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Fate of the false Mott-Hubbard transition in two dimensions
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We have studied the impact of non-local electronic correlations at all length scales on the Mott-
Hubbard metal-insulator transition in the unfrustrated two-dimensional Hubbard model. Combining
dynamical vertex approximation, lattice quantum Monte-Carlo and variational cluster approxima-
tion, we demonstrate that scattering at long-range fluctuations, i.e., Slater-like paramagnons, opens
a spectral gap at weak-to-intermediate coupling — irrespectively of the preformation of localized or
short-ranged magnetic moments. This is the reason, why the two-dimensional Hubbard model has
a paramagnetic phase which is insulating at low enough temperatures for any (finite) interaction

and no Mott-Hubbard transition is observed.

PACS numbers: 71.27.4+a, 71.10.Fd, 71.30.+h

Introduction.  The Mott-Hubbard metal-insulator
transition (MIT) [1] is one of the most fundamental hall-
marks of the physics of electronic correlations. Nonethe-
less, astonishingly little is known exactly, even for its
simplest modeling, i.e., the single-band Hubbard Hamil-
tonian E] Exact solutions for this model are available
only in the extreme, limiting cases of one and infinite
dimensions.

In one dimension (1D), the Bethe ansatz shows that
there is actually no Mott-Hubbard transition Bﬁ], or, in
other words, it occurs for a vanishingly small Hubbard
interaction U: At any U > 0 the 1D-Hubbard model
is insulating at half filling. One dimension is, however,
rather peculiar: While there is no antiferromagnetic or-
dering even at temperature 7" = 0, antiferromagnetic spin
fluctuations are strong and long-ranged, decaying slowly,
i.e., algebraically. Also the (doped) metallic phase is not
a standard Fermi liquid but a Luttinger liquid.

For the opposite extreme, infinite dimensions, the dy-
namical mean field theory (DMFT) [6] becomes exact [7],
which allows for a clear-cut and — to a certain extent —
almost “idealized” description of a pure Mott-Hubbard
MIT. In fact, since in D =00 only local correlations sur-
vive ﬂ], the Mott-Hubbard insulator of DMFT consists
of a collection of localized (but not long-range ordered)
magnetic moments. This way, if antiferromagnetic order
is neglected or sufficiently suppressed, DMFT describes
a first-order MIT ﬂa, ], ending with a critical endpoint.

As an approximation, DMFT is applicable to the more
realistic cases of the three- and two-dimensional Hubbard
models. However, the DMFT description of the MIT is
the very same here, since only the non-interacting den-
sity of states (DOS) and in particular its second moment
enter. This is a natural shortcoming of the mean-field
nature of DMFT: antiferromagnetic fluctuations have no
effect at all on the DMFT spectral function or self-energy
above the antiferromagnetic ordering temperature Ty .

In 3D, antiferromagnetic fluctuations reduce Ty siz-

ably compared to the DMFT (see Fig. 1), although be-
ing significant only at 7' ~ Ty. Hence, the reliability of
the DMFT results for the spectral functions is not spoilt
in 3D except for the proximity of the antiferromagnetic
transition ﬂﬂ@], whereas deviations from the DMFT en-
tropy and susceptibilities can be significant also at higher
T ﬂﬂ, @] With this background, it is maybe not sur-
prising, that DMFT also yields a good description of the
MIT even for realistic material cases, such as the text-
book example V503 [14)].

Much more intriguing, and challenging, is the 2D
case, most relevant for high-temperature superconductiv-
ity and the rapidly emerging field of oxide thin films and
heterostructures. In fact, this issue has been intensely
debated since the Seventies: On the one hand, several
analytical and numerical results M] suggested that a
metallic phase is found at weak coupling, with a MIT at
a finite U.. At the same time, calculations with the two-
particle self-consistent (TPSC) approach showed
a pseudogap in the perturbative regime of small U M]
Finally, in Anderson’s view HE] the 2D physics should
be considered fully nonperturbative, similarly ﬂﬂ] as in
1D, yielding a Mott gap and the localized physics of the
2D-Heisenberg Hamiltonian for all U > 0.

