits of economy of scale even to small enterprises, cloud-
based approaches contributed to the creation of new business
and service models, strengthening the ties and dependence
between different organizations. However, these developments
and widespread acceptance of cloud model caused other
impacts as well. Some of their consequences can be observed
through multiplied complexity of organizational processes and
additional security concerns raised with the adoption of new
models. This especially applies to the overall governance
and protection of personal information, corporate assets and
processes in a highly-connected and dependable environment.

In this work we present our ongoing contribution that
advances the security and legal conformance of cross-system
integrations. Our approach takes advantage of rich expressivity
of semantic technologies, putting them in the context of cross-
domain data protection and security governance, aimed both to
organizations and end users. We apply our contribution in the
form of service, policy and request models in the use case that

considers both emerging approach of Integration Platforms
as a Service (iPaaS) and broadly adopted web authorization
protocols. By developing and testing an initial prototype in
a focused use-case, we examined the flexibility and seamless
integration potential of our framework.

Outline: this work is organized as follows. In the second
section, we revisit related work, establish the problem and
state our contribution. We then introduce proposed approach,
providing the high-level overview of our model, followed by
detailed consideration of its building blocks. In fourth section
we describe our prototype implementation. In the subsequent
section we discuss our approach, followed by the conclusion
and research roadmap.

II. BACKGROUND AND RELATED WORK

A. Integration platforms

The approach of cloud-based integration got broader at-
tention recently, as the products focused on integration and
management of cloud services started to gain traction. The
emergence of these services, however, does not imply the
establishment of a new discipline. Enterprise integration, in
its various forms, has been present for more than a decade [1].
Following the emergence of iPaaS, analysts tried to establish
and define this service model. Pezzini et al. contributed in
this direction, identifying iPaaS as a suite of cloud services
enabling development, execution and governance of integra-
tion flows connecting any combination of on-premises and
cloud-based processes, services, applications and data within
individual, or across multiple organizations [2].

The analysis of functional and organizational aspects, as
well as the detailed overview of integration platforms, tech-
nologies and challenges have been provided in [3]. Raj inves-
tigated challenges for SaaS and XaaS integrations, identifying
dynamic nature of SaaS interfaces, dynamic characteristics
of metadata of SaaS solutions and data quality and integrity
issues. Other contributions that established the concepts and
challenges in cloud-based service integrations have been pro-
vided in the works of Kleeberg et al. [4] and Baude et
al. [5]. As they deal both with the integration of enterprise
systems and processes, integration platforms often overlap or
share similar issues with other concepts. These include Cloud
Brokerage, B2B Integration, as well as Enterprise Application
Platforms and API Management.978-1-5090-0223-8/16/$31.00 c© 2016 IEEE

Resource
Owner

Authorization
Server

Resource
Server

Client

Authorization API

P
ro

t.
 A

P
I

C
la

im
 C

li
e

n
t

Resource API

Requesting Party Identity Provider

RPT AAT

PAT

Manage
resources

Define
Policies

Protect

Access Register

R
e

qu
e

st
 C

la
im

s

Authenticate

Fig. 1: Resource sharing using UMA flows

B. Protocols and Architectures for Web Authorization

In the focus of our work are data exchanges performed on
the web, using HTTP protocol and interfaces. These interfaces
are typically built according to RESTful architectural style,
which currently represents one of the major approaches for
web APIs. This can be observed by analyzing the directory
maintained at ProgrammableWeb, where the vast majority of
registered web APIs are based on RESTful style [6]. One of
the major approaches to protect these interfaces is OAuth 2.0,
a web authorization protocol that enables clients to access
protected resources on behalf of a resource owner [9]. In
OAuth 2.0 scenario, a resource owner authorizes a client to
make requests to resources hosted by resource server. These
interactions are governed by authorization server, which issues
access tokens to the client on the basis of a resource owner
consent. Currently, OAuth 2.0 is dominantly adopted approach
for web API protection. Building on OAuth 2.0, UMA [10]
represents an emerging protocol that further refines its flows,
processes and APIs, focusing on a protection of resources
in distributed environments. Derived from an initial work
of Machulak [7], UMA introduces resource owner policies
and distributed architecture by separating authorization and
resource server and defining additional APIs for that purpose
[8]. Fig. 1 depicts the architectural model of UMA.

