
Jenny: Securing Syscalls for PKU-based Memory Isolation Systems

David Schrammel
Graz University of Technology

Samuel Weiser
Graz University of Technology

Richard Sadek
Graz University of Technology

Stefan Mangard
Graz University of Technology

Abstract
Effective syscall filtering is a key component for withstanding
the numerous exploitation techniques and privilege escala-
tion attacks we face today. For example, modern browsers use
sandboxing techniques with syscall filtering in order to isolate
critical code. Cloud computing heavily uses containers, which
virtualize the syscall interface. Recently, cloud providers are
switching to in-process containers for performance reasons,
calling for better isolation primitives. A new isolation primi-
tive that has the potential to fill this gap is called Protection
Keys for Userspace (PKU). Unfortunately, prior research high-
lights severe deficiencies in how PKU-based systems manage
syscalls, questioning their security and practicability.

In this work, we comprehensively investigate syscall fil-
tering for PKU-based memory isolation systems. First, we
identify new syscall-based attacks that can break a PKU sand-
box. Second, we derive syscall filter rules necessary for pro-
tecting PKU domains and show efficient ways of enforcing
them. Third, we do a comparative study on different syscall
interposition techniques with respect to their suitability for
PKU, which allows us to design a secure syscall interposition
technique that is both fast and flexible.

We design and prototype Jenny– a PKU-based memory
isolation system that provides powerful syscall filtering ca-
pabilities in userspace. Jenny supports various interposition
techniques (e.g., seccomp and ptrace), and allows for domain-
specific syscall filtering in a nested way. Furthermore, it han-
dles asynchronous signals securely. Our evaluation shows a
minor performance impact of 0–5% for nginx.

1 Introduction

Today’s software ecosystems are incredibly complex and
depend on numerous interacting components, all of which
increase the attack surface. An inadvertent mistake in a li-
brary could compromise the entire software stack [13, 50, 51].
From an attacker’s perspective, the syscall interface plays an
essential role in exploitation. Hence, safeguarding syscalls

is a key defense strategy taken by both container environ-
ments [28] as well as process sandboxing engines found in
modern browsers [26, 39]. However, running syscall filtering
code in the kernel poses a security risk, as shown by dozens
of privilege escalation vulnerabilities [43–46, 48, 49], and can
typically only be applied on a process level but not constrain,
e.g., a single library. Since cloud providers are also shifting
from process isolation towards more fine-grained in-process
sandboxing [10], syscall filtering needs to catch up.

Recent work [14, 27, 56, 61] pushes towards more efficient
intra-process sandboxes that are backed by so-called Protec-
tion Keys for Userspace (PKU) [32], suggesting a signifi-
cant performance improvement over traditional process-based
sandboxing. Compared to SFI [57], they allow sandboxing un-
modified binaries. Unfortunately, researchers [11] uncovered
serious deficiencies in how the evaluated PKU-based sand-
boxes ERIM [61] and Hodor [27] safeguard the syscall inter-
face. Also, Donky [56] only blocks memory-related syscalls,
while SealPK [14] does not address syscall security at all.
Until now, it is unclear whether syscall filtering can be solved
both efficiently and securely for PKU sandboxes. Furthermore,
nested PKU domains should be constrained appropriately by
their parent domains, i.e., a domain might want to disable any
dangerous or unneeded syscalls for its sub-domain which runs
untrusted 3rd-party code. E.g., the webserver nginx uses the
compression library zlib, whch had arbitrary code execution
vulnerabilities [40–42] in the past. Thus, nginx, and any of
its modules, might want to constrain such libraries, to limit
their exploitation potential. Independently of syscalls, PKU
sandboxes face other security challenges such as secure signal
handling.

In this work, we comprehensively investigate syscall fil-
tering for PKU-based memory isolation systems. First, we
identify novel syscall-based attacks that can bypass PKU iso-
lation. We design appropriate syscall filters for protecting
PKU domains against these syscall-based attacks.

Next, we provide a systematic study comparing different
syscall interposition techniques with respect to their suitability
for PKU on x86-64. We found that none of them match the

PKU needs, being either insecure or slow. We design a new
syscall interposition technique that is both secure and fast.

We present Jenny, the first comprehensive PKU-based in-
process isolation system offering dynamic syscall filtering
in userspace. Filters can act on the same thread and also be
nested across PKU domains. Jenny comes with filter rules for
protecting PKU domains and also supports advanced filters
such as file system protection. Jenny further supports different
syscall interposition techniques. Moreover, Jenny is the first
PKU system that supports secure signal handlers. Finally, we
introduce novel multi-domain call gates needed to safeguard
the PKU policy register on x86-64. Our evaluation shows a
minor performance impact of 0–5% for nginx.
Contribution. We make the following contributions:

• We identify previously unknown syscall attacks on PKU-
based isolation systems.

• We derive syscall filter rules necessary for protecting
PKU-based isolation domains.

• We perform a comparative study of various syscall inter-
position techniques for their applicability with PKU and
derive a new technique that is tailored for PKU.

• We design Jenny– the first comprehensive PKU-based
isolation system that supports secure (same-thread)
userspace syscall filtering, secure (async.) signal handling,
and secure multi-domain PKU call gates for x86-64.

• We prototype and evaluate Jenny under different interpo-
sition techniques and filter rules, and open-source it 1.

Outline. Section 2 gives some background. Section 3 raises
challenges, analyzes the syscall interface and derives filter
rules. Section 4 handles syscall interpositioning. Section 5
presents our design, which Section 6 evaluates. Section 7 and
8 discuss limitations and related work, and we conclude in
Section 9.

2 Background

Sandboxing is used to constrain potentially malicious or vul-
nerable code from affecting the rest of a system. While dif-
ferent forms of sandboxing exist (e.g., VMs, containers, pro-
cesses), we focus on PKU-based in-process sandboxing due to
its presumed performance gains. Similar to other in-process
isolation techniques, PKU-based sandboxes must filter the
syscall interface, which can be used to escape their sandbox.
The remainder of this section presents syscall filtering tech-
niques and and discusses PKU-based sandboxes.

2.1 Syscall Filtering
Syscall filtering can be employed to constrain a process (i.e.,
sandbox) such that access to certain syscalls and kernel re-
sources is blocked. Thus, it can also reduce the available
attack surface by limiting exposure to potential kernel bugs.

1https://github.com/IAIK/Jenny

In Linux, a number of different mechanisms can be used to
filter syscalls, which we explain in the following.
ptrace is used to inspect/manipulate a process. It allows inter-
cepting the entry and exit of each syscall of a process (tracee)
in a separate tracer process. While designed as a debug fea-
ture, it can be used for syscall filtering and sandboxing.
Seccomp-BPF. Seccomp [33] is a kernel mechanism allow-
ing an application to constrain the usable syscalls to a min-
imum. seccomp-bpf [16] adds support for Berkeley Packet
Filter rules. It can restrict (deny/allow) syscalls based on their
syscall number as well as their arguments. Installed filters
cannot be changed or removed, but it is possible to install ad-
ditional filters to further constrain syscalls. Today, seccomp-
bpf is heavily used for process-based sandboxing (e.g., in
Firefox and Chrome) [9, 38]. In case a filter rule is triggered,
seccomp-bpf can perform various actions, of which we list
the most relevant in terms of syscall interception:
SECCOMP_RET_TRACE causes the kernel to notify a ptrace-

based tracer process before executing the syscall. Thus, we de-
note this mechanism as seccomp-ptrace. Compared to ptrace,
this is faster because not all syscalls have to notify the tracer
process and the tracer-to-kernel communication overhead is
smaller due to an improved interface design. The tracer can
skip or resume the syscall and perform any ptrace actions.
SECCOMP_RET_TRAP sends a signal to the thread that trig-

gered the syscall. Instead of executing the syscall, the regis-
tered signal handler is invoked. We dub this “seccomp-trap”.
SECCOMP_RET_USER_NOTIF, added in Linux 5.0, allows

to defer decisions to a (separate) userspace program. Like
ptrace, the tracer program can inspect memory referenced in
syscall arguments using the /proc/PID/mem interface. In the
following, we refer to this method as “seccomp-user”.
Syscall User Dispatch is a new syscall emulation mechanism
that is added in latest Linux releases [60]. It is meant to im-
prove the emulation performance of Windows applications
on Linux systems. Syscalls on a certain made from a certain
memory region are executed natively. Syscalls made from
outside this region are dispatched back to a userspace signal
handler, which can emulate or filter them. This is similar to
seccomp-trap, but faster and more flexible.

2.2 Protection Keys for Userspace (PKU)
Protection keys for userspace (PKU) is a hardware mechanism
to quickly change the effective permissions of memory pages
from userspace. Page table entries (PTEs), which hold the
read/write/execute permissions of a memory page, are tagged
with so-called protection keys. A per-thread policy register
holds currently active protection keys and their associated
access permissions. On each memory access, the hardware
matches the policy register against the protection key stored
in the PTE to further constrain the access. Intel implemented
this feature on their server processors since Skylake and calls
it “Memory Protection Keys” (MPK). They use four bits

https://github.com/IAIK/Jenny

to support 16 different protection keys. Its policy register
named PKRU is 32-bit wide and holds write- and read-disable
bits for each of the 16 protection keys. The PKRU register
can be written directly in userspace via the WRPKRU (and
XRSTOR) instructions, which allows quick permission changes
to a range of memory pages without slow kernel interaction.
For this reason, MPK has been used in the past for building
efficient in-process isolation frameworks [27, 31, 56, 61].

However, MPK was not designed as a standalone security
mechanism. Since the policy register can be written from
userspace, sandboxed code may also manipulate it (e.g., via
a code-reuse attack) and escape the sandbox. Hence, MPK
must be combined with Write-XOR-Execute (W⊕X) and
binary scanning to remove or neutralize unwanted WRPKRU and
XRSTOR instructions as well as secure WRPKRU call gates [61].
PKU Sandboxes. Notable examples of PKU sandboxes
based on Intel MPK are ERIM [61], Hodor [27], and
Donky [56]. In this work, we focus on Donky, since Jenny
builds upon its software framework. Donky [56] is a PKU
system for RISC-V and x86. It proposes ISA modifications to
forward protection key violations to an in-process monitor. By
flipping a bit in the policy register when entering and exiting
the monitor, Donky ensures that only the monitor can change
the register. Thus, no binary scanning or W⊕X is needed.
The same mechanism is used to trap syscalls to the userspace
monitor. Donky software can also be used with Intel MPK
but only in an insecure way since it does not protect the PKRU.

3 The Need for PKU-aware Syscall Filtering

Existing PKU-based sandboxes [27, 56, 61] do not safeguard
the syscall properly. They lack on various aspects such as com-
prehensive filter rules to enforce sandboxing on the syscall
interface, suitable syscall interposition techniques, expressive
filtering logic for advanced use cases, and support for signals.
After pinpointing some selected deficiencies, we formulate
four challenges addressed in this work.
Selected Deficiencies. ERIM [61] uses highly specialized fil-
ters for enforcing a W⊕X policy but misses other attacks [11]
and do not provide filters for protecting domain-owned mem-
ory. Connor et al. [11] augmented ERIM to filter dangerous
syscalls, having an unacceptable overhead of 60 % throughput
reduction for nginx due to the slow ptrace method.

Hodor [27] places various security enforcement and fil-
tering logic inside the kernel. The security risk of doing so
severely constrains application-defined syscall filters [43].