More recently, most precise numerical studies have
shown unambiguously that the short-range spin fluctu-
ations do actually reduce the critical interaction U, for
the MIT in 2D compared to DMFT and reverse its slope,
see Fig. [II (Note that the DMFT insulating phase has
the full entropy of free spins, i.e., In2 per site, imply-
ing the positive DMFT slope dU./dT > 0 of Fig. [1I)
Such a 2D picture has been established by cluster DMFT

CDMFT) @], dynamical cluster approximation (DCA)
iﬁ, 28] and second-order dual-fermion [38] studies [39],
which systematically include non-local correlations be-
yond DMFT. However, given the limited cluster sizes of
CDMFT and DCA calculations, only short-range corre-
lations are included.
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In this paper, we revisit the MIT in 2D and the ef-
fect of antiferromagnetic spin-fluctuations thereupon. To
this end, we employ three methods: (i) the variational
cluster approximation (VCA) [36] which includes short-
range correlations, (ii) the dynamical vertex approxima-
tion (DI'A) which includes short and long-range correla-
tions beyond DMFT on the same footing M], and (iii
lattice quantum Monte Carlo (QMC) simulations @jﬂ%
of unprecedented accuracy made possible by the algo-
rithmic progress, increased computer power and careful
extrapolations (see Supplement) [45, [46].

The phase diagram in 2D. Let us first summarize the
results of our combined, comparative studies for the half-
filled Hubbard model on a square lattice with nearest-
neighbor hopping ¢ = 1/4 by hands of the phase dia-
gram Fig. [T} all details on the spectra and the underlying
physics of the different regimes are presented afterwards.

Our VCA data for the MIT at zero temperature (or-
ange cross in Fig. [[) appear consistent with the pre-
vious CDMFT, DCA, and older VCA N%] studies, as
well as with second-order dual-fermion [38] calculations
@]: short-range antiferromagnetic correlations reduce
the critical U, (violet line) significantly with respect to
DMEFT. Moreover, the width of the coexistence region is
considerably reduced (see for CDMFT [32] violet hatched
area). The VCA calculations performed on different clus-
ters, however, also suggest something more definite in
this respect: At low temperatures, the smaller the U,
the more important becomes the effect of longer-ranged
antiferromagnetic fluctuations.

To address this issue in more detail, we include
such long-range correlations by means of DI'A. Results
are also compared with lattice Blankenbecler-Scalapino-
Sugar (BSS) QMC calculations [42]. The red-dashed line
of Fig. Mlmarks the interaction U.(T") above which, for a
given temperature T a spectral gap is opened because of
a strong enhancement of the electronic scattering rate in
the very low-frequency regime (see below).

These DI'A data, confirmed by our extrapolated BSS-
QMC data strongly suggest that at low enough T' strong
antiferromagnetic spin fluctuations always open a spec-
tral gap, even at arbitrarily small values of U (red dashed
line in Fig. [0l). Hence for T'— 0, U. — 0, i.e., no MIT
can be identified any longer for the 2D unfrustrated Hub-
bard model, similarly as in 1D. As we will elaborate in
the following, the mechanism is however rather different
in this case. By increasing U the temperature of the
onset of the insulating behavior is enhanced until the
high-temperature crossover regime of DMFT at interme-
diate U is reached: Here, the electron mobility is already
suppressed by purely local correlations.

Our results for the phase diagram indicate that the
“idealized” physical picture of the Mott-Hubbard metal-
insulator transition of DMFT is completely overturned in
2D by strong, spatially extended antiferromagnetic cor-
relations. In the following, we will discuss explicitly the
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FIG. 1. (color online). MIT of the Hubbard model on a square
lattice determined by different non-perturbative techniques.
The DMFT transition line (blue/dark [40]) is shifted towards
lower interaction values due to short-range spatial correla-
tions (violet/light gray line: CDMFT [32]; orange cross at
T = 0: VCA). This trend is accompanied by a simultaneous
shrinking of the coexistence regions (hatched regions). The
inclusion of long-range fluctuations leads to a vanishing U, in
the low-temperature regime (crosses/red dashed line: DTA,
red filled box BSS-QMC): Error bars mark the temperature
range, where the onset of an insulating behavior on the whole
Fermi surface has been found, according to the electronic self-
energy of DT'A (see Fig. 3). Also shown are the DMFT [d]
and the DT'A 3D Néel temperatures (light grey dotted lines)
[11] as well as the DI'A 2D one (grey line at T=0) [41] which
fulfills the Mermin-Wagner theorem Iﬂ], 4t = 1 sets the en-
ergy scale.

most important aspects in terms of spatial correlations
over different length scales, and their underlying physics,
by analyzing in detail the numerical data used for deter-
mining the phase diagram in 2D.