Another approach that deals with authorization, consider-
ing distributed and enterprise-oriented perspective, is XACML
[11], an XML-based declarative language standardized by
OASIS. XACML provides the means to specify access control
policies based on an extensive set of built-in data types,
functions, combining algorithms and supported profiles [11].
Primary elements of XACML are rule, policy and policy
set. Due to its focus towards intra-enterprise processes and
complex infrastructure, XACML is rarely applied in large-
scale API integrations [6].

C. Integration scenario

A typical integration platform scenario reuses the building
blocks from a general API integration, extending the process
to span across different entities and platforms. In its base form,
this scenario encompasses the use of organizational accounts
at third party providers, with the goal to execute predefined
tasks. The related flow is commonly realized using Web
APIs exposed by service providers and secured using widely
adopted mechanisms, such as OAuth 2.0 protocol [9]. How-
ever, the complexity added by iPaaS in comparison to standard
approaches is manifold. First, they rely on the execution of

automated task batches organized in workflows, assuming the
subsequent accesses to multiple external systems, in a context-
dependent manner. The parts of this process are, contrary
to typical API integrations, completely executed in premises
of different and unrelated third party organizations. They
both consume and process client’s data in a range of het-
erogeneous systems, out of the client’s control. The scope of
these interactions raises the issue of effective management, as
well as secure data propagation and overall accountability of
interactions executed across various organizations and clouds.

In Fig. 2 we show an example activity performed by an
integration platform in the cloud. The workflow that repre-
sents organizational business process is executed in the scope
of cloud integration platform that connects to on-premise
organizational systems, various cloud services and external
organizations. In this example, the platform connects to or-
ganizational Live email account, retrieves and processes the
messages and then, according to predefined triggers, consumes
the interface on Salesforce and uploads data to organizational
GDrive storage. The last steps of the workflow relate to
controlled data exchange with external entities.

Cloud Platform
Cloud App Cloud App

On-premise

Enterprise A

Organisation B

FlowFlow

Flow

Flow

Cloud Integration Platform

Fig. 2: Workflow-based integration of services

D. Problem statement and contribution

The traditional enterprise integration model has been cus-
tomized for on-premise setups, dealing with the security
requirements from intra-organizational perspective. The tran-
sition to the cloud and broad application of API-based integra-
tions increased the attack surface, raising the need to consider
inter-organizational communications as well. Commonly ap-
plied protocol for such integrations, OAuth 2.0, defines only
coarse-grained, static and platform-specific access scopes,
which do not provide adequate means to govern accesses in
multiple connected environments. Its UMA profile introduces
the concepts of security policies and distributed enforcement,
but misses defining their structures and semantics, effectively
preventing the interoperability between different providers.

Additional details on OAuth 2.0 and UMA flows are
available in our previous work [14], which demonstrated
the non-conformance with least privilege principle [15] and
numerous legal regulations [16]. In this sense we refer to
data minimisation principle introduced by Directive 95/46/EC
and Regulation 45/2001 of European Commission, as well as
related domain-specific opinions on cloud [17] and IoT [18],
which present a legal motivation for our work.

In this work, we contribute with a model that deals with con-
fidentiality and privacy issues of API-based data and resource
integrations. We establish common interoperability framework

for definition and exchange of service models, policies and
requests in cross-domain collaborations. This model enriches
security management of resources by introducing inherent
semantics based on OWL [20] language and RDF Schema
[21]. Based on these descriptions, we enable bidirectional
model discovery between clients and servers, enabling them
both to structure their requests and transform responses on
a privacy and confidentiality conforming way, aiming at the
establishment of interoperable security on the level of services,
collaboration requests and policies.

III. PROPOSED APPROACH

We consider collaborative environments that host repetitive
interactions between diverse entities, operating in various do-
mains and jurisdictions. In this setting, user data or services are
dispersed across these entities, being accessed and consumed
as a part of various third-party workflows. In a particular
case of cloud integration platforms, entire business processes
can be outsourced to external entities, establishing both data
sharing and processing out of organizational, physical control.
Our proposed solution tackles the problem of data privacy
and confidentiality in such processes. We rely on a model-
based approach that consolidates and structures cross-service
resource sharing by leveraging the semantic interoperability
layer for cross-domain processes.

