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We study the electronic transport in an in�nite one-dimensional Hubbard chain, driven by a
homogeneous electric �eld. The physical chain is coupled to fermionic bath chains, in order to
account for dissipation and to prevent the occurrence of Bloch Oscillations. The steady state current
is computed in the frame of Keldysh Green's functions in Cluster Perturbation Theory. The current
characteristics are dominated by resonant-tunneling-like structures, which can be traced back to
Wannier-Stark resonances due to anti-ferromagnetic correlations. The same current characteristic
occurs in a non-interacting Wannier-Stark model with alternating on-site energies. Non-local e�ects
of the self- energy can be accounted for the observed physical behaviour.
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I. INTRODUCTION

One-dimensional (1d) quantum systems exhibit fas-
cinating non-equilibrium e�ects such as Bloch oscil-
lations1 (BOs), Zener tunneling2 and Wannier-Stark
resonances.3�5 The �rst theoretical studies of these ef-
fects date back to the early days of condensed matter
physics and were followed by long-lasting controversial
discussions about their relevance in real materials.6�8 It
was only within the last two decades that the theoret-
ical predictions could be observed in condensed matter
sytems and optical potentials in a series of ingenious
experiments.9�19. A detailed overview over the most
important experimental veri�cations of the above men-
tioned e�ects is provided in Ref. 20 and Ref. 21, where
also experimental set-ups for determining Wannier-Stark
resonances with cold atoms in optical lattices are intro-
duced.
Bloch oscillations are mainly studied in 1d systems

which are and were frequently used as model systems to
investigate the physical nature of BOs. As far as corre-
lations are concerned the 1d Hubbard model was mostly
the model of choice. The clear evidence for the existence
of BOs and Wannier-Stark resonances led to a series of
further theoretical investigations of 1d structures under
the impact of a uniform force induced by an electric or
magnetic �eld.17,20,22�25

For the emergence of Wannier-Stark resonances in 1d
systems a periodic potential has to be applied. It was
long thought that this periodic potential has to meet
some speci�c conditions.26�32 Recently, it was shown ana-
lytically that any periodic potential su�ces to cause these
resonant quantum states.33

The theoretical investigation of non-equilibrium prop-
erties has become very popular in recent years stimulated
by the experimental progress and based on the develop-
ment of powerful numerical methods that allow to tackle
these challenging problems. The non-equilibrium char-
acteristics of 1d systems in a homogeneous electric �eld,
resulting in a linearly decreasing potential, have been

studied with various theoretical methods and in di�er-
ent geometries and gauges. We will deal with a time-
independent in�nitely extended 1d system in this work,
a setup also considered in Ref. 34 and Ref. 35 and very
similar to the systems used in Ref. 36�40. While the in-
�nite system avoids �nite-length e�ects and comes along
with the advantage of some nice translation invariances
along the direction of transport, there are also other pos-
sible approaches to study 1d systems out of equilibrium.

One route of research considers 1d rings in the so-called
temporal gauge, i.e. the ring is threaded by a magnetic
�ux that increases linearly in time. The advantage of
this geometry is that one can use periodic boundary con-
ditions. For non-interacting particles the problem can be
solved analytically for arbitrary ring size in the Keldysh
formalism. For a review see Ref. 24. It has been found
that there is no dc-current possible without additional
dissipation channels. The latter can be introduced by
attaching an in�nite fermionic bath chain to each site of
the ring. As soon as electron-electron interactions are
included, the problem can only be solved by numerical
means and for very small ring sizes without dissipative
bath chains. The real-time evolution for a 10-site ring has
been studied22 for Hubbard interaction by the Cranck-
Nicholson method and in Ref. 41 for the extended Hub-
bard model by the Chebyshev propagation method. In
both cases no steady state dc current has been found,
due to the lack of dissipation processes. In Ref. 41 it was
shown that the current characteristics are always domi-
nated by BOs.

Another class of studies considers a �nite 1d Hub-
bard chain (central region) with linearly decreasing on-
site energies, which are attached on both ends to leads,
represented by �nite tight-binding (TB) chains of non-
interacting electrons. Time-dependent density-matrix
renormalization group (tDMRG) calculations have been
performed for a central region of 10 sites attached to
20 lead sites on both ends.42 The results are in qual-
itative agreement with those found for the closed ring
geometry,22 with the quintessence of a universal dielectric
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breakdown characteristic of the Mott insulating state.
It is worth mentioning that a similar result was found
by dynamical mean-�eld theory (DMFT) calculations on
the hyper-cubic lattice.43 Investigations of the dielectric
breakdown in an in�nitely extended 1d Mott insulator
also found similar results.39,40,44 However, in all real-time
evolutions the current did not reach the steady state.

Yet another possible setup to study the response of
1d lattice fermions to a homogeneous electric �eld is an
in�nite 1d TB chain with linearly decreasing on-site ener-
gies with or without electron-electron interactions. In the
non-interacting case the temporal gauge has been stud-
ied in great detail in Ref. 34, where a steady state was
obtained by attaching fermionic dissipative baths to each
site of the chain. The dissipation carries away the extra
energy accumulated and is essential to suppress BOs and
to obtain a �nite steady state current. Also in the two-
dimensional one-band Hubbard model45 an explicit cou-
pling to fermionic bath chains was concluded to be essen-
tial for obtaining a description of non-equilibrium steady
states. It should be noted that in set-ups where (inter-
acting) regions of a �nite extent are attached to in�nite
leads, dissipation is already provided by the leads.36,37,46

Clearly, fermionic heat baths appear rather arti�cial at
�rst glance. However, a closer analysis reveals that their
impact on a physical system is qualitatively the same as
that of phonons.34 Recent quantum many-body studies
on this topic showed that many physical properties in
model systems with fermionic baths behave as predicted
by the classical Boltzmann transport theory.34,35,47 Fur-
ther arguments in favour of fermionic baths can be found
in Refs. 35 or 48, where the non-equilibrium steady state
of photo-excited correlated electrons has been studied.
The fermionic bath model was also used earlier to de-
scribe the electron transport in a metallic ring,49 where
it was denoted as an extended Büttiker's model. It has
to be mentioned here, that in some systems dissipation
mechanisms do not have to be included explicitly since
they are included anyways by means of the setup.