Donky [56] delegates syscalls back to a userspace moni-
tor but requires hardware modifications. On native x86_64,
Donky is not secure and can only naively deny syscalls but
not filter them in a customizable way. Donky’s basic syscall
deny filters miss advanced attacks explained in the following.

Connor et al. [11] showed various syscall attacks on PKU
sandboxes, four of which are highlighted in the following.

(i) Some syscalls allow access to arbitrary memory bypass-
ing PKRU permissions (e.g., process_vm_writev, ptrace).
Likewise, the procfs pseudo-file at /proc/self/mem allows
unrestricted memory access via file operations. (ii) Read-only
memory can change if it is mutably backed, e.g., by a writable
file. Thus, an attacker could generate insecure WRPKRU instruc-
tions by writing to a file. (iii) Untrusted domains could install
seccomp filters to emulate PKU syscalls like pkey_mprotect
and thus, disable its protection. (iv) Untrusted domains could
register signal handlers and use the sigreturn syscall to ele-
vate the PKRU to arbitrary privileges. Further, signal handlers
cannot be secured in a multi-threaded application.

To sum up, existing PKU sandboxes do not sufficiently
safeguard the syscall interface. Furthermore, none of them
supports signal handling. Several other deficiencies hinder
their adoption as well such as missing multi-threading sup-
port [61] or multiple-domain support [27, 61].
Open Challenges. This leaves several questions unanswered,
and we identify the following four open challenges:
C1 How to obtain PKU-secure syscall filter rules?

PKU sandboxes need to protect their sandboxing logic
by safeguarding syscalls appropriately, which is non-trivial.
While existing work presented some syscall-based PKU ex-
ploits, it is unclear if there exist other dangerous syscalls.

To better understand the syscall attack surface, we ana-
lyze the syscall interface of Linux and identify new PKU
attacks. Then, we define PKU-protected resources and derive
comprehensive and efficient filter rules for them. These filter
rules protect not only the sandboxing logic but also different
per-domain resources (Section 3.2–3.3).
C2 What are limitations of existing syscall interposition
techniques w.r.t. PKU sandboxes, and how to overcome them?

Any syscall filtering mechanism needs a way to interpose
on syscalls made by the code and, in case of in-process filter-
ing, delegate them to an in-process monitor. A fundamental
limitation of many interposition techniques, such as seccomp-
bpf, is the inability to distinguish PKU domains, thus creating
a recursion problem: a syscall that is intercepted and handed
over to the monitor must not be intercepted again while in-
side the monitor. Existing PKU-based sandboxes proposed
hardware extensions [56] or suggested the use of the slow
ptrace method [61] or custom kernel changes [27, 61] for en-
forcing syscall filter rules in the kernel. Obviously, the latter
is counterproductive for PKU being designed as a userspace
protection mechanism.

We analyze different syscall interposition techniques with
respect to PKU-based sandboxes. Based on their deficiencies,
we design an interposition technique that can securely and
effectively delegate filter decisions back to the user program,
denoted as “pku-user-delegate” (Section 4).
C3 Can we realize effective and comprehensive syscall fil-
tering for PKU-based sandboxes?

Recent work [11] suggests that proper syscall filters
severely impact the performance because of inefficient syscall

interception mechanisms and filtering every open syscall. For
example, the most widely used technique seccomp-bpf cannot
inspect string arguments (e.g., file system paths).

Apart from performance considerations (C2), a decent
syscall filtering mechanism needs to offer high flexibility
in how developers can define filter rules, e.g., which data they
can access and modify. Filters need to be aware of different
PKU domains. Moreover, nesting of filter rules becomes an es-
sential requirement when PKU domains can spawn their own
child domains. Furthermore, syscall filtering should support
multithreading, i.e., have the possibility to do thread-specific
filtering and act on behalf of the filtered thread. E.g., For
ptrace to efficiently handle concurrent syscalls, one has to
spawn a new tracer thread for each tracee thread. However
support for nested filters (i.e., filter code can execute syscalls,
which in turn are filtered by their respective parents), is non-
trivial as each normal thread would additionally require new
tracer threads for each (possible) nesting level. Furthermore,
filtering thread-specific syscalls is hard, since the filter code
does not run in the original thread but in the tracer.

C4 How can we securely combine PKU-aware sandboxing
and syscall filtering with signal handling?

Signals present a number of challenges to PKU sandboxing.
Signal handlers cannot run on a PKU-protected stack, which
makes them vulnerable to privilege escalation attacks [11].
Moreover, it is unclear how to filter signal-related syscalls and
virtualize signals between multiple PKU domains, given that
signals are a process- and thread-specific resource. Finally,
various race conditions could occur from signal delivery to
program resumption (e.g., due to asynchronous signals, multi-
threading, and syscall impersonation).

Based on C1 and C2, we design the first PKU-based sand-
box supporting powerful syscall filtering, addressing the
above challenges. To fulfill C3, it allows domains to filter
their own child-domains in a stateful, domain-aware, nested,
and thread-specific manner (Section 5). Furthermore, to ad-
dress C4, we add comprehensive signal support to our PKU
sandbox and show how to secure it.

3.1 Threat model

Our threat model is in line with other PKU sandboxes [27,61].
An unprivileged user process (e.g., a web server) wants to run
untrusted code (e.g., a plugin) inside a sandbox and shield
against it. We make no assumptions on the sandboxed code
– it might contain exploitable vulnerabilities or be outright
malicious, executing arbitrary code provided by an attacker.
Our trusted computing base consists of trusted components in
the sandboxing code (e.g., a PKU monitor, startup code, and
the linker), the kernel, a tiny kernel module and the hardware.
We assume that these parts are correctly implemented and free
of exploitable vulnerabilities. We consider hardware flaws,
side-channels, and fault attacks to be out of scope. While

outside our threat model, we briefly discuss sandboxing of
privileged processes in Appendix B.

The Donky paper [56] uses a different threat model, which
requires hardware changes to protect PKU from misuse.
While we use the Donky framework as a base, we extend
it to be secure even on unmodified x86-64 CPUs. For this pur-
pose, we added ERIMs binary scanning [61] and ensured that
no unsafe WRPKRU occurrences exist in the trusted library or
in the sandboxed code. To clearly differentiate between these
threat models, we mark any filters and mechanisms relying
on the Donky-proposed hardware changes with an asterisk
“*”.

3.2 New Syscall-based PKU Attacks
Previous work [11] has shown, not all syscalls honor the PKRU
register by checking it before accessing userspace memory.

By carefully inspecting the syscall documentation, we
identified several additional previously unknown exploitable
syscalls across different resource categories (i.e., memory,
process, files). While automating such an analysis on the
syscall interface would be desirable to target completeness, it
is outside the scope of this paper.
Memory-related syscalls. The madvise syscall is typically
used to improve performance by giving the kernel additional
memory information. We found that it can also be misused
to clear memory pages, irrespective of their associated pro-
tection keys. Thus, malicious domains could erase otherwise
inaccessible memory pages from other domains. We devel-
oped exploits using the flags MADV_FREE, MADV_DONTNEED,
and MADV_WIPEONFORK, which all bypass PKU permissions.
brk,sbrk are typically used for managing heap memory,

but can be exploited, as follows. PKU systems typically al-
low domains to allocate and protect private memory. If such
memory lies in the heap area, malicious domains can use
brk,sbrk to de-allocate and re-allocate that memory. This
does not only wipe memory content but also removes any
associated protection key, bypassing the current PKRU value.

With userfaultfd, one can handle page-faults in
userspace. Surprisingly, we found that userfaultfd allows
to write arbitrary values to any PKU-protected but not-in-
memory page. When using mmap to request zero-filled mem-
ory, the kernel typically maps these pages on-demand when
a page fault occurs. However, an attacker registering a user-
faultfd handler can replace content of memory pages with
arbitrary data as soon as the victim domain accesses it the
first time. When combined with madvise, one could even
overwrite previously non-empty pages.
Process-related syscalls. (v)fork,clone create a process
copy that can (optionally) run in the same address space (i.e.,
threads). Since not all resources are preserved, this can lead to
synchronization issues and undefined behavior. Most notably,
other threads, locks, timers, signals, and some memory areas
(e.g., madvise(MADV_DONTFORK)) are not preserved.

exec-like syscalls are incompatible with in-process sand-
boxing since they replace the currently running program. In-
process monitors are not preserved by default. However, some
kernel-based restrictions remain active (e.g., seccomp filters).
arch_prctl and set_thread_area can be used to re-map

the thread-local storage. Donky [56] relies on thread-local
storage for trusted metadata. It further assumes that an isolated
domain cannot alter the location of the thread-local storage
(i.e., the fs/gs registers). Using these syscalls, an attacker can
escape its sandbox. Hodor, on the other hand is secure against
this attack since it does not rely on any registers. Instead they
describe a gettid-like call to look up thread-specific data.

Other syscalls can affect the entire process and the behavior
of future syscalls. E.g., personality(READ_IMPLIES_EXEC)
makes all future readable mapped memory also executable.
Thus, arbitrary WRPKRU instructions can be injected and exe-
cuted, which bypass the PKU sandbox.
File-related syscalls operating on file paths and file descrip-
tors can directly compromise PKU sandboxes (cf. Section 3).

We found that core dumps present a serious information
leakage vulnerability for PKU sandboxes. They are usually
created during a program crash and contain the recorded state
of the whole program’s memory and register state before the
crash. An untrusted domain could trigger the creation of a core
dump via the kill syscall, or by accessing invalid memory.
When the program is later restarted, the untrusted domain can
open the core dump file and read any previously protected
memory of other domains. An attacker could combine this
vulnerability with fork: By crashing the child process, they
can immediately read the core dump in the parent program.

3.3 Securing PKU with Syscall Filters
A secure PKU system must protect monitor and domain re-
sources from unauthorized access. In the following, we out-
line these resources, and define filter rules to protect them.

We define monitor resources as anything that affects its
security. This covers the monitor code and data to manage do-
mains and threads, including parts of the thread-local storage.
the protection keys used to protect the monitor code and data,
as well as the policy register (i.e., PKRU), and process-wide
resources (e.g., signal handlers). Similarly, domain resources
consist of any domain-owned memory, their protection keys,
any created child-domains, and registered signal handlers and
syscall filters. A PKU sandbox must protect these resources
by fulfilling the following requirements:

Monitor code and data must be protected from unautho-
rized access on three layers: First, in memory (e.g., by pro-
tecting it with protection keys); Second, its memory mapping
(i.e., rwx permissions and protection keys); and third, on disk,
if the mapping is file-backed (cf. [11]). Notably, this also
includes any aliasing (e.g., shared memory or symlinks).