In the first step, we propose the modeling of services,
policies and requests using common model vocabularies.
The proposed approach enables the entities across interaction
chain: (1) to derive the semantics and capabilities of the
adjacent services, (2) to shape the requests that conform to
exposed models, capabilities and their restrictions and (3)
to ingest the delivered data in a structured way, provided
with enhanced semantics and annotations. Additionally, our
proposal enables the owners of resources collocated in the
cloud: (1) to discover their resources on different systems and
derive their capabilities, semantics and possible restrictions,
and (2) to set security policies relevant for their resources in
an interoperable way that is portable across different platforms.
By relying on these capabilities, resource owners can employ
additional services or tools for automated analysis, audit or
orchestration of security-related properties of their distributed
resources. In the following subsections, we provide more
details on each building block of our model.

A. Exposing services and capabilities

This block establishes the structured model of services and
resources exposed by the cloud provider. In a typical scenario,
service providers present APIs that are specific to their use-
cases and internal models, resulting with a broad range of
different implementations and styles. This adds development
and maintenance overhead globally, and impacts the interoper-
ability between systems, as API clients need to be separately
created for each exposed system and continuously maintained
over its life cycle.

As APIs descriptions are provided mostly as out-of-the-
band contracts, partially delivered in the form of human-

TABLE I: Information model concepts for resource sharing
Abstract Entity Class: Service

Cloud Service,
Email Service,
Storage Service

The primary point in service provider’s offer to clients.
The members of this class denote different types of
services that correspond to a particular use case.

Abstract Entity Class: Resource

Object, Drive,
Directory, File,
Document,
Media, Email,
MsgBody,
MsgHeader

Resource is a consumable entity exposed by service,
which can be present in a domain and purpose-specific
instantiations. The members of this class represent
entities at different levels of abstractions, allowing
specification of the granularity of resource sharing and
application of (pre)processing operations at multiple
abstraction levels.

Abstract Entity Class: Operation

RemovePII,
Encrypt, Mask

Operations are actions that can be executed on re-
sources prior to their sharing. They effectively provide
a resource view adjusted to a particular context.

TABLE II: Object properties
Property Description
exposes Entity that service exposes to clients using web API
contains,
isPartOf

Relationships between entities stating constitutive
(hierarchical) relationship between instances

subClassOf An abstract description of possible inter-class rela-
tions

type Class type of particular entity instance
requestsAccess Used to relate an access requests with a service
supportsOperation Denotes operations that can be executed on entity
acceptsOperation Denotes operations that are accepted by the client
acceptsSubtype Subtype of resources satisfying a client request

readable documentation, practically the only possibilities for
the developers to integrate remote functionalities and resources
are to manually implement service-specific API clients or to
rely on provided SDKs. These approaches, however, hinder
the interoperability and automation of services on a broader
scale, beyond the point-to-point integrations.

In order to enable heterogeneous systems from different
domains to communicate effectively and engage in the process
of autonomous, machine-based integrations, in this work we
extend the dominant RESTful approach with service descrip-
tion capability. In our proposal, cross-system API modeling is
established by using common semantic interoperability layer,
which introduces the concepts and relations that deal with
various use cases. By relying on the concepts defined from the
external perspective, provided as a common framework, ser-
vice providers enable automated integration and management
of exposed resources, allowing the interoperability beyond of
their local premises or models.

The primary building block of semantic interoperability
layer introduced in this work are its core and domain specific
vocabularies. Table I presents the main concepts from this
framework. It describes three abstract categories of entities,
providing a list of related concepts for each entity and their
roles in the framework. By using the object properties pre-
sented in Table II, providers can describe each of their exposed
resources and formalize their hierarchical organizations and
relationships. This allows heterogeneous clients in different
domains to integrate provided resources and align them with
internal processes by reusing existing concepts from known
framework.