Short-range correlations. The physics of short-range
correlations at T' = 0 is captured very well by VCA in
the paramagnetic phase. In fact, our results for a VCA
cluster of N, = 4 sites (+4 bath sites) show a clear-cut
MIT at a finite U, = 1.4 for T = 0, within the CDMFT
coexistence region of a metallic and an insulating solu-
tion. The local spectral function A(w) and the self-energy
Y (iwy,) at the Fermi level of the two coexisting solutions
at U = U. = 1.4 are reported in Fig. The two so-
lutions differ qualitatively, showing a correlated metallic
behavior with a quasiparticle weight of Zyca4 = 0.37
at k = (m,0) (lower panel), and an insulating behav-
ior (upper panel) characterized by a divergence of Im
Y(iw,) and a corresponding spectral gap, respectively.
The VCA calculation of the grand potential indicates
that for U < U. = 1.4 the thermodynamically stable
solution is the metallic one, while for U > 1.4 the insula-
tor is stabilized, with a level crossing at U = U,.. Such a
U, value is in fairly good agreement with CDMFT @], it
gets reduced by slightly increasing the lattice size in the
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FIG. 2. (color online) Local spectral function of the two coex-
isting solutions obtained in VCA at the T =0, U =U. =14
MIT for a 4 site cluster + 4 bath sites. Left panel: metallic so-
lution; right panel: insulating solution. Inset: corresponding
self-energies at k = (,0).

VCA calculations from from U, = 1.4 for N. =4 =2x 2
to U, = 1.325 for N, = 6 = 2 x 3. This reflects the fact
that correlations of very short range (actually two-site
in the case of N, = 4) are strong enough to destroy the
low-temperature metallic phase at intermediate coupling,
but are less effective for lower values of the interaction.
In fact, in the presence of a T'=0 (magnetic) instability,
a correct description of the weak-coupling regime in 2D
cannot be obtained without the inclusion of correlations
on all length scales, as we show in the following.
Long-range correlations. We include correlations on all
length scales by either extrapolating lattice BSS-QMC re-
sults to N. — oo or using DT'A [35] in its ladder version
[41], a diagrammatic extension of DMFT (cf. [38, 148, [49))
based on the two-particle vertex @, |§_1|] Certainly, both
approaches have their limitations, either due to the ex-
trapolation procedure of the cluster results (see Supple-
ment) or due to the selection of the more relevant sub-
sets of diagrams. Hence, cross-checking the results of
these complementary approaches, as we do here, is of ut-
most importance. In fact, the good agreement observed
(upper panels of Fig. B validates our results and at the
same time supports the physical interpretation discussed
below. The top panels of Fig. 3 show our DGA and BSS-
QMC data of the imaginary part of the electronic self-
energy (K, iw,, ) for the most significant k—points at the
Fermi surface (i.e., the “nodal” point k = (5, §) and the
“antinodal” point k = (7,0)) as a function of Matsubara
frequencies for a rather small value of U=0.5 at two dif-
ferent temperatures (7'=0.025 and T'=0.010). Here, one
can immediately appreciate how the one-particle physics
changes even qualitatively when reducing T: At T =
0.025 both DT'A (left upper panels) and lattice QMC (left
inset) self-energies display a Fermi-liquid behavior for all
k-points, not radically different from the DMFT results
(blue squares in Fig. 3). Even the quasiparticle renormal-
ization Z = (1 — 2m3oiwn)) )=l ~ 0.9 is similar.
In contrast, the scatterinng rate v at the Fermi surface is
increased from ypyrpr = —ImXpyper(k,i07) = 0.002,
to (k-averaged) Jpra =~ 0.014, with a moderate k-
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FIG. 3. (color online) Upper panels: Imaginary parts of the
self-energies for U = 0.5, T" = 0.025 (left) and T = 0.010
(right), comparing DMFT (blue squares), DI'A (red circles:
k = (w/2,7/2); red crosses: k = (m,0)), VCA (orange,
T = 0), and BSS-QMC (insets, cf. Supplement). Even for the
very small interaction U = 0.5 an insulating gap is opened at
T =~ 0.014 in DT'A as well as in BSS-QMC. Central panels:
Real-space dependence of the DI'A spin correlation function
xs(r)/xs(0) for the same parameters as above. Shown is the
cut r = (x,0) where z is given in units of the lattice spacing
a = 1. The solid line (grey, guide to the eye) interpolates be-
tween the values at different lattice vectors (blue diamonds).
By fitting (see also dashed lines in the lower panels) we ob-
tain the correlation lengths £ ~ 4 at T'=0.025 (left), while
& ~ 1000 at T"=0.010 (right). Lower panels: T-dependence
of €71 for different interaction values. A crossover to an ex-
ponential behavior is observed at T' consistent with the on-
set of the insulating behavior (pink/green colored areas for
U=0.5/0.75).