In addition, the PKRU policy register must be protected with
secure call gates, either via hardware modifications as pro-

posed in [56], or by ensuring no unsafe WRPKRU (and XRSTOR)
instructions exist in executable memory [27, 61]. The latter
must be protected on all three layers again: First, in memory
by scanning it for unsafe instructions before marking it exe-
cutable. Second, the memory mapping must enforce W⊕X,
also for shared memory. And third, if the memory is backed
by a file, W⊕X must be enforced there as well.
Syscall Filter Rules for PKU Sandboxes. We design two
sets of syscall filter rules to enforce the above requirements: i)
base-mpk for current x86-64 CPUs and ii) base-donky* which
is only secure with Donky’s proposed hardware changes [56].
base-mpk. Donky already protects domain code and data
on the first two layers. We additionally define syscall fil-
ters for mmap(2), (pkey_)mprotect, mremap, munmap,
madvise and forward them to the monitor. To protect the third
layer, we intercept mmap, mprotect and disallow shared exe-
cutable mappings, since the in-process monitor cannot prevent
other processes from modifying it (cf. [11]). Additionally, we
ensure that executable memory is not backed by a writable
file. For this we have three options. 1) disallow the mapping if
the user can modify the file (either the content or its filesystem
permissions). 2) remove the write-permissions from the file
and optionally copy the file beforehand to avoid unnecessary
changes to the system. Note, these two options requires trac-
ing syscalls that can change file permissions (e.g., chmod). or
3) read the file into memory using mmap(MAP_ANON). For
Jenny, we use the first option. To solve issues with core
dumps and the procfs (cf. Section 3.2), we make use of an
existing kernel feature, namely prctl(PR_SET_DUMPABLE,
SUID_DUMP_DISABLE), which disables core dumps and ac-
cess to the procfs. Hence, we do not need to filter any file or
path-based syscalls suggested by [11], allowing more efficient
filtering.

We protect the policy register by scanning the memory
for unsafe instructions when executable mappings are cre-
ated or changed (mmap, mremap, mprotect). For this, we
use ERIM’s binary scanner [61] and check for common pit-
falls [11]. We enforce Write-XOR-Execute both on the mem-
ory mapping as well as any aliases (see above). Similar to
memory-related syscalls, we safeguard memory protection
keys by also intercepting pkey_alloc and pkey_free.

Finally, we protect process-wide resources by filter-
ing fork, clone, signal, sigaltstack, sigreturn,
sigaction and their relatives. We also deny syscalls that
can modify the behvaiour of the entire process, and thus com-
promise the sandbox 2.
base-donky* shares the same filters as base-mpk, except that
it does not generally enforce W⊕X. Instead we only protect
the monitor code (and its file-backing) from modifications.

2remap_file_pages, process_vm_readv, process_vm_writev,
ptrace, seccomp, shmat, shmdt, execve(at), personality,
userfaultfd, add_key, request_key, keyctl, (arch_)prctl,
set_thread_area, set_tid_address, umask, setpgid, setsid,
modify_ldt, _sysctl, unshare, rseq

Table 1: Comparison of Syscall Filtering Mechanisms

Filter can L
in

ux
se

cc
om

p-
bp

f

L
in

ux
se

cc
om

p-
us

er

L
in

ux
se

cc
om

p-
tr

ap

L
in

ux
pt

ra
ce

(-
se

cc
om

p)

L
in

ux
sy

sc
.u

se
rd

is
pa

tc
h

R
IS

C
-V

us
er

in
te

rr
up

ts
[5

6]

O
ur

lib
c-

in
di

re
ct

*

O
ur

pk
u-

us
er

-d
el

eg
at

e

Run in kernel (S), user (U) S S/U S/U U U U U U
PKRU-aware delegation n.a. — — Ë — Ë Ë Ë
Intercept pre-syscall Ë Ë Ë Ë Ë Ë Ë Ë
Allow syscall Ë — — Ë Ë Ë Ë Ë

D
el

eg
at

e

Intercept post-syscall — n.a. n.a. Ë Ë Ë Ë Ë
Read syscall arguments Ë Ë Ë Ë Ë Ë Ë Ë
Write syscall arguments — n.a. n.a. Ë Ë Ë Ë Ë
Read/Write any memory — Ë Ë Ë Ë Ë Ë Ë
Read/Write PKRU register — — Ë Ë Ë Ë Ë Ë
Read/Write other registers — — Ë Ë Ë Ë Ë Ë
Manipulate syscall return value Ë Ë Ë Ë Ë Ë Ë Ë

E
m

ul
at

e

Perform arbitrary syscalls — — — Ë Ë Ë Ë Ë
Impersonate (threading) syscalls — — Ë Ë Ë Ë Ë Ë
Kernel context switches on deny 1 2 2 4+ 2 0 0 1

Apart from this, domains can still map writeable and exe-
cutable memory. Note, however, that this filterset requires the
hardware modifications proposed in Donky [56] to protect the
PKRU register, since we do not employ binary scanning here.
Extended Domain-aware Filter Rules. Domains may also
use other resources such as sensitive files (e.g., databases or
private keys), which should be shielded from other domains.
To protect them, we safeguard file descriptors and file-system
accesses for each domain, as explained in the following.

Based on base-mpk, we define a so-called localstorage
filter set, where we additionally filter any path-based and
file-descriptor-based syscall. We create a so-called local
storage directory for each domain and constrain path-based
syscalls to only access a domain’s own local storage.
We transparently modify all path-arguments in syscalls
to point to this directory. E.g., /tmp/file is translated
to /tmp/localstorage[PID]/[domain id]/tmp/file.
When a domain invokes a syscall that creates a file-descriptor,
we assign that domain as the owner. We filter syscalls such
that domains can only use file-descriptors that they have
access to. We used strace’s [58] annotation of syscalls
to automatically find all file-related syscalls. We discuss
possible compatibility issues in Section 7.

4 Syscall Filtering Mechanisms

Traditionally, syscall filtering is used for debugging, emula-
tion, malware inspection, or process isolation. Hence, existing
syscall filtering mechanisms are either not usable as a security
mechanism or not designed for in-process isolation via PKU.

In this section, we first outline requirements for comprehen-
sive PKU-aware syscall filtering. We analyze various syscall
filtering mechanisms w.r.t. these requirements and detail their

limitations. Finally, we design pku-user-delegate, a better
mechanism suitable for PKU sandboxing on x86-64 systems.
Our minimal kernel module is both, fast and secure, by shift-
ing all filter decisions to the userspace monitor, which avoids
unnecessary code complexity (i.e., potential for vulnerabili-
ties) in the kernel.
Requirements Analysis. A comprehensive syscall filtering
mechanism for PKU sandboxes shall meet four requirements,
namely delegation, emulation, impersonation, and nesting.

Delegation allows syscalls to be filtered in userspace, e.g.,
by a in-process monitor, instead of the kernel. Thus, the user-
provided filter code is never executed in the kernel, reducing
kernel complexity and attack surface [43]. A filter shall be
able to resume (i.e., allow) the delegated syscall. Furthermore,
delegation needs to be PKRU-aware such that trusted domains
can issue syscalls without being (re)intercepted.

Emulation denotes the expressiveness of the filtering logic.
E.g., seccomp-bpf filters are highly constrained and cannot
perform deep argument inspection of strings provided to path-
based syscalls. Ideally, filters can emulate arbitrary behavior,
for which they need read and write access to the CPU registers
and to application memory. This also includes the possibility
to perform arbitrary syscalls in the filter context.

Impersonation enables filter code to perform syscalls on
behalf of the filtered domain, which is needed for two reasons:
First, we anticipate to fully delegate syscalls into userspace. If
filters want to allow a particular syscall, they need to reissue
it themselves. Since the kernel adheres to PKU permissions
on the syscall arguments, the PKRU register needs to be imper-
sonated to hold the filtered domain’s protection keys. Second,
a filter might want to execute additional syscalls other than
the intercepted one in place of the filtered domain.

Moreover, impersonation should happen on the same thread
as the filtered syscall to avoid issues with thread-specific
syscalls (e.g., scheduling, locking, thread-local storage).

Nesting allows hierarchical syscall filtering, where each
domain can filter their child domains in a nested way. E.g., a
third-party module that is syscall-filtered by the application
can further constrain the syscall interface for its own libraries.
This helps to enforce the principle of least privilege. Nesting
combines all previous requirements, from delegation over
emulation to impersonation.

Performance of syscall filtering strongly depends on the
number of context switches to the kernel. Since not all investi-
gated filtering mechanisms can allow a syscall, we investigate
the context switches for denying a syscall.

4.1 Comparison
Table 1 shows our comparative study of the syscall filtering
mechanisms we analyzed.
Performance. seccomp-bpf filters run entirely in the kernel.
seccomp-user, seccomp-trap and Syscall User Dispatch for-
ward the decision making to userspace, for which a second

kernel context switch is required when exiting the filter. ptrace
requires additional syscalls for reading and writing registers.
RISC-V User-Interrupts [56] and libc-indirect* require no
kernel invocation but rely on custom hardware extensions.
Our pku-user-delegate comes with a single kernel invocation.
seccomp-bpf filters run entirely in the kernel. Thus, syscall
emulation is severely constrained. Filters only inspect register
arguments and the syscall number but cannot access arbitrary
memory or dereference pointers needed for deep argument
inspection [17]. Newer syscalls (e.g., clone3, openat2) use
structs for extensibility. This makes it impossible to filter these
syscalls comprehensively. So-called extended BPF (eBPF)
could solve this issue, providing filters with a state that is
shared with the userspace and allowing dereferencing point-
ers. However, it is unlikely that eBPF will be soon used for
seccomp [12]. Moreover, they cannot access the PKRU register
needed for PKU awareness. Finally, filters cannot be relaxed
but only constrained further by chaining additional filters.
seccomp-user delegates syscalls to a separate userspace
thread/process with no option to securely allow the syscall [6].
Thus, the filter must emulate all intercepted syscalls manu-
ally on a different thread, which is problematic. For example,
thread-specific syscalls cannot be easily emulated from an-
other thread. Moreover, filters cannot read or change the CPU
register state of the intercepted syscall. The inability to access
the PKRU register hinders distinguishing PKU domains.
seccomp-trap delegates syscalls to userspace via signals.
However, signal handlers need to be secured against privi-
lege elevation attacks [11] by using our protection of signal
stacks (cf. Section 5.6). seccomp-trap cannot allow or issue
intercepted syscalls but needs to emulate them since the dele-
gation logic (implemented in seccomp-bpf) is PKU-unaware.
ptrace runs before and after a syscall and is by far the slowest
technique. However, unlike seccomp variants, it supports all
features for PKU-based syscall filtering. In particular, it can
divert the syscall directly to our monitor. By combining ptrace
with seccomp [11, 27, 61], one can increase performance and
only interpose those syscalls for which seccomp filter rules
do not suffice (e.g., deep argument inspection or emulation).
Syscall User Dispatch lets syscalls within a certain dis-
patcher region unfiltered, which is deemed insecure: An un-
trusted domain could simply jump to a syscall instruction
within this region to bypass syscall filtering [60]. We cannot
use PKU to protect the dispatcher region from misuse, since
PKU does not limit code fetches. However, Syscall User Dis-
patch alternatively allows to define a userspace variable (e.g.,
a monitor-mode flag) that decides whether syscalls are filtered
or not. The monitor flips this flag when entering or exiting
and protects it by means of a read-only protection key.

Unfortunately, Syscall User Dispatch is incompatible with
handling signals, since the proposed monitor flag cannot be
atomically flipped upon signal return.3 Independently, Syscall

3The relevant rt_sigreturn syscall is issued inside the monitor but re-
sumes outside of it. We can neither flip the flag before or after rt_sigreturn.

User Dispatch itself makes use of (unsafe) signals to dispatch
syscalls, for which it requires additional safeguards, as dis-
cussed for seccomp-trap.
RISC-V User-Interrupts and libc-indirect*. The modified
RISC-V hardware of Donky [56] allow to interpose syscalls
without kernel interaction. To approximate its performance
on x86-64, we implement a method named “libc-indirect*”.
We modify the libc such that all syscall invocations are
delegated to the monitor unless we are already in the monitor.
For existing x86-64 CPUs, this method is not secure on its
own, since a domain can also execute uninstrumented syscall
instructions, thus bypassing our libc delegation.