In the current iteration of our work, available are the core

subClassOf

Service

Object

CloudService type

Resource

subClassOf

exposes

exposes

Email

type subClassOf

contains

isPartOf

contains
contains

type

type
Encryption

type
type

subClassOf

subClassOf

MsgBody

MsgHeader

MsgSender

contains

type

supportsOperation

supportsOperation

Foldertype

subClassOf

RemovePIIOperation

Fig. 3: Service model description

and domain vocabularies for modeling of storage and email
services. In Fig. 3 we reuse their concepts and relationships,
as presented in Table I and Table II, and model the typical
cloud email service. We rely on graph-based descriptions,
distinguishing between concepts, represented through classes,
object and data properties, and their instantiations, represented
as graph nodes in the figure. Based on that, service providers
describe their systems by (1) relying on common classes and
properties, and (2) by instantiating the concepts that apply in
their particular case. Those models are then further used in
other processes, as described in the following sections.

B. Describing security policy capabilities

Security policies define security requirements for a given
system [12]. In the context of cross-system collaborations,
by applying the term security policy as a general concept,
we focus on its role in the enforcement of access control
in inter-domain collaborations. Existing and broadly adopted
web authorization frameworks exhibit different approaches to
access control management. For instance, OAuth 2.0 does not
explicitly assume the existence of security policies, but relies
on user’s consent based on access scope for access control
enforcement. Related UMA profile, however, introduces the
notion of a policy, defining it as a set of configuration
parameters at authorization server that effect the access man-
agement of resources [10]. UMA, however, does not specify
the format, model and application of security policies, leaving
most aspects to be provided by particular implementations.

In our proposal, we go one step further by providing the
framework for specification and exchange of security policies.
Our goal is to enable systems residing in heterogeneous
environments to expose their policy models and enable policy
interactions to be performed beyond the scope of a platform.
For this purpose, we rely on vocabularies provided in seman-
tic interoperability framework, extending them with security
policy related terms. Table III provides the overview of these
concepts established in the scope of our work.

Structure. Our proposed model of data sharing policies
partially reuses the terminology defined in [19] and the con-
cepts from XACML language [11]. It considers the rules
as a basic building block, organized in sets denoting the
policies. Each rule states its target (object), action, subject
and alternatively context and obligation. The decision over a
policy set consisting of multiple rules is done by applying its
predefined combinatorial algorithm.

Abstract Entity Class: SecPolicy
SecPolicy The primary point in the definition of security policies.

One policy contains one or more rules with combination
algorithm associated.

Abstract Entity Class: SecRule
SecRule Defines a node used to connect policy subject,

target, action, condition and obligation.
Abstract Entity Class: PolicySubject

RegisteredClient,
TokenBearer

Includes a range of subjects, allowing the inte-
gration with different access control models and
mechanisms such as OAuth 2.0.

Abstract Entity Class: CombAlg
PermitOverride,
DenyOverride

Defines a range of algorithms applied in the
process of making of policy decision.
Abstract Entity Class: Context

TimeCon,
SystemCon,
RiskCon

Establishes a range of conditions as a multi-level
classes whose instances may be evaluated in the
process of making of policy decision.

Abstract Entity Class: Obligation
LogPre,
LogPost,
CustView

This category defines a range of obligations that may
be applied in the process of policy enforcement, both in
pre and post resource delivery stages. This may include
resource transformation using operations provided in the
scope of resource sharing model.

Abstract Entity Class: SecAction
ActionDelete, ActionRead,
ActionUpdate, ActionCreate

This class includes different actions that
may be defined on a resource.

TABLE III: Information model concepts for security policy

Expressivity and granularity. Considering the potential
complexity of representations of granular resources, we restrict
the modeling of policies to each separate resource and entity.
In our opinion, this is especially necessary when considering
a range of possible relations between resources, subresources
and applicable actions, as well as limitations of representation
formats, underlying languages and supporting tools. We, there-
fore, model security policies available at the service provider
and applicable to a particular resource in a similar way as the
services are modeled, as provided in the previous section. On
Fig. 4 we visually depict the excerpt of a model of security
policy applicable to Email resource, where the nodes represent
entity instances, arrows relationships, and rectangles related
and generalized class concepts.