In the present work, we will study an in�nite Hubbard
chain in a homogeneous electric �eld. The dissipation will
be described by fermionic baths34,45,50 attached to each
site of the physical chain. This approach is particularly
convenient from the theoretical point of view. In contrast
to previous works the non-equilibrium steady state of the
interacting many-body system is treated by a generaliza-
tion of Cluster Perturbation Theory (CPT)51�53 to the
non-equilibrium situation.36,37,54 This allows to study the
impact of dissipation and electron-electron interactions
on the transport of lattice fermions in an in�nite homo-
geneous electric �eld. Furthermore, non-local e�ects of
the self-energy can be included via CPT. We �nd that
in an electric �eld these Hubbard chains coupled to dis-
sipative bath chains exhibit a resonant behaviour in the
induced current characteristics when electron-electron in-
teractions are present. The origin of this resonant be-
haviour can be traced back to anti-ferromagnetic �uc-
tuations which we will show by mimicking them by the

Stoner model. Therefore we will conclude the inclusion
of non-local e�ects of the self-energy to be crucial to ex-
plain these resonant structures occurring in the corre-
lated Hubbard chain. Quite generally we will show that
for non-interacting electrons the current exhibits an oscil-
latory behaviour as function of the electric �eld strength
when an additional periodic potential is applied.
The paper is organized as follows: In Sec. II we give

an introduction to the model and its solution. The cur-
rent characteristics in the non-interacting case are brie�y
summarized in Sec. IIIA to allow for a comprehensive
understanding of the current characteristics expected in
in�nite 1d structures. The e�ect of on-site Coulomb in-
teractions is discussed subsequently in Sec. III B. To
gain a comprehensible physical explanation of the re-
sults, we describe an alternative way of modelling a non-
interacting system with a similar non-equilibrium be-
haviour as the interacting one in Sec. III C. We will close
our considerations by a simpli�ed non-equilibrium Vari-
ational Cluster Approach (VCA) treatment in Sec. IIID.
The �nal conclusion is presented in Sec. IV.

II. THEORETICAL TREATMENT

The setup of our model is depicted in Fig. 1. Blue
squares represent the correlated physical sites of the 1D
Hubbard chain. Each physical site is coupled via hopping
to fermionic bath chains. The parameters t, tb and v,
as depicted in the �gure, stand for the hopping along
the physical TB chain, within the bath chains, and the
hopping between the physical system and the dissipative
chains. The uniform electric �eld is applied parallel to
the physical chain.

FIG. 1: (Color online) Sketch of the in�nite 1d correlated
chain (blue squares), coupled at each site to individual 1d
dissipative bath chains (red circles). The homogeneous elec-
tric �eld E is applied parallel to the physical chain.
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A. The Hubbard-Wannier-Stark model

The Hamiltonian corresponding to the system depicted
in Fig. 1 reads

H = H0 +HU +Hbath . (1)

The kinetic part of the correlated chain is described by a
TB Hamiltonian

H0 = −t
∑
j,σ

(
c†jσcj+1,σ + h.c.

)
+
∑
j

εjnj , (2)

where, as usual, c†jσ (cjσ) denote fermionic creation (an-

nihilation) operators for site j and spin σ ∈ {↑, ↓}, and
nj =

∑
σ c
†
jσcjσ stands for the particle number operator.

In this paper we use t = 1. In addition, we also set the
lattice constant and the electronic charge to one. The
on-site energies εj contain the linear potential due to the
applied homogeneous electric �eld E

εj =

(
j − 1

2

)
E . (3)

The electron-electron interaction present in the physi-
cal chain is modelled by the Hubbard Hamiltonian

HU =
U

2

∑
jσ

(
njσ −

1

2

)(
njσ −

1

2

)
(4)

where U represents the repulsive on-site Coulomb inter-
action.
The dissipation that is mediated by fermionic bath

chains is described by individual TB chains attached to
each physical site. The corresponding part of the Hamil-
tonian reads

Hbath = − tb
∑
αjσ

(
d†αjσ dα+1,jσ + h.c.

)
+
∑
αjσ

εj n
d
αjσ

(5)

− v
∑
jσ

(
c†jσ d1jσ + h.c.

)
,

where d†αjσ and dαjσ are creation and annihilation op-
erators for particles with spin σ at position α within
the jth bath chain, respectively, and ndαjσ is the corre-
sponding number operator. The third term represents
the hybridization between the jth site in the physical
chain and the corresponding bath chain. As we will see
later it is only the ratio of the two external parameters
tB and v that a�ects our results. Therefore we have used
v = t throughout this paper. Note that the thermal bath
chains experience the same electric �eld induced potential
energy εj as the corresponding physical sites. Otherwise
the hybridization would violate the gauge invariance as
discussed in App. A. The bath chains are considered to

be in an equilibrium state in�nitely far away from the cor-
related chain with di�erent chemical potentials µ given
by

µj = εj =

(
j − 1

2

)
E . (6)

In the Keldysh Green's function formalism the current
jmn between two adjacent lattice sites m and n for the
aforementioned Hamiltonian can be obtained from the
Keldysh component of the non-equilibrium Green's func-
tion:

jmn = − t

2π

∫ ∞
−∞

dω <
{
GKnm(ω)

}
. (7)

In the next sections we outline how the Keldysh Green's
function of the in�nite chain for interacting electrons in
a homogeneous electric �eld can be determined.

B. Cluster Perturbation Theory

One way to treat properties of interacting many-body
systems is Cluster Perturbation Theory (CPT).51,53 For
non-interacting particles, CPT always gives the exact re-
sult. In the presence of electron-electron interaction CPT
is no longer exact; it is a �rst order perturbation theory
in the inter-cluster hopping parameters. The accuracy
of CPT increases with the size of the clusters that are
treated exactly by numerical means.
For the model at hand, which still has a kind of trans-

lational invariance, it su�ces to perform an exact diago-
nalization for one 'central cluster'. The Green's function
of the central cluster is then glued together iteratively by
CPT to form the in�nite system. Possible central clusters
are depicted in Fig. 2.

(a) (b)

(c)

FIG. 2: (Color online) Central clusters of size M = 2 (a),
M = 4 (b) and M = 6 (c), which in CPT are periodically
strung together to form the in�nite physical chain. The dis-
sipation mechanism is represented by non-interacting semi-
in�nite fermionic TB chains in the wide-band limit, i.e. a
constant imaginary retarded Green's function iγ.
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C. Non-equilibrium CPT for the Keldysh Green's
functions

The CPT approach can be generalized to the non-
equilibrium situation54 and Keldysh Green's Functions.55

In previous studies36,37 a �nite device with interacting
electrons has been coupled to in�nite leads. Here we
will generalize these ideas to in�nite Hubbard chains sub-
jected to a homogeneous electric �eld.
The single-particle Green's functions in this general-

ization are represented as four-component matrices in
Keldysh space55�59

g(ω) =

(
gr(ω) gk(ω)

0 ga(ω)

)
. (8)

Lower case g denotes a Green's function of an isolated
cluster here, while the labels r, a and k stand for re-
tarded, advanced and Keldysh component, respectively.
Bold letters are used for the full Keldysh Green's func-
tion given in eq. (8). The size of the sub-matrices gr,
ga and gk is determined by the size of the chosen clus-
ter, as we will see later. Note that this notation applies
throughout the whole paper. We will neglect the explicit
frequency-dependence of the Green's functions in the fol-
lowing for reasons of readability and will re-introduce it
where necessary.
In equilibrium, the Keldysh component is related to

the advanced/ retarded components via

gk = [gr − ga] [2fF (ω, µ, T )− 1] , (9)

where fF (ω, µ, T ) denotes the Fermi function depending
on the chemical potential µ and the temperature T . We
use T = 0 throughout this whole work.

