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Electronic susceptibilities are a very popular tool to study electronic and magnetic properties
of materials, both in experiment and theory. Unfortunately, the numerical evaluation of even the
bare susceptibility, which depends on the computation of matrix elements and sums over energy
bands, is very work intensive and therefore various approximations have been introduced to speed
up such calculations. We present a reliable and efficient implementation of the tetrahedron method
which allows us to accurately calculate both static and dynamic bare susceptibilities, based on full-
potential density functional theory (DFT) calculations. In the light of the exact results we assess
the effects of replacing the matrix elements by a constant and the impact of truncating the sum
over the energy bands. Results will be given for representative and topical materials such as Cr, a
classical transition metal, as well as the iron-based superconductor FeSe.

PACS numbers: 74.20.Pq, 75.40.Cx, 75.40.Gb, 74.70.Xa

I. INTRODUCTION

The susceptibility χ both of charge and spin is a
favoured quantity of theorists as it reveals interesting
details of the excitation spectrum of the considered sys-
tem and can directly be compared with experimental re-
sults [1, 2]. There is a long list of materials for which sus-
ceptibilities have given important insights to unravel the
underlying physics. In particular, for the iron-based su-
perconductors [3, 4] (FeSCs), susceptibilities play a cru-
cial role in the discussion of the origin of superconduc-
tivity.

Many undoped FeSCs have an antiferromagnetic
ground state, whose magnetic ordering vector matches
the Fermi surface nesting vector [4]. Since the very be-
ginning of the field, this has been considered a strong in-
dication of spin-fluctuation mediated superconductivity
and many theories have been proposed to explain super-
conductivity based on susceptibility calculations [5–13].
In these weak-coupling approaches, the full electronic
structure is usually reduced to an effective model using
analytical approximations for the relevant bands (ab ini-
tio downfolding or projection techniques) and the many-
body interactions responsible for superconductivity, mag-
netism and other instabilities are treated with more and
more sophisticated methods, such as random-phase ap-
proximation (RPA), fluctuation exchange approximation,
functional renormalization group, etc. [10–12]. Only very
recently, a first-principles scheme for an ab initio treat-
ment of spin fluctuations has been proposed [13]. Al-
though they don’t allow quantitative predictions of crit-
ical temperatures and energy scales, these calculations
have provided very important insights into issues such
as the symmetry of the order parameter, trends of super-
conducting critical temperatures, competition of different
instabilities, and so on.

∗ cheil@sbox.tugraz.at

These studies have shown that even small changes in
the electronic structure can have a large impact on su-
perconductivity and magnetism. This implies that the
influence of the approximations employed for the calcu-
lations of the non interacting system is a serious issue.
The non interacting susceptibility, representing the basis
of RPA and of self-consistent DFT for spin fluctuations, is
a particularly critical quantity: the results are very sensi-
tive to small details of the electronic structure, therefore
very accurate electronic structures and k-space integra-
tion methods are needed; matrix elements are easy to
compute in a plane wave basis, but converge very slowly
with basis size; in cases where bare susceptibilities are
used as input for many-body calculations, the number of
bands is also a serious issue.

A common procedure in this case is to downfold the full
electronic structure onto an effective low-energy model,
which reproduces the band structure in the vicinity of the
Fermi level. This truncation can have severe effects on
the susceptibility, since the convergence with the number
of bands is very slow. In fact, although susceptibility
calculations have been performed for a long time and
many different algorithms have been proposed for the
numerical evaluation [2, 14–16], the number of fully first-
principles calculations of susceptibilities is scarce [9, 13,
17–19].

In this paper we present a method that enables one to
avoid these approximations and yields reliable results for
the static and dynamic bare susceptibility, based on full-
potential DFT calculations [20] of the electronic structure
and tetrahedron integration [21]. We introduce a non
standard tetrahedron method that explicitly takes only
the non vanishing contributions of the Brillouin zone into
account and significantly reduces the number of required
k points. The accuracy of the presented approach is con-
trolled by the number of k points in the first Brillouin
zone, the number of reciprocal lattice vectors G used in
the expansion of the LDA wave functions in plane waves,
and the number of electronic bands entering the suscep-
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tibility formula. We demonstrate that converged results
can be reached with acceptable computational effort.

Based on exact results obtained by this method, we
scrutinize the approximation where all matrix elements
are replaced by unity - henceforth referred to as constant
matrix element approximation (CMA) [14–16, 22]. The
CMA, which was very often used in the early days of
susceptibility calculations, is at the heart of many qual-
itative arguments on Fermi surface nesting, which have
been revived in recent years to explain different phenom-
ena, ranging from charge and spin density waves (SDWs)
to superconductivity [5, 23]. We show that, in fact, CMA
can strongly affect the susceptibility. Moreover, we dis-
cuss the effects of downfolding the full band structure to
an effective low-energy model.

We would like to remark that the general purpose of
this work is to provide a scheme to compute reliable
bare susceptibilities. The inclusion of many-body effects,

which would allow a direct comparison to experiment, is
beyond the scope of this paper.

This paper is organized as follows. In Sec. II we intro-
duce expressions for the bare susceptibility χ0 and the
method and algorithm we propose to evaluate them with.
In Sec. III we study the impact of CMA on the static bare
susceptibility χ0 of two representative examples and we
also discuss the error induced by truncating the number
of electronic bands. In Sec. IV we extend the analysis to
dynamic susceptibilities and our findings are summarized
in Sec. V.