Object

subClassOf

SecPolicy

type

Email

type

Resource
subClassOf

hasTarget

tokenBearer

ActionRead
type

hasSubject
PolicySubject

registeredClient

type subClassOf

subClassOf

ActionUpdate

ActionDelete

type

type
hasAction

type

hasRule

SecRule

type

hasCombAlg

DenyOverride

PermitOverride

CombAlg

subClassOf

type

type

Fig. 4: Model of security policy, excerpt for Email

C. Defining security policies

Once the system provides a structured model of security
policies applicable to its resources, resource owners and their
automated clients are allowed to separately create, retrieve
and update these policies on a remote system. This process
is performed by applying following steps:

1. Discovering policy model. Clients retrieve models of
policies applicable to particular resources. These repre-
sentations state a range of supported actions, concepts of
subjects, as well as obligations and contextual restrictions.
They can be delivered in the following ways:

a) Embedded with resources. Models are retrieved to-
gether with resources by using web API endpoints
and providing the models as separate descriptions that
reference each related resource.

b) Separate policy endpoints. Additional, dedicated API
endpoint is provided for policy management.

2. Defining policy. Based on the resource-specific model, the
client determines the policies and apply them.

D. Requesting resources

By relying on previously discovered service model de-
scriptions, third party clients request data and service access
from cloud providers, on behalf of data owners and users.
The scope of their requests depends on expressivity of the
provided model, exposed capabilities and client’s processing
requirements. Using provider-specific service model, clients
are able to: (1) request only a subset of exposed resources that
conforms to their use case, and (2) express the transformations
that do not impact their processing workflow significantly.

Based on the inherent semantics of common framework
models, clients are able to understand the type of resources,
as well as the restrictions and operations applied to them.

The extent of supported possibilities can be illustrated by
looking at request shown in Fig. 5. In this example, the client
reuses common interoperability framework and prepares a
request that conforms to its particular use case. Accordingly, it
requests access to an email resource, stating that this resource
can be reduced to the form of its constituent, an email
message header. It furthermore declares that the resource can
be subjected to additional processing in the form of removal of
personally identifiable information (PII). This way, the clients
can request data views that conform to the least privilege
principle [15] and requirements for data minimisation [17].

{ "@context": {

 "dasp-email": "http://www.daspsec.org/on/dasp-email#",

 "owl": "http://www.w3.org/2002/07/owl#",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "dasp-general": "http://www.daspsec.org/on/dasp-general#"

}, "@graph": [

 { "@id": "http://www.daspsec.org/on/dasp-general",

 "@type": "owl:Ontology", "owl:imports": [

 { "@id": "http://www.daspsec.org/on/dasp-general" },

 { "@id": "http://www.daspsec.org/on/dasp-email" }] },

 { "@id": "dasp-general:AccessRequest",

 "@type": ["dasp-general:Request", "owl:NamedIndividual"],

 "dasp-general:acceptsOperation": { "@id": "dasp-general:RemovePII" },

 "dasp-general:acceptsSubtype": { "@id": "dasp-email:MsgHeader" },

 "dasp-general:requestsAccess": { "@id": "dasp-email:Email" } }] }

Fig. 5: Sharing request issued to service provider

IV. PROTOTYPE IMPLEMENTATION

In order to validate the feasibility of our approach, we have
first defined ontologies for interoperability framework, estab-
lishing both core concepts, as well as storage and email ser-
vice vocabularies and relationships. Then, we have developed

a proof-of-concept prototype implementation of supporting
components for our framework. Our implementation relies on
Java and PlayFramework for RESTful API and proxy support,
using JSON-LD Tools for data representation transformation.
It furthermore relies on Jena library for semantic modeling
and reasoning using reduced OWL [20] capability set. In
our prototype we also reuse Google API Client Library and
Box’s developer SDKs for the purpose of email and storage
integration in our sample application.

Clients Service Provider

(1)

(2)

(3)

Fig. 6: Layered policy evaluation

Scope. Focusing on a prototype with restricted func-
tionality, we explored the possibility to integrate our pro-
posed approach with existing OAuth 2.0 deployments. In this
scenario, we place a transparent proxy between clients and
cloud service, with the purpose to serve as a second policy
enforcement layer. It, therefore, applies security policies that
(1) reduce the provided resource set, and (2) enforce client-
specific resource-view by performing dynamic operations.