General scheme of CPT

The basic step of the theory is the coupling of two
initially decoupled isolated parts, which we will label by
α, β ∈ {1, 2}. For this system the Green's function is
cluster diagonal, i.e. gαβ = δαβg

αα. Now the CPT ap-
proximation for the Keldysh Green's functions G of the
whole coupled system, written in form of a Dyson equa-
tion, reads

Gαβ = δαβg
αα +

∑
α∈α,β

gαα ∗ T αα ∗Gαβ , (10a)

T αα =

(
Tαα 0

0 Tαα

)
. (10b)

where the matrix multiplications have to performed in
Keldysh space (see eq. (8)). Tαα stands for the matrix
that contains the parameters for the hopping processes
that connect the two clusters α and α. In the 1d case

with only two clusters considered here, the only non-zero
matrix elements of Tαα are given by

T 1,2
1,M = −t = T 2,1

M,1

where M denotes the size of the cluster.
We are interested in the sub-matrix of G belonging to

the �rst cluster only, i.e. where α = β = 1. Evaluating
eq. (10) leads to

G11 = g11 + g11Γ11G11 (11a)

Γ11 := T 12g22T 21 (11b)

A Dyson equation in Keldysh space of the form

G = g + gΓG (12)

can be solved for the advanced/ retarded and Keldysh
component separately. For the retarded component we
�nd

(
Gr
)−1

=
(
gr
)−1 − Γr , (13)

which has the same form as in equilibrium. Advanced
and retarded Green's function are related through Ga =(
Gr
)†
. For the Keldysh component we obtain a special

form of the Kadano�-Baym equation58

Gk = Gr
{(
gr
)−1

gk
(
ga
)−1

+ Γk
}
Ga . (14)

If g belongs to a �nite size cluster in equilibrium then
the �rst term in curly brackets can be neglected. Insert-

ing eq. (9) into eq. (14) yields
(
ga
)−1 − (gr)−1 = 2i0+.

In the applications in the present paper the second term
will originate from semi-in�nite TB chains in the wide-
band limit. It will therefore contribute a �nite value for
Γk much larger than 0+, so that the �rst term can be
ignored.

Coupling to dissipative bath chains

Now we begin with the construction of the Keldysh
Green's function for the in�nite system in an electric
�eld. We start out with the computation of the Keldysh
Green's function gcl(ω) for the M -site central cluster
based on Exact Diagonalization. In this approximation
the initially uncoupled parts are in equilibrium. There-
fore it su�ces to compute the retarded Green's function.
We now use CPT to couple the central cluster to bath

chains which are attached according to Fig. 1. We are
only interested in Green's functions Gcc, where both in-
dices α, β in eq. (10) belong to the central cluster. In this
case eq. (11) reads

Gcc = gcc + gccΓGcc (15a)

Γ := T cbgbbT bc , (15b)
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where b denotes the bath chains, see Fig. 1. The matrix Γ
describes the dissipation and de-phasing of the transport
along the physical chain. Due to the nearest neighbor
hopping along the bath chains the sub-matrices gbb,ζ of
gbb , where ζ stands for retarded, advanced or Keldysh,
are diagonal, i.e

gbb.ζ = diag
(
gb.ζ1 , gb.ζ2 , . . . , gb.ζM

)
(16)

with

gb.ζj (ω) = gb.ζ(ω − εj , µj). (17)

Here gb.ζ(ω, µj) is the local Green's function of the semi-
in�nite bath that is connected to site j of the central
cluster at the �rst contact point. εj is the on-site energy
and µj the chemical potential in the j-th bath chain. At
half �lling we have µj = εj . The chemical potential only
enters the Keldysh component. For the retarded part of
the local Green's function of the semi-in�nite TB chain
we have60

gb.r(ω) =
1

tB

 ω

2tb
− i

√
1−

(
ω

2tb

)2
 , (18)

with

=
{
gb.r(ω)

}
≡ 0 for |ω| ≥ 2tB .

The Keldysh component gb.K follows from eq. (9) as

gb.k(µj) =
[
gb.r −

(
gb.r
)†]

[2fF (µj , T )− 1] . (19)

In the wide-band limit34,35,47 tb � |ω| we �nd

gb,r(ω) =− i

tb
.

In this case, the self-energy Γ entering the Dyson equa-
tion (eq. (15)) becomes

Γ = iv2/|tb| := iγ . (20)

That means that the dissipation is described by a con-
stant dissipation parameter γ. More precisely, the re-
tarded part of the cluster Green's function follows from
that of the isolated cluster by(

G̃cc.r
)−1

=
(
g̃cc.r

)−1
+ iγ . (21)

Construction of the in�nite system

Given the Green's function of the central cluster we
can iteratively combine these clusters to form the in�-
nite chain. This can be done best by �rst determining a
right/left semi-in�nite 'chain' of these clusters with the
coupled bath chains and �nally connecting them to end
up with the desired in�nite structure.

FIG. 3: (Color online) Iterative construction of the right semi-
in�nite system. The values of the potential energy εi due to
the applied electric �eld are depicted below (lattice constant
and electronic charge are set to unity).

We begin with the construction of the semi-in�nite
part on the right half of the system. Let G11(ω) stand
for the corresponding Green's function in which the site
indices are restricted to the �rst (leftmost) cluster of the
semi-in�nite part.

The best way to obtain an iteration equation for this
Green's function is given by connecting a dissipative cen-
tral cluster - with its Green's function Gcc - to the �rst
cluster of the remaining semi-in�nite part by CPT (see
Fig. 3). The coupled system then is the same as the
original one apart form an overall energy shift ωs = EM .
Therefore, eq. (11) yields

G11(ω) = Gcc(ω)
[
1 + T 12G11 (ω−ωs)T 21 G11(ω)

]
.

(22)

This equation can be solved by considering it as an it-
eration equation starting with G11(ω) = Gcc(ω). We
obtain a similar equation for the left semi-in�nite part
with ωs = −ME . Finally the two semi-in�nite parts can
be combined again by CPT based on eq. (11) (see Fig. 4).