4.2 PKU-suitable Syscall Interposition

Given our analysis, only a few mechanisms support compre-
hensive PKU sandboxing, namely seccomp-ptrace and Donky
RISC-V user-interrupts [56]. Unfortunately, seccomp-ptrace
is too slow in practice, Syscall User Dispatch uses insecure
signals, and user-interrupts are not supported by x86-64.
pku-user-delegate is a simple yet powerful syscall interposi-
tion technique we devise to overcome these limitations and
support native x86-64. In its core, we delegate syscalls back
to userspace similar to “Syscall User Dispatch”. However, by
avoiding signals we only require a single kernel invocation.

We implement our technique in a loadable kernel module
(LKM) that only intercepts syscalls registered by the PKU
monitor. We set a bit in the thread_info struct to selectively
intercept protected threads, while ignoring other threads and
processes. It furthermore checks if the thread is currently in
the monitor by reading the PKRU register. Monitor syscalls are
directly allowed, while others are delegated to our userspace
by rewriting the program counter to point to the PKU mon-
itor’s syscall handler and storing the return address in the
RCX register. Thus, pku-user-delegate closely mimicks the
syscall instruction. Afterward, the monitor continues in the
previous domain without invoking another switch to the ker-
nel. In total, our module has 319 LoC.

Prior work also relied on kernel code, however, for a differ-
ent purpose. ERIM [61] used a kernel module for enforcing
W⊕X. Hodor [27] modified the kernel to enforce essential
parts of their protection logic. Donky [56] used a kernel mod-
ule for denying memory-related syscalls but not delegating
them to userspace.

In contrast, pku-user-delegate delegates syscalls back to
userspace for making all decisions in the monitor. Shifting
complex filtering logic to the userspace has two main advan-
tages: First, it reduces the kernel’s attack surface by mini-
mizing (interpreted) code in the kernel. E.g., BPF has had
dozens of vulnerabilities that lead to kernel privilege escala-
tion [43–46, 48, 49]. Second, the filter code is not constrained
by BPF’s limited instruction set and they can access (read-
only) domain-metadata, which allows domain-aware filtering.

Third, the filter rules can be extended without requiring kernel
changes. E.g., new struct-based syscalls can be easily filtered.

5 Jenny: Secure and Efficient Syscall Filtering
for PKU Systems

In this section, we design Jenny– the first comprehensive
PKU-based isolation system that supports secure and effi-
cient syscall filtering, signal handling, and multi-domain PKU
call gates. Jenny extends the open-source PKU framework
Donky [56] with the necessary logic for registering and invok-
ing syscall filters and signal handlers. Furthermore, our filters
are not only PKU-domain-aware but also allow hierarchical
syscall filtering across domains. That is, parent domains can
hook arbitrary syscalls of their child domains with arbitrary
nesting levels. Moreover, syscall filters can “impersonate”
their filtered domains, that is, issue syscalls on their behalf.
Jenny offers a generic programming interface for user-defined
syscall filters, supporting different filtering mechanisms (cf.
Section 2.1), of which we implement suitable ones.

To work with native x86-64 CPUs, we incorporate W⊕X,
binary scanning, and secure call gates [27, 61] that can deal
with multiple PKU domains. Finally, we give a security argu-
mentation and design PKU-secure signal handling.

5.1 Design
To protect the PKU system, the base filters (base-mpk or base-
donky*) always run in the monitor. Additionally, domains
can register their own filters for their child-domains. Each
filter can define code to be run before (“enter-filter”) and after
(“exit-filter”) a syscall. As shown in Figure 2 filters can be
nested, allowing parent domains to filter syscalls of their chil-
dren. The filters can contain arbitrary code and make syscalls
themselves, which might be filtered by their respective par-
ent domains. A simple example is given in Appendix C. We
also provide facilities for so-called “impersonation” such that
the filters can issue syscalls on behalf of the filtered child
domain. Before doing the actual impersonated syscall inside
the monitor, we switch to the PKRU value of the child.

Figure 1 shows syscall filtering for three domains: the mon-
itor (green), the “parent” domain (blue), and the “child” do-
main. The child domain issues a syscall instruction (1), which
is then trapped to the monitor. The monitor saves the user-
stack and checks for installed syscall filters, beginning with
the currently active domain over the parent tomain until we
reach the monitor domain. A filter might be set to allow or
deny or point to an filter function for emulating the syscall. If
a filter function exists, we switch to the filter domain (2). The
enter filter can inspect and manipulate the syscall arguments
before re-issuing (impersonating) the syscall (3). From there,
the same procedure repeats, but now for the parent-domain
instead of the child. When a parent-domain has no parent
itself, the monitor runs its own filters to protect all domains.

Monitor
syscall_intercept

ALLOW

DENY

EMULATE
curr_domain

Filter?
Y

N

Parent
exists?

curr_domain =
Parent

Syscall as
Child Domain

Return from Monitor

Copy Arguments &
Switch to filter domain
(= parent)

Return from Monitor

Parent:
handle_syscall(child)

Enter Filter

Syscall instruction

Return to Monitor

Switch back to child

Child Domain

syscall instruction

...

ALLOW

DENYMonitor Filter

OS

Copy Arguments

Exit Filter

Enter Filter

Syscall as
Child Domain

Exit Filter

Restore Arguments

1

2

5

3

4

6

Figure 1: Overview of our syscall interception design
with nested filtering. The child-domain is marked in or-
ange, the filter domain in blue, and the monitor in green.

Monitor Root Domain Parent Domain Child Domain

syscall

Enter

Enter

Enter
Do syscall
Exit

Exit

Exit

Figure 2: With nested filtering, domains can recursively
filter their children with syscall enter and exit filters.

Monitor-issued syscalls are not intercepted again. After a
syscall (4), the exit-filter can inspect and manipulate the re-
turn value before returning (5). Finally, the monitor resumes
the original child domain after the syscall instruction (6).
Impersonation. The parent-registered filter runs with (PKRU)
permissions of this parent domain. The filter can, using its
higher privileges, issue syscalls on its own, e.g., to communi-
cate with a device the child domain does not have access to.
However, it can also impersonate the child, i.e., issue syscalls
on behalf of its child-domain to use the lower-privilege child
permissions in the kernel during the syscall. Before dispatch-
ing the syscall to the operating system, the monitor sets the
PKRU to the desired value. Of course, any (impersonated)
syscall within the filter is also subject to interposition.

5.2 Same-Thread Nested Filtering

Achieving nested syscall filtering is not trivial since a syscall
filter needs to be interruptible by another parent syscall filter,
demanding reentrant-safety for the monitor. The key ingredi-
ent for successful nesting is same-thread filtering, meaning
that the filter code runs on the same thread as the filtered

syscall. This limits the applicability of certain interposition
techniques, as we show in the following.
seccomp-user delivers intercepted syscalls to a separate
tracer thread. Since it does not provide secure means to con-
tinue or alter the original syscall, one has to run any filter code
in the tracer. However, the tracer itself cannot be easily traced
again, thus, prohibiting our nested-filtering approach.
seccomp-ptrace. We use seccomp-bpf in order to only trace
the syscalls of interest. Furthermore, we do not execute any
filter code inside the tracer but delegate the syscall back to the
tracee thread similar to pku-user-delegate: The tracer emulates
the syscall instruction by replacing the instruction pointer
to trap into the monitor and storing the return address in the
RCX register. If the tracee is already in the monitor domain (as
indicated by the PKRU register), the syscall is allowed.
pku-user-delegate follows the same delegation approach but
is simpler and faster by avoiding a separate tracer thread.

5.3 Secure Filter Design

Designing secure syscall filters is challenging [20] due to
untrusted syscall arguments, which requires proper locking.
Untrusted Arguments. A well-known problem of syscall
filtering is that syscall arguments might change during the
filtering, creating TOCTOU issues. For example, assume that
the open("/tmp/benign") syscall is filtered to check its
path argument against an allow list. Two colluding threads
could circumvent this check, as follows. While the first thread
is issuing a benign open call, the second thread is manipulat-
ing the path argument in memory to point to a different file –
right after the check has happened.

To solve this problem, our monitor copies sensitive pointer
arguments used for filter decisions such as buffers or strings to
a per-thread “sysargs” memory before invoking an enter-filter.
The same applies to return buffers filled by the kernel, which
are copied back from the sysargs memory inside the exit-filter.
We protect this memory using a separate per-thread sysargs
protection key to prevent attacks from colluding threads. We
defer a discussion on potential optimizations to Section 7.

The monitor has full PKRU permissions. Hence, before copy-
ing untrusted syscall arguments, the monitor needs to check
whether the filtered domain itself has permission to access
this memory. This avoids so-called Boomerang attacks [35].
Locking. Syscall filters might use internal data structures,
e.g., for holding a domain’s open file descriptors. For multi-
threaded programs, these data structures need to be locked
while avoiding deadlocks: First, each data structure must only
be locked and accessed by a single domain (e.g., the root
domain). Second, to avoid deadlocks through recursion, the
filter code itself must not perform any explicit domain switch,
particularly not towards the child domain it filters.

5.4 Secure Multi-domain Call Gates

Call gates are secure entry points into a PKU domain and
perform the PKRU switch, e.g., via the WRPKRU instruction. To
prevent malicious code from reusing this WRPKRU instruction
with an illegitimate value, ERIM and Hodor double-check the
value after the WRPKRU instruction, as shown in Figure 3 left.

Unfortunately, their call gate only supports a static PKRU
configuration (cf. $PKRUVALUE in Figure 3). Thus, call gates
for all potential PKRUVALUEs need to be compiled in advance.
Using dynamic PKRU values from memory seems infeasible at
first since this memory needs to be accessible to the untrusted
domains but also be protected from corruption.

We employ a generic multi-domain call gate by using PKU
for its protection. As shown in Figure 3 (right,lines 3–4), the
PKRU value is fetched from a fixed offset in the thread-local
storage (TLS), relative to the fs register. For this, we reuse
an additional page that Donky places on the TLS, protected
with a key for which each domain has read-only access. Thus,
our call gate can securely fetch the intended PKRU value again
(line 6–7) and compare it with the written value (line 8). When
maliciously invoking the call gate, each thread can only use
its own current PKRU value stored inside its TLS.

Our call gate is generic enough such that we do not need
to place it in every domain’s entry function but only at the
monitor’s exit points. Our monitor switches domains by writ-
ing the desired PKRU value to the TLS before exiting. The
monitor exit points are the only place where transitions into
non-monitor domains occur. Similar to ERIM, the monitor’s
entry point needs no special call gate protection but simply
elevates the PKRU value to full permissions before doing a se-
cure context switch. Through binary scanning, one can ensure
that no other unsafe WRPKRU or XRSTOR occurances, which
may be used to switch to arbitrary domains, exist.

5.5 Security Argumentation

Security of Jenny involves security of the syscall interposition
technique, the base filters, the Jenny design, as well as the
security of concrete application filter rules.
Syscall Interposition. Our pku-user-delegate intercepts all
desired syscalls of a process and its threads and child pro-
cesses in the kernel and securely delivers them to the PKU-
protected userspace monitor. However, pku-user-delegate is
susceptible to the following attacks: First, as with other in-
process sandboxes, it does not survive execve. Thus, all of
our filter sets block the execve syscalls. Second, it is recon-
figurable via the ioctl syscall. However, once initialized the
pku-user-delegate can simply deny other ioctl commands
not coming from the monitor by checking the PKRU register.