Workflow. Our prototype implements a layered integration
by acting as a model proxy to OAuth 2.0 [9] sample appli-
cation. It furthermore implements endpoints to describe the
service model of the cloud provider and applicable policies to
clients. The related flow is shown in Fig. 6. In the first step,
the system receives requests from the clients with authorization
tokens that correspond to standard access scopes from Gmail,
Drive and Box services. These requests are proxied to the main
application running on the service provider. In the step (2)
the main application provides the resource located at cloud
service and enhances the response with concepts defined in our
framework, using JSON-LD [13] entities in a response header.
By following these descriptions, model proxy transparently
reduces the provided data set and performs basic operations
supported by our framework (PII removal and encryption).

Cross-system messaging. The model descriptions in the
prototype are exchanged in JSON-LD format [22], enabling
external parties to explore system capabilities and implement
advanced integrations with their workflows. Using tools pro-
vided in JSON-LD framework, these representations can be
converted to ontologies and resource instantiations, process-
able by different systems. In our case, this approach is used
to transform representations, such as ones provided in Fig. 3
and 4, to their textual, machine-readable counterpart.

In the example in Fig. 7, an excerpt of a security policy is
formated as a JSON-LD record, defining the policy with one
rule that applies to Email resource and allows read operation
to designated token bearer (authorization token as provided in
[9], [10]). This record is sent as HTTP PUT request to RESTful
API endpoint that corresponds to the instance of the resource.

{ "@context": {

 "dasp-email": "http://www.daspsec.org/on/dasp-email#",

 "owl": "http://www.w3.org/2002/07/owl#",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "dasp-general": "http://www.daspsec.org/on/dasp-general#"

}, "@graph": [

 { "@id": "http://www.daspsec.org/on/dasp-general",

 "@type": "owl:Ontology", "owl:imports": [

 { "@id": "http://www.daspsec.org/on/dasp-general" },

 { "@id": "http://www.daspsec.org/on/dasp-email" }] },

 { "@id": "dasp-general:SecPolicy",

 "@type": ["dasp-general:SecPolicy", "owl:NamedIndividual"],

 "dasp-general:hasCombAlg": { "@id": "dasp-general:PermitOverride" },

 "dasp-general:hasRule": { "@id": "dasp-general:SecRule" } },

 { "@id": "dasp-general:SecRule",

 "@type": ["dasp-general:SecRule", "owl:NamedIndividual"],

 "dasp-general:hasAction": { "@id": "dasp-general:ActionRead" },

 "dasp-general:hasSubject": { "@id": "dasp-general:TokenBearer" },

 "dasp-general:hasTarget": { "@id": "dasp-email:Email"} }] }

Fig. 7: Security policy model for email target

V. DISCUSSION

Our proposal for securing cross-service collaborations in the
first line aims to establish inter-service model awareness, by
providing the means for hosts to describe their resources, the
clients to structure their sharing requirements, and the resource
owners to define security policies independently of proprietary
environments.

Compared to OAuth 2.0 [9] and UMA [10], our approach
contributes with discovery and modeling of both services
and policies applicable to resources. Contrary to OAuth 2.0,
UMA defines these steps in the main flow, but their structure
and flows are left to implementations to decide, causing the
interoperability issues across different services. These steps
are shown in Fig. 1 as manage resources and define policies.

We furthermore structure the definition and execution of
obligations in web API services. This enables not only the
implementation of traditional access control capabilities, but
also their enhancement with dynamic data transformation,
allowing context-specific reduction of information footprint
and its alteration by enforcing removal, encryption or masking
of sensitive information.

Finally, by relying on provided models, we enable third-
party security agents and automated tools to access, discover,
manage and control organizational resources hosted at various
third-party premises. These tools can be used to control, audit,
analyze and orchestrate security policies applicable on these
distributed resources, establishing the broader picture of risks
and processes that cross organizational boundaries.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented our ongoing work on
interoperability framework, proposed with the goal to advance
security and interoperability of distributed services integrated
using web-based APIs. Our framework introduces two layers
that contribute with domain specific ontologies and provide the
tools for seamless integration of existing APIs and services. In
this work, we have introduced the modeling layer of proposed
framework, its building blocks and processes, providing the
excerpts from applied ontologies and service descriptions.
We also introduced the initial prototype used to examine
the applicability of our model within existing deployments.
This application is implemented as a proxy deployed between

clients and cloud service provider. It integrates basic vocabu-
laries for domains of email and storage services and provides
basic components for policy management and enforcement.
In its current iteration, the prototype supports enforcement of
selective restrictions in a form of transforming obligations
on shared data. It also integrates with existing OAuth 2.0
environments, acting as a policy enforcement and service
model description point, deployed in a second layer.