FIG. 4: (Color online) Decomposition of the in�nite system
into two semi-in�nite parts. The zero point of the potential
energy is chosen in the middle of the central part.
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III. RESULTS

A. Non-interacting case

Now we turn to the results obtained with the non-
equilibrium CPT for the model employed in the present
paper. First we present a short summary of the key re-
sults in the non-interacting case and compare the de-
scription of the dissipative bath chains by semi-in�te TB
chains to the wide-band limit approach.
An instructive approximation is obtained for |E|, γ �

|t| and wide-band limit, where one �nds34

j(E) ≈ 2taq

π

E
2γ

1 +
( E
2γ

)2 . (23)

Here q is the charge of the particles and a the lattice
constant. It should be re-emphasized that we use units
in which q = 1, a = 1, t = 1. This approximate result has
a universal maximum, characterized by

Emax = 2qaΓ , (24a)

jmax =
t

π
. (24b)

As emphasized before, in the non-interacting case
CPT provides the exact result, irrespective of the clus-
ter size. Therefore we here also compare our results ob-
tained by the non-equilibrium CPT approach to previous
works.34,35,47,48 And indeed for U = 0 we �nd that our
CPT results for the in�nite non-interacting TB chain are
in perfect agreement with those for the same system ob-
tained in temporal gauge.34 For non-interacting particles
and in the wide-band limit of the bath chains it turns out
that the coupling of the fermionic bath chains modi�es
the cluster (advanced) self-energy by a constant damping
γ, as already indicated by eq. (21).
Fig. 5 compares the current j(E) in the physical chain

as a function of the electric �eld E for the two di�er-
ent approaches for the dissipative bath chains. Curves
labeled by the value for the constant damping γ corre-
spond to the wide-band limit approach, while the ones
where dissipation is described by semi-in�nite TB chains
are labeled by the value of tB . The behaviour of the cur-
rent is characterized by a pronounced uni-modal struc-
ture. While peak position and height are reasonably well
described for all sets of parameters by the approxima-
tion in eq. (24), one observes signi�cant deviations in the
current curve for large values of γ and small values of
tB respectively. However, already for γ = 0.1 (tB = 10)
we �nd an almost perfect quantitative agreement even
up to E = 1, where the condition E � t is not really
met. Since we will restrict our further investigations to
the γ < 0.1 regime, the wide-band limit approach chosen
in the following is completely justi�ed.

E/γ
0 2 4 6 8 10

j(
E
)

0

0.1

0.2

0.3

0.4 γ = 1.0

γ = 0.5

γ = 0.1

t
B

 = 1

t
B

 = 2

t
B

 = 10

FIG. 5: (Color online) Current calculated according to eq. (7)
in the non-interacting case (U = 0). Shown with dotted,
dashed and dot-dashed lines are the results for dissipation
described by a wide-band limit approach. In comparison the
results for dissipation described by semi-in�nite TB chains are
shown with cross, star and circle markers. The approximate
current obtained by eq. (23) is plotted for comparison (solid
line). The position of its maximum is marked by the dashed
vertical line.

eq. (23) emphasizes the importance of the dissipative
bath chains. Without bath chains (γ=0) the resulting
current would be zero for all values of E , as it was also
observed in recent studies for the 1D34 and 2D45 Hubbard
model.
The linear relationship j(E) ∝ E valid for weak elec-

tric �elds, corresponds to Ohm's Law formulated in the
Drude model:

j

E

∣∣∣∣
E�γ

≈ t

π Γ
∝ e2τ

m∗
, (25)

where τ denotes the lifetime of a transport electron with
an e�ective mass m∗ and a charge e and the TB relation-
ships m∗ ∝ 1

t and γ ∝
1
τ were used.61,62 The expression

essentially represents the well-known Drude dc conduc-
tivity per electron.
The initial linear region agrees with that obtained by

linear response theory.63 The occurrence of a maximum
value for the current in combination with a subsequent
negative di�erential conductance can be explained by the
increasing relevance of BOs at larger electric �eld inten-
sities: When the electron moves to a neighboring site of
lower potential energy its kinetic energy increases by E
(in the present units). At the same time part of the en-
ergy is dissipated into the bath chain. The energy loss
due to dissipation is given in terms of the e�ective damp-
ing γ. For E � γ the dissipation mechanism is simply
too weak to dissipate enough energy and consequently
prevent the occurrence of BOs, which results in a con-
tinuously decreasing current. Similar results have been
reported recently for the 2D Hubbard model.45
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FIG. 6: (Color online) Current j(E) (blue solid line, calculated according to eq. (7)) for di�erent values of the interaction
strength U = 0.5, 1.0, 2.0 and an e�ective damping γ = 0.01. The result at U = 0 is shown as reference in every subplot (red
dashed line).

E

0 0.2 0.4 0.6 0.8 1

j
(E

)

0

0.1

0.2

0.3 U = 2.0, γ = 0.002

U = 0.0, γ = 0.002

E

0 0.2 0.4 0.6 0.8 1

j
(E

)

0

0.1

0.2

0.3 U = 2.0, γ = 0.01

U = 0.0, γ = 0.01

E

0 0.2 0.4 0.6 0.8 1

j
(E

)

0

0.1

0.2

0.3 U = 2.0, γ = 0.05

U = 0.0, γ = 0.05

FIG. 7: (Color online) Current j(E) (blue solid line, calculated according to eq. (7)) for di�erent values of the e�ective damping
γ = 0.002, 0.01, 0.05 and a �xed value for the repulsive on-site energy U = 2.0. The corresponding result at U = 0 is shown as
reference (red dashed line).

For our symmetric choice of parameters here (and as
well in the case of Hubbard interaction) there is no par-
ticle �ow from the physical chain into the bath chains,
which is an essential prerequisite for the use of the dis-
sipative bath chain model anyways. Regarding energy
dissipation, we found very similar results for the heat cur-
rents occurring in our non-interacting system as in Ref.
35, where it is shown that the energy in�ux to each bath
chain is exactly the Joule heating. It is worth mention-
ing here, that our calculations for the interacting system
revealed exactly the same features: no particle �ow into
the bath chains and a heat current in accordance to Joule
heating.

B. Current in the Hubbard-Wannier-Stark model

Next we want to study the impact of electronic correla-
tions. For U 6= 0 the cluster size M becomes important.
We start the following investigations with a two-site clus-
ter (M = 2). We will also present the results for larger
cluster sizes (M = 4 and M = 6) before turning back to
the two-site cluster treatment to explain the origin of the
arising current resonances in the Hubbard-Wannier-Stark

model.
Fig. 6 shows the dependence of the current j(E) on

the interaction strength. In all cases we used a damp-
ing parameter γ = 0.01. For U ≤ 0.5 we �nd similar
j(E)-curves as for U = 0, where the current maximum
decreases slightly with increasing U . For U ≥ 1 an oscil-
latory behaviour sets in and a transport gap opens up.
This gap is however much smaller than the single-particle
gap one obtains for E = 0 in the density of states.
Similar resonances have been found experimentally in

GaAs/AlxGa1−xAs superlattices.
64 The origin of the res-

onant structures in the current visible in Fig. 6 will be
discussed in Sec. III C.
First, however, we will study the e�ect of the dissi-

pation strength on the current characteristics, which are
displayed in Fig. 7 for a �xed value of U = 2.0 and vari-
ous values of γ. There are two major e�ects observable in
Fig. 7. First of all, the current maximum jmax increases
monotonically with increasing dissipation strength. This
is in contrast to the result at U = 0, where only the
position of the maximum current is shifted according to
eq. (24). But it corroborates that a non-zero dc current
is only possible when dissipation is included. The second
e�ect is a smoothing of the resonances with increasing
dissipation strength. While one �nds a very spiky struc-



8

E

0 0.2 0.4 0.6 0.8 1

j
(E
)

0

0.1

0.2

0.3

U= 1.0; M = 2

U = 0.0

E

0 0.2 0.4 0.6 0.8 1

j
(E
)