diﬁerentiation@]. By reducing T, ypra gets quickly
enhanced on the whole Fermi surface, always display-
ing its largest value at k = (7,0). At T = 0.010 the
self-energy has already changed completely, see Fig. 3
(right): ImX(k,iw,) acquires an evident downturn for
all k-points at very low frequencies. This shows that the
Fermi surface is completely destroyed at low T — even
at the nodal momentum k= (w/2,7/2). Such a qualita-
tive change in the low-frequency self-energy behavior has
been exploited for defining the (red-dashed) line marking
the destruction of the whole Fermi surface, and, hence,
insulating behavior in our phase diagram.

Physical interpretation. Our combined numerical anal-



ysis not only allows us to make a definite statement
about the fate of the Mott-Hubbard transition in the
2D Hubbard model, but it also clarifies unambiguously
the physical origin of this result. Evidently, the shift
of the border of the MIT towards U = 0 (Fig. [l) rep-
resents already an indication for rather extended spa-
tial fluctuations, emerging from the proximity to the
T = 0 long-range antiferromagnetic order. The impor-
tant questions still to be answered: Can this intuitive
picture be confirmed in a less heuristic and more direct
way? What is the exact nature of these extended an-
tiferromagnetic spin fluctuations? These questions can
be answered by extending our study of the low-T" weak-
coupling regime to the DI'A spin correlation function
Xs(r, 192, =0) szB dr(S.(r,7)5.(0,0)) in real space. Our
results for U = 0.5 are reported in the central panels of
Fig. Bl where we show, as representative case, the spatial
decay of xs along the z-direction, normalized to its r = 0
value at T'=0.025 (metal) and T'=0.010 (insulator): In
both cases, xs displays an alternating sign, which is the
typical hallmark of predominant antiferromagnetic fluc-
tuations. The spatial extensions of such fluctuations is
quite different, however. In fact, the long-distance be-
havior of y, can be approximated by its asymptotic ex-

pression |xs(r — 00)| o \/ge*’”/g [55]. But the correlation

length ¢ varies from ~ 4 in the metallic phase to values
of £ ~ 1000 in the low-T insulating phase. A more quan-
titative understanding is provided by the study of the
T-dependence of £ in DT'A (see lowest panels of Fig. [B]).
By reducing T, ¢ displays a well defined crossover to an
exponential behavior, which approximately matches the
onset of the low-T' insulating regime at weak-coupling.
This shows that the spin fluctuations responsible for the
destruction of the Fermi surface at low T have such
a large spatial extension, difficult to capture by (non-
extrapolated) cluster calculations@, @] For instance,
the corresponding VCA self-energy at T'=0 (orange curve
in Fig.B]) displays a very clear metallic behavior, similar
to that of DMFT.

Insight can also be gained from the potential energy.
Our DI'A and BSS-QMC results show that the destruc-
tion of the metallic state upon decreasing T' is accompa-
nied by a slight reduction in potential energy, U(n4n,),
by about 1% for the data of Fig. 3. However, this effect
is occurring in the presence of strong and very extended
(€ > 100) spin correlations. Therefore, the physics can-
not be really different from the truly long-ranged ordered
phase @] This rules out any particular role of prelocal-
ization of the magnetic moments in destroying the Fermi-
liquid state, as well as the possibility of mapping the
whole low-T" physics onto the 2D-Heisenberg model, as
proposed by Anderson ﬂﬁ] Rather, the emerging physics
appears more consistent to the description of the TPSC
approach ﬂﬂ, @], at least in the weak-coupling regime,
and of the low-T' calculations with the non-linear sigma