In our future work, we plan to extend our general framework
by (1) defining models of supported service and policy vocab-
ularies for additional domains, (2) providing additional tools
that support automated integration with APIs and (3) providing
a web-based interface for semi-automated generation of se-
mantic mappings between vocabularies and APIs. We further-
more intend to explore and demonstrate the applicability of our
work beyond the cloud domain, focusing additionally on the
security of both IoT, mobile and fog computing applications.

ACKNOWLEDGMENT

This work has been supported by the EU H2020 Programme
under the SUNFISH project, grant agreement N.644666.

REFERENCES

[1] Xu, L. D. ”Enterprise systems: state-of-the-art and future trends”. Indus-
trial Informatics, IEEE Transactions on, vol. 7, no. 4, 2011.

[2] Pezzini, M. and Lheureux, B. ”Integration platform as a service: moving
integration to the cloud.” Gartner, 2011.

[3] Raj, P, ”Enriching the integration as a service paradigm for the cloud
era.” Cloud computingprinciples and paradigms. Wiley, Hoboken, 2011.

[4] Kleeberg, M. et al., ”Information systems integration in the cloud:
Scenarios, challenges and technology trends.” Springer, 2014.

[5] Baude, F. et al. ”ESB federation for large-scale SOA.” Proceedings of the
2010 ACM Symposium on Applied Computing. ACM, 2010.

[6] Programmable Web. http://www.programmableweb.com (last accessed
Dec. 2015)

[7] M. P. Machulak and Van Moorsel, A. ”Architecture and protocol for user-
controlled access management in web 2.0 applications,” in Distributed
Computing Systems Workshops, IEEE 30th Int. Conf. on. IEEE, 2010.

[8] Maler, Eve, et al. ”OAuth 2.0 Resource Set Registration.” (2015).
[9] Hardt, D. ”The OAuth 2.0 authorization framework”. 2012.
[10] Maler, E., et al. ”User-Managed Access Profile of OAuth 2.0”. 2015.
[11] Rissanen, E., et al. ”Extensible access control markup language

(XACML) version 3.0”. 2013.
[12] Goguen, J. A., and Meseguer, J. ”Security policies and security models.”

IEEE, 1982.
[13] Lanthaler, M., and Gtl, C. ”On using JSON-LD to create evolvable

RESTful services.” Proceedings of the Third International Workshop on
RESTful Design. ACM, 2012.

[14] Suzic, B. ”Securing Integration of Cloud Services in Cross-Domain
Distributed Environments”. ACM, 2016 (in publishing).

[15] Schneider, FB. ”Least privilege and more.” Springer, 2004.
[16] Kertesz, A. et al. ”Legal aspects of data protection in cloud federations.”

Security, Privacy and Trust in Cloud Systems. Springer, 2014.
[17] Art. 29 Data Protection Working Party. ”Opinion 5/2012 on Cloud

Computing”. European Commission. 2012.
[18] Art. 29 Data Protection Working Party. ”Opinion 8/2014 on the Recent

Developments on the Internet of Things”. European Commision. 2014.
[19] Westerinen, A. ”Terminology for policy-based management”. 2001.
[20] Bock, C., et al. ”OWL 2 web ontology language structural specification

and functional-style syntax”. W3C Recommendation. 2012.
[21] Brickley, D. and Guha, R. V. ”RDF Schema 1.1. W3C Recommenda-

tion”. World Wide Web Consortium, 2014.
[22] Sporny, M., et al. ”JSON-LD 1.0-A JSON-based Serialization for Linked

Data”. W3C Recommendation. 2014.
[23] Beimel, D. and Peleg, M. ”Using owl and swrl to represent and

reason with situation-based access control policies, Data & Knowledge
Engineering, vol. 70, no. 6, 2011.