0

0.1

0.2

0.3

U= 1.0; M = 4

U = 0.0

E

0 0.2 0.4 0.6 0.8 1

j
(E
)

0

0.1

0.2

0.3

U= 1.0; M = 6

U = 0.0

E

0 0.2 0.4 0.6 0.8 1

j
(E
)

0

0.1

0.2

0.3

U = 2.0; M = 2

U = 0.0

E

0 0.2 0.4 0.6 0.8 1

j
(E
)

0

0.1

0.2

0.3

U = 2.0; M = 4

U = 0.0

E

0 0.2 0.4 0.6 0.8 1

j
(E
)

0

0.1

0.2

0.3

U = 2.0; M = 6

U = 0.0

FIG. 8: (Color online) Current j(E) (blue solid line, calculated according to eq. (7)) for di�erent cluster sizes M = 2, 4, 6. The
results are shown for an interaction strength U = 1.0 (top row) and U = 2.0 (bottom row) with a �xed value of the e�ective
damping γ = 0.01. The corresponding result at U = 0 is shown as reference (red dashed line).

ture in the j(E) curve for a small e�ective damping, the
oscillations for larger values of γ are rather smooth. The
origin of this behaviour will be discussed in the following
section.
Now we focus on the in�uence of larger cluster sizes

on the current characteristics analyzed in Fig. 8. Inde-
pendent of the interaction strength the qualitative be-
havivour does not change signi�cantly when the number
of sites within the CPT cluster is increased. The spiky
structure of the current remains as well as the �nite trans-
port gap. Furthermore, comparing the results for M = 4
and M = 6 it seems that in a wide region of the elec-
tric �eld the results coincide also in a quantitative way.
Due to the rather weak impact of the cluster size we will
restrict our further investigations to the M = 2 case.

C. Origin of the resonances in the
Hubbard-Wannier-Stark model

We will argue in this section that the origin of the res-
onant structures can be traced back to the occurence of
short-range anti-ferromagnetic order. Although it is well
known that the 1D Hubbard model in equilibrium does
not exhibit long-range order,65,66 strong short-range �uc-
tuations are nevertheless present. On the short length
scale of the cluster, where true long-range and short-
range order can not be distinguished, this order can be
described reasonably well by a mean-�eld decoupling, i.e.
by the Stoner model. We will show in the following, that
the positions of the resonances are in perfect agreement

with the maxima of the eigenvalues of the Wannier-Stark
ladders (WSL) obtained in this mean-�eld treatment.
The mean-�eld decoupled Hamiltonian is given by

Ĥ1 ≈ ĤMF
1 =

U

2

∑
jσ

〈(
njσ −

1

2

)〉(
njσ −

1

2

)
, (26)

Assuming anti-ferromagnetic order leads to

ĤMF
1 = ε

∑
jσ

eiπj
(
njσ −

1

2

)
, (27)

where the value for the order parameter ε will be ad-
justed such that the Stoner model gives the same single-
particle energy gap as the Hubbard model. The inset of
Fig. 9 shows the equilibrium density of states ρ(ω) for the
Hubbard and the Stoner model. Obviously, the gap and
the low-lying excitations are well described by the Stoner
model.
More importantly, we see that the current character-

istics of the two models are qualitatively in very good
agreement. Concerning the position of the resonances,
we see even perfect quantitative agreement. This allows
a transparent explanation of the resonances in the frame
of the much simpler Stoner model. To this end we start
out with the bare Stoner model (ĤWSL = Ĥ0 + ĤMF

1 )
without coupling to the bath chains.
It is well known (see e.g. Ref. 21) that non-interacting

electrons in a periodic potential, which experience in ad-
dition a homogeneous electric �eld, are trapped in lo-
calized states, corresponding to Bloch-oscillators. The
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FIG. 9: (Color online) Comparison of the current characteristics j(E) obtained for the Hubbard model and its mean-�eld
approximation, both for γ = 0.01. For the Hubbard model U = 2.0 and in the mean-�eld approximation the corresponding
order parameter is ε = 0.3. The latter is adjusted such that both models have the same single-particle energy gap, as can be
seen in the inset, which depicts the corresponding equilibrium density of states.
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ǫ
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· · · E∗
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first order
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FIG. 10: (Color online) Energy correction ∆En = En − nE
for even n as function of the logarithmic �eld strength. A
comparison is given between the �rst order correction and
the exact value, which is obtained numerically by exact diag-
onalization. Note that ∆En is the same for all even sites and
for odd n the sign is reversed.

energies form Wannier-Stark ladders. In the present ex-
ample of an alternating potential the WSL-energies have
the form

En = nE + ∆En , (28)

where ∆En denotes a possible energy correction. With-
out the periodic potential (ε = 0) the WSL-energies are
simply En = nE , corresponding to ∆En = 0. It is
straightforward to determine the eigenvalues (and hence

∆En) of ĤWSL numerically for su�ciently large systems.
The result is depicted in Fig. 10 for ε = 0.5 as function
of ln(E). We observe that for E � 1 the energy correc-
tion ∆En approaches the value ε, the amplitude of the
alternating potential. For E < 1 the energy correction os-
cillates with extrema at E∗ν as indicated in Fig. 10. Very
surprisingly, it turns out that these �eld strengths corre-
spond to the values of E where the current maxima are
observed in Fig. 9. This is illustrated in Fig. 11 where the
extrema of ∆En are compared with the position of the
current resonances.
In order to unravel the origin of these oscillations in

∆En(E) it is instructive to solve the eigenvalue problem

0 5 10 15 20
E
∗

0

0.5

1

1.5
ε =0.3 current resonances

extrema of ∆En(E)

extrema of ∆E
(1)
n (E)

sequence number
0 5 10 15 20

E
∗

0

0.5

1

1.5
ε =0.5 current resonances

extrema of ∆En(E)

extrema of ∆E
(1)
n (E)

FIG. 11: (Color online) Field values corresponding to the
current resonances for the Stoner model, depicted in Fig. 9,
compared with the positions of extrema of ∆En(E) for the ex-
act eigenvalues and those obtained by �rst order perturbation
theory, as discussed in the text.

in �rst order perturbation theory.
The eigenvectors of Ĥ0 can be expressed as21

|Ψm〉 =
∑
n

Jn−m(ζ) c†n |0〉 , (29)

where Jl(ζ) are Bessel functions of the �rst kind and
ζ = 2t

E . In App. C we show that the �rst order energy
corrections are given by

∆E(1)
m = 〈Ψm| ˆHMF

1 |Ψm〉 = eiπmε J0(2ζ) .