Our libc-indirect* method can be applied in addition to pku-
user-delegate to improve performance of filtered syscalls. If a
domain bypasses libc-indirect*, e.g., by using the syscall in-
struction directly, our pku-user-delegate will intervene. When

1 2:
2 xorl %ecx,%ecx
3 xorl %edx,%edx
4 movl $PKRUVALUE, %eax
5 wrpkru
6 cmpl $PKRUVALUE, %eax
7 jne 2b ; error

1 xor %rcx, %rcx
2 xor %rdx, %rdx
3 mov tls_offset, %rax
4 mov %fs:(%rax),%rax
5 wrpkru
6 mov tls_offset, %rcx
7 mov %fs:(%rcx),%rcx
8 cmp %rax, %rcx
9 je 1f

10 ud2 ; die here
11 1:

Figure 3: PKRU switches during secure call gates.

using such a kernel-based mechanism, the sandboxed code
may contain arbitrary syscall instructions.

Base Filters. Our base filter rules (base-donky*, base-mpk)
address all security-critical monitor resources, including mem-
ory and file system resources, process-related configurations.
Of course, we cannot guarantee preventing all syscall attacks.
To reduce the likelihood of attacks, we block new syscalls
by default. We further used strace [58] source code to clus-
ter syscalls into classes (e.g., memory-modifying syscalls),
which we then analyzed manually.

For protecting the PKRU register on x86-64 CPUs, our base-
mpk additionally employ binary scanning and W⊕X [11] as
well as secure multi-domain call gates, as detailed below.

Call gates Any WRPKRU occurrence within our trusted library
are either monitor-enter call gates or use our secure multi-
domain call gate for monitor exits. An interesting corner oc-
curs due to our syscall impersonation method, for which the
monitor temporarily drops PKRU privileges for impersonating
the syscall and elevating privileges again afterwards. Since
this PKRU elevation presents a monitor-enter call gate, we
also need to restore the monitor’s register state, including the
monitor stack pointer. We do so by storing the monitor stack
pointer on a protected TLS variable during impersonation.

Our multi-domain call gate cannot be manipulated since
the PKRU value is stored on protected TLS memory, and the
relevant fs register is read-only on our Linux 5.4 setup. Newer
Linux kernels (since version 5.9) can optionally enable the
userspace to write the fs register. If enabled, one could use
an alternative to the fs discussed in [27].

Jenny ensures that domains cannot evade syscall filtering,
as follows: First, syscall filters installed by domain A are
enforced on all of its child domains, also those created later
on. Second, the monitor ensures that all registered syscall
filters are executed in a hierarchical order until one filter
denies the syscall. Third, domains cannot be deleted when
they have child domains. Fourth, when a child domain B
orphans its child domain C using the Donky monitor API
call dk_domain_release_child (cf. [56]), domain C is as-
signed A as new parent. This ensures that filters of A cannot
be evaded. Fifth, monitor filters are globally applied to all
domains.

Application Filters need to sanitize syscall arguments before
accessing them [20]. Jenny copies syscall arguments to a
PKU-protected thread-local memory that is only accessible
to the filtering code. When writing syscall filters, developers
need to further follow a few security principles: (i) protect the
syscall filter rules and data structures by means of PKU, (ii)
lock internal data appropriately and avoid domain calls (cf.
Section 5.3) (iii) identify threads and domains appropriately.

Our localstorage filter rules prevent untrusted domains
from escaping a path sandbox, as follows: Any path-related
syscalls are intercepted, and paths are resolved, e.g., to neutral-
ize symbolic links. Before the respective syscall is allowed,
the path is prepended with a per-domain sandbox path. Fi-
nally, any file descriptor-based syscalls are intercepted such
that a domain can only access file descriptors it has opened
itself. However, these filters, currently, do not protect against
non-sandboxed colluding applications running with the same
user privileges since they can also manipulate this directory.

5.6 Secure Signals
Signals expose an inherent design weakness of the Linux
kernel w.r.t. PKU sandboxes [11]. To date, none of the existing
PKU sandboxes provide secure signal handling.

While Donky [56] describes how secure signal handling
could be supported, it misses the above design weakness. Fur-
thermore, it neither provides a semantic to PKU-aware signal
handling nor a prototype implementation. Hodor simply dis-
ables signal delivery in the kernel while inside an isolated do-
main [27]. ERIM does not discuss secure signal handling [61].

In the following, we introduce a PKU-secure signal API,
discuss the protection of signal stacks, and show how signal
handling is made secure against race conditions.
Secure Signal API. Designing a meaningful signal handling
API for use with PKU sandboxing is non-obvious. If multi-
ple domains attempt to register a signal handler for the same
signal, who should get the signal delivered? In case of syn-
chronous signals one might deliver to the domain triggering
the signal. However, this could be abused by certain attacks
relying on the suppression of segmentation faults [34]. Even
worse, for asynchronous signals (e.g., timers), it is ambiguous
which domain triggered the signal or is eligible to take it.

We follow a secure-by-default philosophy: Our monitor
allows one signal to be handled by exactly one domain. More-
over, a parent domain can override a signal handler registered
by one of its children and thus, virtualize a child’s signal
handlers. The parent can then decide whether to manually
redirect the signal to the child domain or not.

To realize our API we register our own monitor-protected
signal handler as a single entry point for all signals. For this,
we filter the syscalls (rt_)sigaction and signal and store
domain-provided signal handler information in the monitor.
On signal delivery, our (monitor) handler looks up the corre-
sponding domain signal handler and executes it. Domains can

use standard signal registration functions without any code
modifications. Jenny intercepts these functions and aborts
with an error in case the signal was already registered.
Secure Signal Stack. Protection of the so-called signal frame
is of key importance, as an attacker manipulating it (e.g., the
stored PKRU register) could elevate privileges [11]. The Linux
kernel stores the signal frame holding all CPU registers on
the stack, from which it will be restored upon signal return
via the (rt_)sigreturn syscall. Unfortunately, one cannot
protect the signal frame by means of PKU, since the Linux
kernel deprivileges the signal handler to protection key zero.

To solve this, we need to ensure that signal frames are
always pushed onto a protected signal stack. Thus, we allo-
cate a separate alternative signal stack per thread, protect it
with the monitor’s protection key, and register it in the ker-
nel via the sigaltstack syscall. We propose to extend the
sigaltstack syscall by adding an associated protection key
to the existing ss_flags field. The kernel then registers this
protection key alongside the signal stack. Whenever a signal
arrives, the kernel first loads the registered protection key
before storing the signal frame on the protected stack and in-
voking our handler. To guarantee that our protected alternative
signal stacks are always used, we augment the above hooked
signal registration functions to always inject the SA_ONSTACK
flag. Additionally we filter the syscalls sigaltstack and
(rt_)sigreturn. Thus, signal delivery and return are pro-
tected. In total, our patch adds 33 LoC to the kernel.
Secure Signal Handler. Race conditions present another
challenge. E.g., signals may occur while other signals are still
handled, which corrupts our signal stack. Also, asynchronous
signals (e.g., SIGALRM) can occur during critical monitor exe-
cution, e.g., while a lock is held, leading to deadlock situations.
Also, the signal frame might contain sensitive register values
that must not be exposed to a domain’s signal handler.

We defeat race conditions, as follows. First, to prevent
signals from interrupting each other, we temporarily block all
signals via the sa_mask field in the (rt_)sigaction filter.
This is not a limitation in practice, since the blocked signals
will arrive when the current one is finished.

Second, to prevent signals from interfering with current
monitor execution, we defer them to the monitor exit point.
That is, our universal signal handler puts the signal on a per-
thread “monitor pending” variable together with the original
signal mask and blocks all signals for this thread. We augment
all monitor exit paths to check for deferred signals, re-raising
them using tgkill and unblocking them using sigprocmask.
Thus, the monitor now gets interrupted at a precise location in
the exit path that does not make use of monitor data anymore.

To avoid information leakage, we keep the signal frame
only on our protected signal stack and do not serve it to the
domain signal handler. This prevents the domain from ex-
tracting or manipulating register values in case the signal was
raised while in monitor mode. This is not a severe limitation,
as commonly, “the handler function doesn’t make any use of

ptrace secccomp
ptrace

secccomp
user

pku-user-
delegate

libc-
indirect*

100

101

102

19
0.

36

1.
58

1.
58

1.
02 2.

69

22
4.

47

22
7.

78

85
.0

5

6.
20

3.
72

34
8.

59

11
.4

3

6.
77

None
monitor filter
monitor + domain filter

Figure 4: Relative execution time of a getpid syscall.

the third argument”, i.e., the signal frame [3]. Alternatively,
one could provide a sanitized frame to preserve compatibility.

6 Evaluation

The performance of Jenny is influenced by the syscall inter-
ception mechanism, which and how many syscalls are made,
and the filtering logic. Our micro-benchmarks measure the
overhead of individual syscalls. Macro-benchmarks measure
the impact on whole applications and libraries.
Filtering Mechanisms. We evaluate our seccomp-ptrace,
pku-user-delegate and libc-indirect* methods on all bench-
marks and ptrace only for micro-benchmarks to compare
against the fasterseccomp-ptrace. As discussed in Section 5.2,
some filtering mechanisms have functional limitations. E.g.,
Seccomp-BPF and seccomp-trap are incompatible with PKU
sandboxing and, thus, excluded. We further exclude seccomp-
user from application benchmarks due to its limitations in
multi-threading and nested filtering. Finally, we omit Syscall
User Dispatch, as it does not support safe signal handling,
however, pku-user-delegate serves as a lower bound.
Setup. We use Linux 5.4.0 on an Intel Xeon 4208 CPU with
a fixed frequency of 1.8 GHz. We measure the performance
using the instruction sequence lfence,rdtsc,lfence. All
file-based operations run within a tmpfs. The standard de-
viation is included in all figures. We removed outliers, i.e.,
measurements deviating by twice the median value.

For benchmarking unmodified applications, we compile
Jenny as a shared library and use LD_PRELOAD to load it. We
use constructors to initialize Jenny, create a new domain for
sandboxing the application, install the necessary filters, and
start timing measurements, which are then evaluated by a
destructor. We evaluate the startup overhead separately in
Appendix A. For nginx/apachebench and lmbench, we use
the performance numbers given by these tools instead.

6.1 Micro-benchmarking
For each mechanism and rule set, including no filters as de-
noted by “none”, we time the execution of 100 syscalls and
repeat the measurement 100x. The plots show the relative
runtime compared to when no mechanisms are in use.

Figure 4 shows the results for a getpid syscall, one of
fastest syscalls showing the upper-bound overhead for each

ptrace secccomp
ptrace

secccomp
user

pku-user-
delegate

libc-
indirect*

100

101

19
.0

5

1.
07

1.
08

1.
00 1.
18

19
.0

1

1.
13

1.
14

1.
01 1.
16

19
.0

1

1.
13

1.
14

1.
00 1.
17

22
.9

9

23
.7

1

9.
46

1.
88

1.
63

none
base-donky*
base-mpk
localstorage

Figure 5: Relative execution time of an open syscall.

syscall interposition technique. We install an empty filter that
simply allows the syscall– once as a “monitor filter” and once
both in the monitor and in the domain. The difference between
“monitor” and “monitor + domain” is the constant domain-
switch overhead of each additional nesting level, e.g., when a
(parent) domain installs a custom filter for its children.