4

model ﬂﬁ], as well as to the experimental estimates of € in
electron-doped cuprates @] In fact, the slight decrease
in the potential energy is a clear hallmark @, , @]
of the Slater-like nature of the antiferromagnetic fluctu-
ations as is the large £&. We can interpret this hence as
“Slater-paramagnons”. The conclusive physical picture
is then well defined: For all U > 0, a gap is opened at
low enough 1" because of the enhanced electronic scatter-
ing with extended antiferromagnetic paramagnons. The
nature of such spin-fluctuations, reflecting the behavior
of the 7" = 0 ordered phase ﬂa, @] from which they
are originating, smoothly evolves from Slater (weak-to-
intermediate coupling) to Heisenberg (strong coupling).
In this respect, it is worth recalling that DCA results
[31] on small clusters (N, =4) also suggest the crossover
from Slater-like to Heisenberg-like fluctuations for U (at
least) larger than 1.25. Though still smaller [53], these
interaction values are not too far away from the regime
where the crossover to Heisenberg physics is predicted to
occur in the long-range ordered phase by DMFT @]

Conclusions. We have clarified the effects of spatial
correlations on different length scales on the MIT in the
2D half-filled Hubbard model: for all U > 0, at low
enough (but finite) T, we have a paramagnetic insulator.
This is the result of strong scattering at extended anti-
ferromagnetic fluctuations (paramagnons). The nature
of these fluctuations gradually evolves from Slater-like to
Heisenberg-like, tracking an analogous evolution for the
T =0 antiferromagnet. This final physical picture is quite
different from both, state-of-the art DMFT/CDMFT,
which find a finite U, for the (metastable) paramagnetic
phase, and the strong-coupling idea of an effective low-
T 2D-Heisenberg model which assumes preformed spins
even at low U. Instead the 2D Hubbard model has U, =0,
and the nature of the most relevant spin-fluctuations is
Slater-like in the whole weak-to-intermediate coupling
regime. Let us stress that if we frustrate the 2D square
lattice away from perfect nesting, e.g., by adding a
nearest-neighbor hopping, antiferromagnetism and hence
also the MIT originating from antiferromagnetic fluctu-
ations is expected to shift to a finite U, > 0, possibly a
quantum critical point.
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Direct numerical solutions of the Hubbard model in two dimensions can only be obtained for
finite clusters. We show that finite-size effects are quite significant in raw BSS-QMC estimates of
the self-energy, but also very regular. Consequently, the systematic errors can be reliably eliminated
using finite-size extrapolations, yielding the high-precision data shown in the main paper.

The numerical results presented in the main paper
have been obtained using complementary techniques with
quite different characteristics. Among those, the dynami-
cal vertex approximation (DT A) yields results directly in
the thermodynamic limit ﬂj], the variational cluster ap-
proximation (VCA), on the other hand, is good for short
range correlations @], and, finally, the Blankenbecler-
Scalapino-Sugar (BSS) QMC calculations for the Hub-
bard model is applicable to clusters with a finite num-
ber N of lattice sites, with N = L? for square lattices
with linear extent L. In its generic formulation, the BSS-
QMC algorithm introduces a further systematic bias due
to a Trotter discretization of the imaginary time E] In
this work, we employ a multigrid approach for obtaining
quasi-continuous imaginary-time Green functions with-
out significant Trotter bias M], which can be reliably
Fourier transformed in order to compute self energies;
similar strategies have proven successful in the context
of DMFT studies using the Hirsch-Fye QMC algorithm
ﬂa, ] As a result, all “raw” data shown in this supple-
ment should be regarded as numerically exact for a given
cluster size. The BSS-QMC computational effort scales
as N3/T at temperature T, i.e. proportionally to L° at
fixed T, which limits high-precision calculations (as we
need here for determining the self-energy on the percent
level) to L S 16. The properties of such finite systems
will, in general, depend on the exact system size (and
shape as well as boundary conditions) and may deviate
drastically from the thermodynamic limit.

We will show in the following that reliable extrapola-
tions to the thermodynamic limit, as shown in Fig. 3
in the main paper, are still possible in the parameter
range of interest based on BSS-QMC data obtained for
quadratic clusters (with periodic boundary conditions)
and linear extents L = 8,10,12,14, 16.