The �rst order correction is also plotted in Fig. 10 and
compared with the exact correction ∆En := En − nE .
Obviously, the energy correction is well described by the
�rst order term and it also shows the oscillatory depen-
dence on E . To understand this behaviour it is crucial
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to bear in mind that the Wannier-Stark states |Ψn〉 are
localized with mean position 〈m〉 = n and variance

σ2 := 〈(m− 〈m〉)2〉 =
ζ2

2
=

2t2

E2
. (30)

For completeness the proof is given in App. B.
Consequently, for �elds E >

√
2 the state is con�ned to

a single site, n = 0 say, and the �rst order energy correc-

tion is simply ∆E
(1)
0 = ε, corroborating the asymptotic

behaviour in Fig. 10 for E � 1. Then, upon lowering E
the wavefunction spreads out like 1/E and reaches grad-
ually sites with alternating potential, which leads to an
oscillatory behaviour of ∆E(1) as observed in Fig. 10.
In perturbation theory, we can also determine the po-

sition of the extrema of ∆E
(1)
n (E) analytically

∂

∂E
∆E(1)

m (E)
∣∣
E=E∗ ∝

∂

∂E
J0(

4t

E
)
∣∣
E=E∗ ∝ J1(

4t

E∗
)

!
= 0 .

Let ξ
(1)
ν be the ν-th zero of J1(x) then

E∗ =
4t

ξ
(1)
ν

. (31)

Interestingly, to �rst order, the positions of the max-
ima are independent of ε. In Fig. 11 these positions are
also included. We �nd that the �rst order result is in
reasonable agreement with the current resonances.

We can now invoke second order Fermi's golden rule to
compute the current induced by the coupling to the bath
chains. The �rst order terms vanish as the coupling to
the bath changes the number of electrons in the physi-
cal chain. Brute force application of Fermi's golden rule
shows that the energy correction ∆En(E) plays a decisive

//

//

|ψ(r)|2

r1r2

escape
probability

FIG. 12: (Color online) On-site energies (solid black line) of
the Stoner model in a homogeneous electric �eld with anti-
ferromagnetic order parameter. The red curve sketches the
wavefunction localized in the potential well at site r1. The
potential well ends on the left site at position r2. The escape
probability is proportional to the size of the �lled red area.

role and Fermi's golden rule corroborates the above ob-
servation that the current maxima occur at the extrema
of ∆En(E).
Now that we have shown that the short-range order is

responsible for the current resonances, we want to an-
alyze the current suppression for small E observed in
Fig. 9.
For small E the Wannier-Stark states are the wrong

starting point. In this case we have to consider E as
perturbation. Then the localized states are due to the
alternating potential barrier and have an E-independent
localization width. In Fig. 12 a sketch of the localized
wavefunction centred at some site r1 is depicted. The
electric �eld induced linear potential allows the particle
to tunnel through the potential barrier that ends at site
r2. The escape probability is proportional to the size of
the �lled area in Fig. 12.
For a qualitative description we approximate the left

half of the wave function by an exponentially decreasing
function

ψ(r) ∝ exp

(
−|r − r1|

ξ

)
. (32)

The quantity ξ describes the spatial extent of the local-
ized wavefunction.

E

0 0.05 0.1 0.15 0.2 0.25 0.3

j
(E
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0.3

0.4

ξ
fit

 =  4.57

C
fit

 =  0.56

ǫ = 0.3, (U = 2.0)

U = 0.0

Current maxima

Fit

FIG. 13: (Color online) Plot of Fig. 9 zoomed into the low elec-
tric �eld region. The maxima are highlighted (magenta star
markers) and �tted according to eq. (34) (brown dot-dashed
line) resulting in the �tting parameters ξ�t, C�t, depicted in
the �gure.

Then the escape probability and in turn the current
should be proportional to

j(E) ∝
∫ r2

−∞
|ψ(r)|2 dr ∝ exp

(
−2(r1 − r)

ξ

)
. (33)

The distance r2 − r1 can be approximated by the slope
of the linear potential r2 − r1 ≈ 2ε/E . Hence, we have
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j(E) = C exp

(
− 4ε

E · ξ

)
. (34)

We consider ξ as �tting parameter, which is estimated
from the height of the resonances for small electric �elds.
The resulting envelope is depicted in Fig. 13. The enve-
lope function describes the values of the current maxima
almost perfectly for small E , which con�rms our descrip-
tion. The size of the transport gap, de�ned by the �eld
strength E∗ for which the exponential in eq. (34) is unity,
is characterized by

E∗ =
4ε

ξ
. (35)

It is proportional to the height potential barrier and in-
verse proportional to the localization length. For large E
the current is suppressed by the BOs in agreement with
the non-interacting result, which is also shown in Fig. 13.

D. Consequences/Relevance of non-local e�ects in
the self-energy

Our CPT results deviate from a recent investigation of
the same system within DMFT.50 This can be especially
seen in the linear response behaviour: while our calcula-
tions suggest the in�nite 1d chain to be in an insulating
state, the DMFT calculations display a metallic linear
response. This insulating state with a too large gap is a
known drawback of CPT also known from the Hubbard
I approximation which corresponds to using a single-site
cluster (M = 1), as can be seen in Fig. 14a (light blue
curve). This drawback can be corrected by adding an
additional uncorrelated bath site in the sense of a mini-
mal DMFT setup. The parameters of the bath site can
be determined, e.g., within the Variational Cluster Ap-
proach (VCA).67�69 Fig. 14a (dark blue curve) shows the
resulting current in the linear response region. Here it
is appropriate to use the parameters determined for the
equilibrium case E = 0. As one can see, the insulat-
ing behaviour has changed to a metallic one. On the
other hand, at half �lling, the Hubbard model is expected
to be insulating for any U > 0 both in one as well as
in two dimensions.70,71 This behavior is clearly missed
when neglecting non-local e�ects in the self-energy as in
single-site DMFT. A minimal setup to account for the
true physical insulating solution down to U = 0 consists
of a two-site cluster (M = 2) with additional bath sites,
as can be seen from the linear response region displayed
in Fig. 14b. These results point out the importance of
non-local e�ects in the self energy, which are induced by
short-range anti-ferromagnetic �uctuations. This is also
con�rmed in an early VCA work67 according to which
it is more e�ective to include physical sites in the clus-
ter, thus making the self-energy more non-local, rather
than bath sites, which emphasize its dynamical charac-
ter. This is the reason why we have chosen in this paper

to use large clusters rather than smaller ones with bath
sites. Nevertheless, it would be interesting in this context
to investigate the same in�nite 1d system also by means
of a non-equilibrium cellular DMFT (CDMFT)70,72,73 ap-
proach, in particular in a doped situation.
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FIG. 14: (Color online) Linear response regime/region of the
current j(E) (calculated according to eq. (7)) with (dark blue
solid line) and without (light blue solid line) an additional
VCA optimized bath site for the single-site case (M = 1) (a)
and the 2-site case (M = 2) (b) for U = 2. In the single-site
treatment the overall linear response behaviour changes from
insulating to metallic by adding an additional bath site, while
for the M = 2 case the insulating behaviour remains. All
results are shown for a �xed value of the e�ective damping
γ = 0.01. The corresponding result at U = 0 is shown as
reference (red dashed line).