Our libc-indirect* mechanism takes 2.69 x the time of
getpid for each unfiltered syscall, since the monitor is al-
ways invoked. For filtered syscalls, it is the fastest mechanism
since it remains in userspace. On the other hand, pku-user-
delegate filters a bit slower due to the kernel context switches
but has a negligible (2%) overhead for unfiltered syscalls.
Seccomp decisions run with 1.58 x the time in the kernel.

For Figure 5 we enable base-mpk and base-donky* pro-
tection as well as our localstorage filter to isolate domains
on the file system (Section 3.3). We benchmark the most af-
fected open syscall. Note that we populate the localstorage
directory with the required files before our benchmarks. As
expected, apart from ptrace, only the localstorage filter set
sees a significant slowdown. Contrary to prior claims [11],
our filter rules base-donky* and base-mpk do not need to trace
the open syscall. Thus, our overhead for protecting a PKU
sandbox is negligible.

As expected, the filtering overhead decreases for the slower
open syscall: For getpid, we observe a 58% overhead for
seccomp-bpf, compared to 8% for open. In contrast, pku-user-
delegate has no measurable overhead on unfiltered syscalls.

Syscall Compatibility and Signals. To show compatibility
with the syscall interface and the performance overhead of
our secure signal handling (Section 5.6) we used the standard
Linux micro-benchmarking tool “lmbench” [37]. Here, we
enable the localstorage filter set in addition to base-mpk. lm-
bench internally runs its benchmark multiple times and reports
a single number. In addition, we run each lmbench binary 10x.
We directly used the reported latency numbers unless they are
given as a bandwidth unit (e.g., MB/s), in which case we in-
vert them. Figure 7 shows the relative performance slowdown.
Most notably, sig catch reports a relative execution time
for sending and catching a signal of 15.42x, 1.22x, and 2.76x
for seccomp-ptrace, pku-user-delegate, and libc-indirect*, re-
spectively. This benchmark also includes sending the signal
(via the kill syscall), which reports much higher numbers
for libc-indirect* intercepting kill. All lmbench programs

are compatible without modifications, except lat_rpc, which
did not start on our system even without Jenny.

6.2 Application Benchmarks
We benchmark Jenny with a range of unmodified applications
to show its compatibility with syscalls, multi-threading, and
signals as well as the slowdown of the different filter rules.

Figure 6 shows the relative runtime overhead when ap-
plications are sandboxed using Jenny. To evaluate our dif-
ferent rule sets, we use a mix of file-intensive and compute-
intensive applications and run each one 10 times. We use dd
to write a zero-filled 1 MB file using 1024 separate read and
write syscalls. For git status, ls, and zip, we inspect or
compress a clone of https://github.com/git/git.git at
the branch v2.30.0-rc0 with a clone depth of 10 000 For
openssl, we create an ECDSA signature for a 1KiB file using
a secp521r1 key. For ffmpeg, we re-encode a 2 s 720p H.264
file using libx264 with the -threads 3 option, which spawns
nine threads, three of which are actual encoding threads.

We observe that compute-intensive applications (i.e., zip,
openssl, and ffmpeg) have a negligible overhead for the
faster filtering mechanisms (i.e., pku-user-delegate and libc-
indirect*), irrespective of the complexity of the filter-rules.
This is expected since the runtime of these applications is
dominated by computation and not by syscalls. However, due
to synchronization (futex), ffmpeg still shows a slowdown
for seccomp-ptrace. Applications with excessive file-based
syscalls (i.e., dd, git, ls) perform considerably worse when iso-
lated in a localstorage directory, since any file-descriptor- and
path-based syscalls are intercepted. E.g., the syscall-intense
git reaches 295% overhead for pku-user-delegate, while base-
mpk only shows a 0–24% overhead.

6.3 Case Study: Webserver
We evaluate a real-world use-case, namely sandboxing li-
braries and modules in a webserver. This shows library isola-
tion and nested domains with our syscall filtering framework.
We use the nginx web server and configure it to use eight
worker threads and optionally the gzip module as well as the
HTTP Basic Authentication module, denoted as “auth”. As
seen in Figure 8, the nginx core runs in the root domain, for
which we enable the base-mpk filter. Two child domains simu-
late a potential attacker misusing the syscall interface. For the
gzip module, we isolate the underlying zlib library in a sep-
arate child domain and install filters to prevent any syscalls.
The “auth” module runs in another child do, for which we
enable the localstorage filters to constrain it into its local
directory, having only access to its authentication file.

We benchmark the unmodified nginx against Jenny, using
apachebench with 10 000 requests in total and 10 concurrent
requests. We request 0 KiB files to show the worst-case over-
head. Figure 9 shows the evaluation results. If no modules are

secccomp
ptrace

pku-user-
delegate

libc-
indirect*

secccomp
ptrace

pku-user-
delegate

libc-
indirect*

secccomp
ptrace

pku-user-
delegate

libc-
indirect*

secccomp
ptrace

pku-user-
delegate

libc-
indirect*

secccomp
ptrace

pku-user-
delegate

libc-
indirect*

secccomp
ptrace

pku-user-
delegate

libc-
indirect*

100

101

102
1.

16

1.
01 1.

40

1.
54

1.
00 1.

31

1.
07

1.
00 1.
13

1.
06

1.
01

1.
01

1.
03

1.
00

1.
01

2.
46

1.
00

1.
051.
29

1.
01 1.
32 2.

06

1.
06 1.
38 1.
67

1.
14

1.
15

1.
21

1.
03

1.
02

1.
04

1.
00

1.
01

2.
50

0.
97

1.
031.
28

1.
00 1.

32 2.
08

1.
06 1.

38 1.
79

1.
24

1.
15

1.
21

1.
03

1.
02

1.
04

1.
00

1.
01

2.
49

0.
97

1.
04

34
.6

6

2.
06

1.
48

17
.8

0

3.
95

3.
59

13
.1

0

1.
69

1.
46

1.
45

1.
04

1.
02 1.

46

1.
02

1.
01

2.
50

1.
00

1.
04

dd git ls openssl zip ffmpeg

none
base-donky*
base-mpk
localstorage

Figure 6: Runtime of different applications when Jenny is preloaded, relative to their native execution.

sy
sc

al
ln

ul
l

sy
sc

al
lo

pe
n

sy
sc

al
lr

ea
d

sy
sc

al
ls

ta
t

sy
sc

al
lf

st
at

sy
sc

al
lw

ri
te

si
g

ca
tc

h

si
g

in
st

al
l

si
g

pr
ot

pi
pe

un
ix

m
m

ap
51

2k

pa
ge

fa
ul

t

pr
oc

fo
rk

se
le

ct
fil

e

se
le

ct
tc

p

co
nn

ec
t

ht
tp tc
p

ud
p

bw
un

ix

bw
tc

p

lm
dd

10
0m

100

101

102

3.
26

33
.3

0

84
.8

8

31
.5

3

91
.6

8

11
6.

39

15
.4

2

54
.9

3

3.
27

9.
51

4.
02

4.
04

1.
11

1.
82

1.
63

1.
38

9.
40

6.
05

17
5.

95

3.
34

14
.5

7

35
.6

0

9.
11

1.
01

2.
30 2.

98

2.
53 3.

19 3.
79

1.
22 1.

70

1.
00 1.
14

1.
07

1.
04

1.
00 1.
06

1.
00

0.
86

1.
26 1.

68

5.
65

1.
04 1.

30

2.
02

1.
22

2.
70

1.
92 2.
08 2.
19

2.
22 2.
52 2.
76

1.
64

1.
01 1.
09

1.
04

1.
00

1.
00 1.
05 1.

49

1.
36

1.
14 1.
19

3.
58

1.
03 1.
17 1.

56

1.
12

secccomp
ptrace

pku-user-
delegate

libc-
indirect*

Figure 7: Relative runtime of individual lmbench pro-
grams when isolated with localstorage filters.

Monitor Root Domain (nginx core) auth gzip

Path/FD ALLbase-mpk

Figure 8: Overview of the separate modules constrained
within their domains and their respective filters.

active, all worker threads run in the same domain, incurring
no domain-switch overhead. Also, our base-mpk base filters
do not negatively affect the performance. For “gzip”, there
are two domain switches per request for entering and leaving
the child domain performing zlib. Since zlib does not require
syscalls, the overhead is negligible as well. For “gzip + auth”,
there are two additional domain switches for the “auth” do-
main plus file-operation syscalls for reading the file, which
is isolated in the localstorage. Here, we still only measure a
5% overhead for our pku-user-delegate. In total, 14 protection
keys are used: two for the monitor, three for the domains,
and nine for the threads, including the main thread. For this
case-study, we added 167 and removed 36 LoC from nginx
1.20.0.

No modules gzip gzip + auth
0

2
1.00 1.00 1.020.99 0.99 1.051.00 1.00 1.03

secccomp ptrace pku-user-delegate libc-indirect*

Figure 9: Relative runtime of a HTTP request in ng-
inx with different (isolated) modules active, normalized
against the unmodified nginx.

7 Discussion and Future Work

Compatibility. Since our base filters deny a set of dangerous
syscalls, applications relying on them are incompatible with
our sandbox. Furthermore, our optional localstorage filters
constrain a domain into its isolated directory, which can cause
compatibility issues if the sandboxed application needs to ac-
cess files outside. For our evaluation we add any files needed
to this directory. Protected file descriptors can also cause
problems if they are not assigned to the sandbox domain.

As demonstrated in Section 6.2, syscalls and signals are
transparently intercepted by the monitor and redicted to the
respective handlers. Thus, Jenny works without having to
modify the sandboxed code. However, Jenny scans the binary
for unsafe WRPKRU (and XRSTOR) instructions. Hence some
binaries are not compatible. In case the unsafe instructions
only occur in a misaligned manner, binary rewriting [61] or
breakpointinng [27] could be used to improve compatibility.

Currently, our prototype kernel module only supports fil-
tering a single process, including its threads and forked child
processes. Support for arbitrary processes could be easily
added.
Kernel Interface. Linux’s syscall interface is steadily grow-
ing, both in size and complexity. Our analysis was based on
the documentation of Linux 5.4.0. Since future syscalls could
further exploit PKU systems, we suggest to only allow a small
set of syscalls that are needed and deny unknown syscalls.
Number of Protection Keys. Intel MPK only supports 16
keys, of which Linux reserves up to two keys. Jenny cur-
rently uses one private key per domain and one extra key for
read-only accessible global monitor data. Furthermore, our
solution for protecting filtered syscall arguments uses one
sysargs protection key for each thread to conservatively pre-
vent TOCTOU and Boomerang attacks [35]. Thus we limited
our nginx and ffmpeg use-cases to eight worker threads.

There are multiple ways to relax this limitation. Sysargs
protection keys are not required for threads that run in isola-
tion, i.e., only stay in one domain. There, we can copy syscall
arguments to the filteree-private memory instead. Moreover,
sysargs keys can be omitted when the syscall filters affecting
a thread do not access pointer arguments. One could, for ex-
ample, allocate sysargs keys on-demand when a thread enters
a domain that requires such complex filters the first time.

Another way would be to pre-allocate a small pool of
sysargs protection keys that are dynamically dispatched by
the monitor only when needed. However, this limits the num-
ber of concurrently filtered syscalls and they could stall when
the pool is exhausted.