In the left column of Fig.[I], estimates of the self-energy
Y (k, iwy,) at interaction U = 0.5 and inverse temperature
£ = 100 are shown versus Matsubara frequency w,, for the
two momenta k = (7, 0) [Fig. [ (a)] and k = (7/2,7/2)
[Fig.  (c¢)], respectively; due to particle-hole symmetry
the self-energy is purely imaginary at these k points.
Finite-size (FS) BSS-QMC data (open symbols and bro-
ken colored lines) depend strongly on the lattice size:
with decreasing linear extent L, they show increasingly
insulating tendencies, i.e., larger absolute values of Im

Y(iwy,) at the lowest w,. However, as demonstrated in
Fig. [ (¢) for the lowest three Matsubara frequencies at
k = (m,0), this bias is very systematic: Already lin-
ear extrapolations in the inverse size L=2 (thin straight
lines) yield reasonable first estimates of the the thermo-
dynamic limit L=2 — 0. Much better fits can be obtained
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FIG. 1. (Color online) Self-energy on the imaginary axis at
U = 0.5, § = 100. (a) finite-size BSS-QMC data (open sym-
bols and broken colored lines), extrapolated BSS-QMC results
in the thermodynamic limit (circles and black bold solid line),
and DI'A data (grey dash-double-dotted line) versus Matsub-
ara frequency w, at momentum k = (m,0); also shown are
momentum-independent single-site DMFT results (thin black
line). (b) finite-size BSS-QMC (symbols) data for the first 3
Matsubara frequencies versus inverse system size plus extrap-
olations in linear order in L™2 (thin lines) and quadratic order
(thick lines). (c) and (d) analogous analysis at k = (7/2,7/2).
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FIG. 2. (Color online) Same as Fig. 1 but at U = 0.5, 5 = 40,
analogous to Fig. [l

in higher orders, e.g., using quadratic fits in L=2 (thick
lines); however, these become increasingly unstable (in
the presence of statistical noise) at higher orders. In or-
der to define a consistent procedure that is also stable at
k = (w/2,7/2), where less system sizes are available (see
below), we use the average of linear and quadratic ex-
trapolation as final result, with error bars that coincide
with the individual extrapolations, as illustrated by the
black circle with errorbars for X(iwg) in Fig. [ (b):

oo _ 00 0o
X% = (Elin + Equad lin quad | *

),AEOO:%]EOO—EOO

N~

The final result of this extrapolation [black circles in
Fig. @ (b)] shows perfect agreement with DT'A (grey
dash-double-dotted line) at almost all Mastubara fre-

quencies. A minor quantitative deviation is only observed
at the smallest Matsubara frequency, at which the abso-
lute value of Im ¥(k,w) is somewhat smaller in DI'A.

Since only lattices with linear dimensions L =
4,8,12,... contain the momentum k = (7/2,7/2) in
the Brillouin zone (for periodic boundary conditions), we
only have three system sizes available for extrapolation
in this case [symbols in Fig. [ (d)]. However, the cur-
vatures of the (here necessarily perfect, but intrinsically
somewhat unstable) quadratic fits agree well with those
obtained at k = (m,0), which supports their reliability.
Again, the DT'A prediction (here: a metallic self-energy
with a visible momentum differentiation) agrees well with
the final BSS-QMC results [black circles in Fig. [ (c)].

At the elevated temperature T' = 1/40, the finite-size
bias affects the raw BSS-QMC results even more drasti-
cally, as seen in Fig. at both k points, the smallest
systems (8 x 8, red downward triangles) have clearly in-
sulating character, while DI'A (dash-double-dotted line)
yields a metallic solution, just like (paramagnetic) DMFT
(thin grey line). However, the 16 x 16 system (squares)
is already large enough to show significant metallic ten-
dencies. Even more importantly, Fig. 2 (b) and Fig.
(d) demonstrate that the dependency of the raw BSS-
QMC data on L~2 is very regular and almost linear again
(even across the FS induced metal-insulator crossover),
so that the extrapolation L=2 — 0 is still reliable, with
even smaller resulting error bars than at 7'=1/100. In-
terestingly, the final BSS-QMC results at k = (7/2,7/2)
[black circles in Fig. 2l (b)] agree with DMFT within error
bars, only at k = (m,0) nonlocal AF correlations induce
a significantly more insulating character.
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