IV. CONCLUSIONS

We have seen that Hubbard chains in an electric �eld
coupled to dissipative bath chains exhibit an oscillatory/
resonant behaviour in the current characteristics j(E).
The coupling to the bath chains is essential for a non-
vanishing steady state current. The origin of the oscilla-
tions has been traced back to anti-ferromagnetic �uctu-
ations which we mimicked by the Stoner model. Quite
generally we have shown that non-interacting electrons
in an alternating potential permeated by a homogeneous
electric �eld, i.e. for a Wannier-Stark model with alter-
nating on-site energies, the current exhibits an oscilla-
tory behaviour as function of the �eld strength E , which
is directly linked to similar oscillations in the spacing of
the Wannier-Stark ladder. For small �eld strength the
current is suppressed due to localization in the periodic
potential barriers. For �eld strength E much larger then
the damping parameter Γ, the current is again suppressed
due to localization or rather Bloch-oscillations, which are
a ubiquitous feature of the Wannier-Stark model without
dissipation.
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Appendix A: Equivalence of the Coulomb and the
temporal gauge in the Hubbard-Wannier-Stark

model

Here we will brie�y outline a proof, which is closely
related to that given in Ref. 74, that in the Hubbard-
Wannier-Stark model an electric �eld can either be
described by a potential term, corresponding to the
Coulomb gauge used in eq. (1), or in a time-dependent
Peierl's phase, corresponding to the temporal gauge.34

The two approaches are equivalent in the sense that they
di�er by a unitary transformation which leaves the Li-
ouville equation invariant. As a consequence, the steady
state current computed via

j ∝ ={tl+1,l · tr
(
ρ̂ c†l+1,σcl,σ

)
} (A1)

will be the same.
To prove this statement, we start out with the

Coulomb gauge, where the electric �eld adds a potential
term

ĤE = E
∑
j

j (nj + nbj)

to the Hamiltonian Ĥ0 without E-�eld. The total
Hamiltonian is Ĥ = Ĥ0 + ĤE , where the �rst term also
contains the Hubbard interaction. In the temporal gauge,
on the other hand, there is no E-dependent potential
term, instead the nearest neighbor hopping parameter
tl+1,l is modi�ed to

tl+1,l → t̃l+1,l = tl+1,l e
iaqEt .

Let the Hamiltonian in temporal gauge be denoted by
H̃. We de�ne a time-dependent unitary operator

U(τ) = e−iĤEτ .

It can readily be seen that H̃ = U†Ĥ0U , where the
Hubbard part is not modi�ed, as the unitary operator
only contains density operators. Let ρ̂(t) be the density
operator de�ned for the system in Coulomb gauge with
the corresponding Liouville equation

d

dt
ρ̂ = −i

[
Ĥ, ρ̂

]
.

Then the transformed density operator ρ̃ = U†ρU ful-
�ls

d

dt
ρ̃ = −i

[
H̃, ρ̃

]
,

which is the Liouville equation in temporal gauge. The
initial value for t = 0 is the same for both representations,
i.e. ρ̃0 = ρ̂0. It should be noted that the gauge invariance
is violated if the bath chains do not experience the same
E-�eld potential as the corresponding physical site. The
reason is the coupling term between the physical sites and
the thermal bath. In view of the unitary transformation
it is obvious that the current de�ned in eq. (A1) is the
same in both representations, jl+1,l = j̃l+1,l, since

={tl+1,l · tr
(
ρ̂ c†l+1,σcl,σ

)
} = ={t̃l+1,l · tr

(
ρ̃ c†l+1,σcl,σ

)
} .

Appendix B: Properties of the WSL wavefunction
for a TB model

Here we outline some of the properties of WSL states
of eq. (29). The key element are the Bessel functions in
the following representation

Jn(γ) =
1

2π

∫ π

−π
ei(kn−γ sin(k))dk .

The mean position of the WSL state |Ψm〉 is

〈j〉 =
∑
j

j|Jm−j(γ)|2

= m
∑
l

|Jl(γ)|2︸ ︷︷ ︸
=1

−
∑
l

l|Jl(γ)|2︸ ︷︷ ︸
=0

= m .

Similarly for the variance we �nd

σ2 = 〈(j − 〈j〉)2〉

=

∞∑
l=−∞

l2|Jl(γ)|2

=
1

(2π)2

∫
dkdk′eiγ(sin(k)−sin(k

′))
∑
l

l2 e−il(k−k
′)

= − 1

2π

∑
kk′

eiγ(sin(k)−sin(k
′))
( ∂
∂k

)2
δ(k − k′) .

Integration by parts eventually yields

σ2 =
γ2

2
=

2t2

E2
.

Appendix C: Perturbation theory for an alternating
potential in a Wannier-Stark model

Here we compute the �rst order energy correction of
Ĥ0 + ĤMF

1 . The terms of the Hamiltonian are de�ned in
eq. (2) and eq. (26).
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∆E(1)
m = ε

∑
l

|Jl−m(γ)|2eiπl

= eiπmε
∑
n

|Jn(γ)|2eiπn

= eiπmε
1

(2π)2

∑
kk′

eiγ(sin(k)−sin(k
′))
∑
n

ein(k−k
′+π)

= ε eiπm
1

2π

∑
k

ei2γ sin(k)

= ε eiπm J0(2γ) .

∗ jakob.neumayer@tugraz.at
1 F. Bloch, Z. Phys. 52, 555 (1928).
2 C. Zener, R. Soc. Lond. A 145, 523 (1934).
3 G. Wannier, Phys. Rev. 117, 432 (1960).
4 D. Emin and C. F. Hart, Phys. Rev. B 36, 2530 (1987).
5 M. Glück, A. R. Kolovsky, H. J. Korsch, and N. Moiseyev,
Eur. Phys. J. D 4, 239 (1998).

6 J. Krieger and G. Iafrate, Phys. Rev. B 33, 5494 (1986).
7 G. Nenciu, Rev. Mod. Phys. 63, 91 (1991).
8 A. Bouchard and M. Luban, Phys. Rev. B 52, 5105 (1995).
9 J. Feldmann, K. Leo, J. Shah, D. Miller, J. Cunningham,
T. Meier, G. von Plessen, A. Schulze, P. Thomas, and
S. Schmitt-Rink, Phys. Rev. B 46, 7252 (1992).

10 C. Waschke, H. Roskos, R. Schwedler, K. Leo, H. Kurz,
and K. Köhler, Phys. Rev. Lett. 70, 3319 (1993).

11 M. Yamaguchi, M. Morifuji, H. Kubo, K. Taniguchi,
C. Hamaguchi, C. Gmachl, and E. Gornik, Solid-State
Electronics 37, 839 (1994).