Alternatively, for large applications (e.g., web browsers)
one can virtualize protection keys at a loss of security
(e.g., only giving probabilistic isolation guarantees). The
Donky software already provides infrastructure for specifying
whether an allocated protection key can be virtualized (e.g.,
reused multiple times). Thus, software architects can unlock
certain keys for virtualization, for which the security risk is
manageable.

8 Related Work

Application Sandboxing. Traditionally, syscall interception
was used for whole-application sandboxing. In the past, a
number of different solutions have been presented to filter
or monitor syscalls [4, 8, 21, 24, 25, 29, 30, 53–55]. They use
various of mechanisms for enforcement, ranging from binary
rewriting [8, 54, 55] to new kernel features [21, 29]. Garfinkel
et al. [20] presented best practices and common pitfalls for
such systems, and Parampalli et al. [52] presented powerful
attacks against them. Our implementation closely follows
these best practices to minimize potential vulnerabilities.

Linux provides AppArmor, SELinux, and seccomp-bpf for
confining syscalls for applications. However, they only sup-
port simple static filter rules that cannot be changed while
the application runs. seccomp-bpf only allows installing addi-
tional rules to further constrain itself. To restrict other kernel
resources, Linux also provides other mechanisms like “con-
trol groups” and “namespaces”. However, they are unsuitable
for PKU-based in-process isolation. Other work [5, 18, 36]
used virtualization techniques to emulate the entire syscall
interface and sandbox applications.

Generating optimal rules, such that only required syscalls
are possible, is orthogonal work. By statically or dynamically
analyzing applications, existing work [7, 8, 15, 19, 22, 23, 62]
generates such rules, which can also be applied to Jenny.
In-Process Isolation. To sandbox code within an application
also requires filtering or blocking syscalls. For NativeClient,
WebAssembly, or other interpreted languages, this is typically
enforced through (re)compilation. The compiler makes sure
not to emit any unsafe instructions (e.g., syscall). The iso-
lated code uses predefined functions to communicate with the
rest of the application, which can then issue syscalls [1, 59].
PKU-based Systems. Recently, a number of PKU-based
sandboxes have been proposed [27, 56, 61]. Such systems
require syscall filtering to prevent WRPKRU exploitation and to
enforce their sandbox. Connor et al. [11] showed vulnerabili-
ties for such systems and how to overcome them. However,
none of them offer a complete solution, and some claim that
the overhead of proper syscall handling would be prohibitive.

Existing work fails to explore different syscall filtering mech-
anisms and ways to optimize the necessary filters.

9 Conclusion

In this work, we addressed various syscall filtering challenges
for PKU-based memory isolation systems leading to Jenny,
the first PKU system with comprehensive syscall support.
We uncovered previously unknown PKU-related syscall at-
tacks, compared various syscall interception mechanisms and
designed a faster mechanism that fits the needs of PKU sys-
tems. We designed comprehensive and efficient filter rules for
protecting a PKU sandbox. We further designed filters for con-
fining sandboxes in local directory, similar to chroot. Many
other filter sets are conceivable with Jenny, ranging from file
system virtualization, in-process namespaces and browser site
isolation towards isolation of cloud workloads [10].

Jenny provides filtering on the same thread, thus enabling
and simplifying impersonation of syscalls, as well as nested
filtering and signal handling. In conclusion, we showed that
syscall filtering for PKU systems is both practical and secure,
and we achieved a minor performance impact of 5% for nginx.

Acknowledgments

We thank the anonymous reviewers and especially our Shep-
herd, Nathan Burow, for their valuable suggestions and com-
ments, that substantially helped in improving the paper. This
project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No
681402). This work has also been supported by the Austrian
Research Promotion Agency (FFG) via the competence cen-
ter Know-Center (grant number 844595), which is funded in
the context of COMET – Competence Centers for Excellent
Technologies by BMVIT, BMWFW, and Styria and via the
K-project DeSSnet, which is funded in the context of COMET
– Competence Centers for Excellent Technologies by BMVIT,
BMWFW, Styria and Carinthia.

References

[1] Anatomy of a Syscall, Chromium. https:
//www.chromium.org/nativeclient/reference/
anatomy-of-a-sys, 2020.

[2] capabilities(7) — Linux manual page, December 2020.

[3] sigaction(2) — Linux manual page, December 2020.

[4] Anurag Acharya and Mandar Raje. MAPbox: Using
Parameterized Behavior Classes to Confine Untrusted
Applications. In USENIX Security Symposium, 2000.

https://www.chromium.org/nativeclient/reference/anatomy-of-a-sys
https://www.chromium.org/nativeclient/reference/anatomy-of-a-sys
https://www.chromium.org/nativeclient/reference/anatomy-of-a-sys

[5] Adam Belay, Andrea Bittau, Ali José Mashtizadeh,
David Terei, David Mazières, and Christos Kozyrakis.
Dune: Safe User-level Access to Privileged CPU Fea-
tures. In OSDI, pages 335–348, 2012.

[6] Christian Brauner. Seccomp Notify. https:
//brauner.github.io/2020/07/23/seccomp-
notify.html, 2020.

[7] Alexander Bulekov, Rasoul Jahanshahi, and Manuel
Egele. Saphire: Sandboxing php applications with tai-
lored system call allowlists.

[8] Claudio Canella, Mario Werner, Daniel Gruss, and
Michael Schwarz. Automating Seccomp Filter Gen-
eration for Linux Applications. CoRR, abs/2012.02554,
2020.

[9] Chromium. Linux Sandboxing. https:
//chromium.googlesource.com/chromium/src/
+/master/docs/linux/sandboxing.md, 2020.

[10] Cloudflare. Introducing cloudflare workers:
Run javascript service workers at the edge.
https://blog.cloudflare.com/introducing-
cloudflare-workers/, 2017.

[11] R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and
Max Schuchard. PKU Pitfalls: Attacks on PKU-based
Memory Isolation Systems. In 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020,
pages 1409–1426, 2020.

[12] Jonathan Corbet. Reconsidering unprivileged BPF.
https://lwn.net/Articles/796328/, 2019.

[13] Alexander Culafi. Apache Struts vulnera-
bilities allow remote code execution, DoS.
https://searchsecurity.techtarget.com/news/
252487813/Apache-Struts-vulnerabilities-
allow-remote-code-execution-DoS, 2020.

[14] Leila Delshadtehrani, Sadullah Canakci, Manuel Egele,
and Ajay Joshi. Efficient Sealable Protection Keys for
RISC-V. CoRR, abs/2012.02715, 2020.

[15] Nicholas DeMarinis, Kent Williams-King, Di Jin, Ro-
drigo Fonseca, and Vasileios P Kemerlis. Sysfilter: Au-
tomated system call filtering for commodity software.
In 23rd International Symposium on Research in At-
tacks, Intrusions and Defenses ({RAID} 2020), pages
459–474, 2020.

[16] Will Drewry. [RFC,PATCH 2/2] Documentation:
prctl/seccomp_filter. https://lwn.net/Articles/
475049/, 2012.

[17] Jake Edge. Seccomp and deep argument inspection.
https://lwn.net/Articles/822256/, 2020.

[18] Bryan Ford and Russ Cox. Vx32: Lightweight User-
level Sandboxing on the x86. In USENIX ATC, pages
293–306, 2008.

[19] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji,
and Thomas A. Longstaff. A Sense of Self for Unix
Processes. In S&P, pages 120–128, 1996.

[20] Tal Garfinkel. Traps and Pitfalls: Practical Problems
in System Call Interposition Based Security Tools. In
NDSS, 2003.

[21] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Os-
tia: A Delegating Architecture for Secure System Call
Interposition. In NDSS, 2004.

[22] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Be-
nameur, and Michalis Polychronakis. Confine: Auto-
mated system call policy generation for container attack
surface reduction. In Proceedings of the International
Conference on Research in Attacks, Intrusions, and De-
fenses (RAID), 2020.

[23] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra,
and Michalis Polychronakis. Temporal system call spe-
cialization for attack surface reduction. In Proceedings
of the 29th USENIX Security Symposium, 2020.

[24] Douglas P. Ghormley, Steven H. Rodrigues, David
Petrou, and Thomas E. Anderson. SLIC: An Exten-
sibility System for Commodity Operating Systems. In
USENIX ATC, 1998.

[25] Ian Goldberg, David A. Wagner, Randi Thomas, and
Eric A. Brewer. A Secure Environment for Untrusted
Helper Applications. In USENIX Security Symposium,
1996.

[26] Google Developers. Sandboxed API. https://
developers.google.com/sandboxed-api/, 2020.

[27] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries. In USENIX ATC,
pages 489–504, 2019.

[28] Docker Inc. Docker security. https:
//www.docker.com/, 2020.

[29] K. Jain and R. Sekar. User-Level Infrastructure for
System Call Interposition: A Platform for Intrusion De-
tection and Confinement. In NDSS, 2000.

[30] Taesoo Kim and Nickolai Zeldovich. Practical and Ef-
fective Sandboxing for Non-root Users. In USENIX
ATC, pages 139–144, 2013.

https://brauner.github.io/2020/07/23/seccomp-notify.html
https://brauner.github.io/2020/07/23/seccomp-notify.html
https://brauner.github.io/2020/07/23/seccomp-notify.html
https://chromium.googlesource.com/chromium/src/+/master/docs/linux/sandboxing.md
https://chromium.googlesource.com/chromium/src/+/master/docs/linux/sandboxing.md
https://chromium.googlesource.com/chromium/src/+/master/docs/linux/sandboxing.md
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://lwn.net/Articles/796328/
https://searchsecurity.techtarget.com/news/252487813/Apache-Struts-vulnerabilities-allow-remote-code-execution-DoS
https://searchsecurity.techtarget.com/news/252487813/Apache-Struts-vulnerabilities-allow-remote-code-execution-DoS
https://searchsecurity.techtarget.com/news/252487813/Apache-Struts-vulnerabilities-allow-remote-code-execution-DoS
https://lwn.net/Articles/475049/
https://lwn.net/Articles/475049/
https://lwn.net/Articles/822256/
https://developers.google.com/sandboxed-api/
https://developers.google.com/sandboxed-api/
https://www.docker.com/
https://www.docker.com/

[31] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,
and Elias Athanasopoulos. No Need to Hide: Protecting
Safe Regions on Commodity Hardware. In EUROSYS,
pages 437–452, 2017.

[32] Linux kernel. Memory Protection Keys.
https://www.kernel.org/doc/Documentation/
x86/protection-keys.txt, 2017.

[33] Linux kernel. SECure COMPuting with filters.
https://www.kernel.org/doc/Documentation/
prctl/seccomp_filter.txt, 2017.

[34] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security Symposium,
pages 973–990, 2018.

[35] Aravind Machiry, Eric Gustafson, Chad Spensky,
Christopher Salls, Nick Stephens, Ruoyu Wang, Anto-
nio Bianchi, Yung Ryn Choe, Christopher Kruegel, and
Giovanni Vigna. BOOMERANG: Exploiting the Se-
mantic Gap in Trusted Execution Environments. In
NDSS, 2017.

[36] Eyal Manor. Bringing the best of serverless to
you. https://cloudplatform.googleblog.com/
2018/07/bringing-the-best-of-serverless-
to-you.html, 2018.

[37] Larry W. McVoy and Carl Staelin. lmbench: Portable
Tools for Performance Analysis. In USENIX ATC, pages
279–294, 1996.

[38] Mozilla. Security/Sandbox/Seccomp. https:
//wiki.mozilla.org/Security/Sandbox/Seccomp,
2020.

[39] Shravan Narayan, Craig Disselkoen, Tal Garfinkel,
Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav
Shacham, and Deian Stefan. Retrofitting Fine Grain
Isolation in the Firefox Renderer. In 29th USENIX Secu-
rity Symposium, USENIX Security 2020, August 12-14,
2020, pages 699–716, 2020.

[40] National Vulnerability Database NIST. CVE-2002-
0059. https://nvd.nist.gov/vuln/detail/CVE-
2002-0059, 2019.

[41] National Vulnerability Database NIST. CVE-2003-
0107. https://nvd.nist.gov/vuln/detail/CVE-
2003-0107, 2019.

[42] National Vulnerability Database NIST. CVE-2005-
2096. https://nvd.nist.gov/vuln/detail/CVE-
2005-2096, 2019.

[43] National Vulnerability Database NIST. CVE-2020-
8835. https://nvd.nist.gov/vuln/detail/CVE-
2020-8835, 2019.

[44] National Vulnerability Database NIST. CVE-2021-
20194. https://nvd.nist.gov/vuln/detail/CVE-
2021-20194, 2019.

[45] National Vulnerability Database NIST. CVE-2021-
23133. https://nvd.nist.gov/vuln/detail/CVE-
2021-23133, 2019.

[46] National Vulnerability Database NIST. CVE-2021-
29154. https://nvd.nist.gov/vuln/detail/CVE-
2021-29154, 2019.

[47] National Vulnerability Database NIST. CVE-2021-
3156. https://nvd.nist.gov/vuln/detail/CVE-
2021-3156, 2019.

[48] National Vulnerability Database NIST. CVE-2021-
33200. https://nvd.nist.gov/vuln/detail/CVE-
2021-33200, 2019.

[49] National Vulnerability Database NIST. CVE-2021-
3444. https://nvd.nist.gov/vuln/detail/CVE-
2021-3444, 2019.

[50] Charlie Osborne. Remote code execution vulnerability
exposed in popular JavaScript serialization package.
https://portswigger.net/daily-swig/remote-
code-execution-vulnerability-exposed-in-
popular-javascript-serialization-package,
2020.

[51] Pierluigi Paganini. Google found zero-click vul-
nerabilities in Apple’s multimedia processing
components. https://securityaffairs.co/
wordpress/102459/hacking/apple-zero-click-
vulnerabilities.html, 2020.

[52] Chetan Parampalli, R. Sekar, and Rob Johnson. A prac-
tical mimicry attack against powerful system-call moni-
tors. In AsiaCCS, pages 156–167, 2008.

[53] Niels Provos. Improving Host Security with System
Call Policies. In USENIX Security Symposium, 2003.

[54] Mohan Rajagopalan, Matti A. Hiltunen, Trevor Jim, and
Richard D. Schlichting. Authenticated System Calls. In
DSN, pages 358–367, 2005.

[55] Mohan Rajagopalan, Matti A. Hiltunen, Trevor Jim, and
Richard D. Schlichting. System Call Monitoring Using
Authenticated System Calls. IEEE Trans. Dependable
Secur. Comput., 3:216–229, 2006.

https://www.kernel.org/doc/Documentation/x86/protection-keys.txt
https://www.kernel.org/doc/Documentation/x86/protection-keys.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://cloudplatform.googleblog.com/2018/07/bringing-the-best-of-serverless-to-you.html
https://cloudplatform.googleblog.com/2018/07/bringing-the-best-of-serverless-to-you.html
https://cloudplatform.googleblog.com/2018/07/bringing-the-best-of-serverless-to-you.html
https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://nvd.nist.gov/vuln/detail/CVE-2002-0059
https://nvd.nist.gov/vuln/detail/CVE-2002-0059
https://nvd.nist.gov/vuln/detail/CVE-2003-0107
https://nvd.nist.gov/vuln/detail/CVE-2003-0107
https://nvd.nist.gov/vuln/detail/CVE-2005-2096
https://nvd.nist.gov/vuln/detail/CVE-2005-2096
https://nvd.nist.gov/vuln/detail/CVE-2020-8835
https://nvd.nist.gov/vuln/detail/CVE-2020-8835
https://nvd.nist.gov/vuln/detail/CVE-2021-20194
https://nvd.nist.gov/vuln/detail/CVE-2021-20194
https://nvd.nist.gov/vuln/detail/CVE-2021-23133
https://nvd.nist.gov/vuln/detail/CVE-2021-23133
https://nvd.nist.gov/vuln/detail/CVE-2021-29154
https://nvd.nist.gov/vuln/detail/CVE-2021-29154
https://nvd.nist.gov/vuln/detail/CVE-2021-3156
https://nvd.nist.gov/vuln/detail/CVE-2021-3156
https://nvd.nist.gov/vuln/detail/CVE-2021-33200
https://nvd.nist.gov/vuln/detail/CVE-2021-33200
https://nvd.nist.gov/vuln/detail/CVE-2021-3444
https://nvd.nist.gov/vuln/detail/CVE-2021-3444
https://portswigger.net/daily-swig/remote-code-execution-vulnerability-exposed-in-popular-javascript-serialization-package
https://portswigger.net/daily-swig/remote-code-execution-vulnerability-exposed-in-popular-javascript-serialization-package
https://portswigger.net/daily-swig/remote-code-execution-vulnerability-exposed-in-popular-javascript-serialization-package
https://securityaffairs.co/wordpress/102459/hacking/apple-zero-click-vulnerabilities.html
https://securityaffairs.co/wordpress/102459/hacking/apple-zero-click-vulnerabilities.html
https://securityaffairs.co/wordpress/102459/hacking/apple-zero-click-vulnerabilities.html

[56] David Schrammel, Samuel Weiser, Stefan Steinegger,
Martin Schwarzl, Michael Schwarz, Stefan Mangard,
and Daniel Gruss. Donky: Domain Keys - Efficient In-
Process Isolation for RISC-V and x86. In 29th USENIX
Security Symposium, USENIX Security 2020, August
12-14, 2020, pages 1677–1694, 2020.

[57] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko,
Egor Pasko, Karl Schimpf, Bennet Yee, and Brad Chen.
Adapting Software Fault Isolation to Contemporary
CPU Architectures. In USENIX Security Symposium,
pages 1–12, 2010.

[58] strace Developers. strace – linux syscall tracer. https:
//strace.io/, 2021.

[59] WebAssembly System Interface Subgroup. The We-
bAssembly System Interface. https://wasi.dev/,
2020.

[60] The kernel development community. Syscall User Dis-
patch. https://www.kernel.org/doc/html/latest/
admin-guide/syscall-user-dispatch.html.

[61] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-process Isolation with
Protection Keys (MPK). In USENIX Security Sympo-
sium, pages 1221–1238, 2019.

[62] David A. Wagner and Drew Dean. Intrusion Detection
via Static Analysis. In S&P, pages 156–168, 2001.

https://strace.io/
https://strace.io/
https://wasi.dev/
https://www.kernel.org/doc/html/latest/admin-guide/syscall-user-dispatch.html
https://www.kernel.org/doc/html/latest/admin-guide/syscall-user-dispatch.html

Native Jenny secccomp
ptrace

pku-user-
delegate

libc-
indirect*

0

1

2

3

4

5

6

7
To

ta
lr

un
tim

e
[m

s]

0.
57

2.
40

4.
49

2.
38

2.
37

4.
86

2.
76

2.
38

4.
82

2.
73

2.
41

5.
01

3.
02

2.
40

none
base-donky*
base-mpk
localstorage

Figure 10: Runtime of /bin/true with and without
Jenny for various interception mechanisms and filter
rules.

A Evaluation of the Initialization Overhead

Our evaluation in Section 6.2 does not include the additional
time it takes to load and initialize Jenny. Jenny is built as a
shared library, which we preload using LD_PRELOAD. To mea-
sure the constant overhead of preloading and initialization
(i.e., the creation of a default domain, scanning the binary), we
run the program /bin/true without filter rules. Our measure-
ment setup benchmarks the time between the execve syscall
of /bin/true and the continuation of the waitpid syscall of
a parent program.

Figure 10 shows the total runtime of /bin/true under dif-
ferent conditions. The first two bars show the native runtime
and the runtime when the application is isolated in a domain,
but with no syscall filtering. One can see that Jenny takes
1.8 ms to initialize. While outside of scope for our work, we
believe that further optimizations of the startup procedure are
possible here.

Other bars show the runtime when Jenny is used, with dif-
ferent filter mechanisms and filter rules applied. libc-indirect*
traces all libc syscalls without distinction – hence the fast ini-
tialization. The minor overhead of libc-indirect* stems from
registering the filter rules in the monitor and also applies to all
other mechanisms. In contrast, other mechanisms take longer
to initialize when more syscalls need to be registered for in-
terception. seccomp-based filtering shows a larger overhead
of up to 2.6 ms.In contrast, our pku-user-delegate mechanism
shows small overheads of 0.6 ms.

B Sandboxing privileged processes

PKU sandboxing might also be used to protect privileged
programs, e.g., setuid binaries (cf. the sudo exploit [47]). In
this case, care must be taken to shield all privileged system re-
sources accordingly. For this, one should additionally block all
syscalls that require capabilities (e.g., CAP_SYS_ADMIN) [2]
such as pivot_root, mount, and reboot. Moreover, privi-

leged file system resources (e.g., /proc/sys, /sys and /dev)
need to be blocked. Here, using the prctl approach from
base-mpk is ineffective, instead new rules need to be designed
similar to localstorage.

C Filter API

In Jenny the filtering mechanism and base filter rules (cf.
Section 3.3) can be supplied via environment variables
(e.g., FILTER=base-mpk MECHANISM=ptrace_seccomp) or
via an API call. Additionally, as shown in Figure 11, one can
install custom filter rules for each (sub-)domain. Note, that
these filters run in addition to the base filter rules as well as
any registered filter rules of their own parent domains. Line
9 registers a simple rule to deny all write syscalls. Line 10
registers a filter function, which logs (line 3) all attempted file
accesses via the open syscall and then denies them.

1 void custom_open_filter(trace_info_t *ti) {
2 if (IS_SYSCALL_ENTER(ti)) {
3 printf("Domain %d is about to open file: %s\n",
4 ti->did, ti->args[0]);
5 SYSFILTER_RETURN(ti, -EACCES);
6 }
7 }
8

9 //register syscall filters for sub-domain
10 jenny_sysfilter_domain(domain_id, SYS_write, SYSCALL_DENIED);
11 jenny_sysfilter_domain(domain_id, SYS_open, custom_open_filter);

Figure 11: Usage example of our filter API

	Introduction
	Background
	Syscall Filtering
	Protection Keys for Userspace (PKU)

	The Need for PKU-aware Syscall Filtering
	Threat model
	New Syscall-based PKU Attacks
	Securing PKU with Syscall Filters

	Syscall Filtering Mechanisms
	Comparison
	PKU-suitable Syscall Interposition

	Jenny: Secure and Efficient Syscall Filtering for PKU Systems
	Design
	Same-Thread Nested Filtering
	Secure Filter Design
	Secure Multi-domain Call Gates
	Security Argumentation
	Secure Signals

	Evaluation
	Micro-benchmarking
	Application Benchmarks
	Case Study: Webserver

	Discussion and Future Work
	Related Work
	Conclusion
	Evaluation of the Initialization Overhead
	Sandboxing privileged processes
	Filter API