12 M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Sa-
lomon, Phys. Rev. Lett. 76, 4508 (1996).

13 S. Wilkinson, C. Bharucha, K. Madison, Q. Niu, and
M. Raizen, Phys. Rev. Lett. 76, 4512 (1996).

14 B. Anderson and M. Kasevich, Science 282, 1686 (1998).
15 O. Morsch, J. Müller, M. Cristiani, D. Ciampini, and

E. Arimondo, Phys. Rev. Lett. 87, 140402 (2001).
16 W. Hensinger, H. Hä�ner, A. Browaeys, N. Heckenberg,

K. Helmerson, C. McKenzie, G. Milburn, W. Phillips,
S. Rolston, H. Rubinsztein-Dunlop, et al., Nature 412, 52
(2001).

17 M.Morifuji, T. Imai, C. Hamaguchi, A. D. Carlo, P. Vogl,
G. Böhm, G. Tränkle, and G. Weimann, Phys. Rev. B 65,
233308 (2002).

18 E. Mendez and G. Bastard, Phys. Today 6, 34 (1993).
19 Tarruell Leticia, Greif Daniel, Uehlinger Thomas, Jotzu

Gregor, and Esslinger Tilman, Nature 483, 302 (2012),
10.1038/nature10871.

20 M. Glück, A. Kolovsky, and H. Korsch, Phys. Rep. 366,
103 (2002).

21 T. Hartmann, F. Keck, H. Korsch, and S. Mossmann, New
J. Phys. 6, 2 (2004).

22 T. Oka, R. Arita, and H. Aoki, Phys. Rev. Lett. 91, 066406
(2003).

23 D. Witthaut, M. Werder, S. Mossmann, and H.J.Korsch,
Phys. Rev. E 71, 036625 (2005).

24 L. Arrachea, Phys. Rev. B 70, 155407 (2004).
25 A. Di Carlo, P. Vogl, and W. Pötz, Phys. Rev. B 50, 8358

(1994).
26 V. Grecchi, M. Maioli, and A. Sacchetti, J. Phys. A 26,

L379 (1993).
27 V. Grecchi, M. Maioli, and A. Sacchetti, Comm. Math.

Phys. 159, 605 (1994).
28 V. Grecchi and A. Sacchetti, Ann. Phys. 241, 258 (1995).
29 V. Grecchi and A. Sacchetti, Phys. Rev. Lett. 78, 4474

(1997).
30 V. Grecchi and A. Sacchetti, Comm. Math. Phys. 185, 359

(1997).
31 V. Grecchi and A. Sacchetti, Comm. Math. Phys. 197, 553

(1998).
32 V. Buslaev and A. Grigis, J. Math. Phys. 39, 2520 (1998).
33 A. Sacchetti (2013), arXiv:1312.6066v1.
34 J. E. Han, Phys. Rev. B 87, 085119 (2013).
35 J. E. Han and J. Li, Phys. Rev. B 88, 075113 (2013).
36 M. Knap, W. von der Linden, and E. Arrigoni, Phys. Rev.

B 84, 115145 (2011).
37 M. Nuss, C. Heil, M. Ganahl, M. Knap, H. G. Evertz,

E. Arrigoni, and W. von der Linden, Phys. Rev. B 86,
245119 (2012).

38 M. Mierzejewski, J. Bon£a, and P. Prelov²ek, Phys. Rev.
Lett. 107, 126601 (2011).

39 Z. Lenar£i£ and P. Prelov²ek, Phys. Rev. Lett. 108, 196401
(2012), arXiv:1201.3817.

40 W. Lee and K. Park, Phys.Rev.B 89, 205126 (2014).
41 D. N. Esfahani, L. Covaci, and F. Peeters, Phys. Rev. B
90, 205121 (2014).

42 F. Heidrich-Meisner, I. González, K. A. Al-Hassanieh,
A. E. Feiguin, M. J. Rozenberg, and E. Dagotto, Phys.
Rev. B 82, 205110 (2010).

43 M. Eckstein, T. Oka, and P. Werner, Phys. Rev. Lett. 105,
146404 (2010).

44 T. Oka and H. Aoki, Phys. Rev. B 81, 033103 (2010).
45 A. Amaricci, C. Weber, M. Capone, and G. Kotliar, Phys.

Rev. B 86, 085110 (2012).
46 Y. Imry and R. Landauer, Rev. Mod. Phys. 71, S306

(1999).
47 C. Aron, G. Kotliar, and C. Weber, Phys. Rev. Lett. 108,

086401 (2012).
48 N. Tsuji, T. Oka, and H. Aoki, Phys. Rev. Lett. 103,

047403 (2009).



14

49 D. Roy, J. Phys. 20, 025206 (2008).
50 J. Li, C. Aron, G. Kotliar, and J. Han, Phys. Rev. Lett.
114, 226403 (2015).

51 S. G. Ovchinnikov and I. S. Sandalov, Phys. C 161, 607
(1989).

52 D. Sénéchal, D. Perez, and M. Pioro-Ladriére, Phys. Rev.
Lett. 84, 522 (2000).

53 D. Sénéchal, D. Perez, and D. Plou�e, Phys. Rev. B 66,
075129 (2002).

54 M. Balzer and M. Pottho�, Phys. Rev. B 83, 195132
(2011).

55 L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).
56 L. P. Kadano� and G. Baym, Quantum Statistical Me-

chanics: Green's Function Methods in Equilibrium and
Nonequilibrium Problems (Addison-Wesley, Redwood City,
CA, 1962), ISBN 9780201410464.

57 J. Schwinger, J. Math. Phys. 2, 407 (1961).
58 H. Haug and A.-P. Jauho, Quantum Kinetics in Trans-

port and Optics of Semiconductors (Springer, Heidelberg,
1998), ISBN 9783540735618.

59 J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
60 E. Economou, Green's Functions in Quantum Physics

(Springer, Heidelberg, 2006), ISBN 3540288384.
61 M. Omar, Elementary solid state physics: Principles and

applications (Addison-Wesley, Massachusetts, 1975), ISBN

9780201054828.
62 A. Glatz, V. Kozub, and V. Vinokur, Theory of Quan-

tum Transport in Metallic and Hybrid Nanostructures
(Springer, Dordrecht, 2006), ISBN 978140204779.

63 R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
64 A. A. Andronov, E. P. Dodin, Y. N. Nozdrin, and D. I.

Zinchenko, Phys. Stat. Sol. C 5, 190 (2008).
65 N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).
66 C. Dahnken, M. Aichhorn, W. Hanke, E. Arrigoni, and

M. Pottho�, Phys. Rev. B 70, 245110 (2004).
67 M. Pottho�, M. Aichhorn, and C. Dahnken, Phys. Rev.

Lett. 91, 206402 (2003).
68 M. Pottho�, Eur. Phys. J. B 32, 429 (2003).
69 M. Pottho�, Eur. Phys. J. B 36, 335 (2003).
70 G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Phys.

Rev. Lett. 87, 186401 (2001).
71 T. Schäfer, F. Geles, D. Rost, G. Rohringer, E. Arrigoni,

K. Held, N. Blümer, M. Aichhorn, and A. Toschi, Phys.
Rev. B 91, 125109 (2015).

72 M. Balzer, W. Hanke, and M. Pottho�, Phys. Rev. B 77,
045133 (2008).

73 D. Sénéchal (2008), arXiv:0806.2690v2.
74 M. Graf and P. Vogl, Phys. Rev. B 51, 4940 (1995).