II. METHOD

For a system of Bloch electrons - taking into account
only the diagonal elements of the χ0 matrix - the real and
imaginary parts of the non interacting (bare) dynamic
susceptibility [24] read

Reχ0(q, ω) =
∑
n,m

1BZ∫
dk

4π3
Θ(εF − εmk )Θ(εnk+q − εF )|〈m,k|e−iq·r|n,k + q〉|2

(
1

εmk − εnk+q + h̄ω
+

1

εmk − εnk+q − h̄ω

)
(1)

Imχ0(q, ω) = −
∑
n,m

1BZ∫
dk

4π2
Θ(εF − εmk )Θ(εnk+q − εF )|〈m,k|e−iq·r|n,k + q〉|2 δ(h̄ω + εmk − εnk+q), (2)

where Eq. (2) holds for ω ≥ 0. For negative values of ω,
the imaginary part is taken from the relation

Imχ0(q,−ω) = −Imχ0(q, ω) . (3)

The real and imaginary parts of χ0 are connected via
the Kramers-Kronig transformation. q is a vector of the
extended wave-vector space and k represents vectors of
the first Brillouin zone (1BZ). n and m denote electron
band indices, εF is the Fermi energy, and εmk stands for
the energy dispersion of the mth band. The product of
Heaviside functions in the numerator of the integrand
ensures that only transitions from occupied to unoccu-
pied electron states contribute to the integral. A sim-
ilar expression for χ0 can be derived where the prod-
uct of Heaviside functions is replaced by their difference
Θ(εF − εmk ) − Θ(εF − εnk+q). While the latter is simpler
from a geometrical point of view, it has the disadvantage
that many contributions of the two terms cancel each
other, an effect which becomes increasingly severe with
decreasing |q|.

We therefore chose Eqs. (1) and (2) to be the basis of
all our susceptibility calculations. In Sec. III, which is
dedicated to the static bare susceptibility, all results are
obtained by an evaluation of Eq. (1) for ω = 0, in which
case the imaginary part vanishes. However, if one wishes

to study the dynamics of χ0 (as, e.g., in Sec. IV of this pa-
per), one is usually interested in the ω dependence of both
the real and the imaginary part of χ0. In this case, one
normally computes only the imaginary part Imχ0(q, ω)
because its numerical evaluation is significantly less chal-
lenging than a direct calculation of Reχ0(q, ω) and the
corresponding real part can then be easily obtained by
the Kramers-Kronig relation, provided that sufficiently
large values of ω have been considered.

Both expressions (1) and (2) require a k-space in-
tegration over the irreducible wedge (IW) of the 1BZ.
For a numerical evaluation of such integrals, different
algorithms have been proposed in literature. Smear-
ing methods are not appropriate for susceptibility cal-
culations, and the most commonly used implementa-
tions are random sampling [9, 13] or tetrahedron meth-
ods [14, 15, 21, 22, 25, 26].

In the following we present an implementation of the
tetrahedron method that differs from other algorithms
in some key aspects, which will be described later. The
starting point, however, is the same as in all other im-
plementations, i.e., the IW is decomposed into a number
of tetrahedra as depicted in Fig. 1(a) and described, for
example, in Refs. 15 and 25. The Bloch energies εmk and
the corresponding wave functions ψm,k(r) for k points
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FIG. 1. (Color online) (a) Tetrahedral mesh of the irreducible wedge of an fcc lattice. The other panels show the mesh after the
first (b) and after the second (c) cut with the Fermi surface (see text). For the sake of simplicity we use a parabolic dispersion
ε(k) = |k|2; q = (0.15, 0, 0) and kF = 0.77.

at the corners of the tetrahedra are determined by us-
ing electron band structure codes, in our case the full
potential linearized augmented plane wave (FP-LAPW)
code WIEN2k [20, 27]. Numerically, each wave func-
tion ψm,k(r) is represented by a set of plane wave co-
efficients am,k(K), with K being the reciprocal lattice
vector. Based on this system of input data, the energies
εnk+q and coefficients an,k+q(K), which usually belong to
k points not contained in the tetrahedra set, are approx-
imated by linear interpolation. This means that in our
calculations both the electron energies and the matrix
elements in Eqs. (1) and (2) are numerically treated on
equal footing.

The most demanding aspect of the numerical evalua-
tion of the integrals (1) and (2) comes from the product
of Heaviside functions Θ(εF −εmk )Θ(εnk+q−εF ): first, the

step function Θ(εF − εmk ) reduces the integration within
the IW to initial electron states εmk lying inside the Fermi
surface (FS). The numerical realization of such a reduc-
tion is quite popular in the literature; some authors (see,
e.g., Charlesworth and Yeung [22]) call this a geometric
interpretation of the tetrahedra to emphasize that their
occupation depends on their spatial position within the
IW: a tetrahedron is said to be either empty, fully occu-
pied, or partially occupied, if it is either entirely outside,
inside, or cut by the Fermi surface. Empty tetrahedra
are removed as they do not contribute to the integral
and fully occupied ones remain unchanged. Since the
integration over fully occupied tetrahedra is less time
consuming and more reliable than over partially occu-
pied ones, the latter are further decomposed into a finer
set of completely occupied tetrahedra. This procedure,
schematically shown in Fig. 1(a) and Fig. 1(b), is de-
scribed in detail by, e.g., MacDonald et al. [16] and Rath
and Freeman [14].

The key aspect of our implementation is that this pro-
cess of cutting the tetrahedra to carve out the regions
where the Heaviside function equals unity is consequently

repeated also for Θ(εnk+q − εF ). In this way, the final
tetrahedra are restricted to the region of the IW, where
the condition

Θ(εF − εmk )Θ(εnk+q − εF ) = 1 (4)

is fulfilled. [28] The corresponding (second) reformulation
of the set of tetrahedra in the IW is graphically demon-
strated by Fig. 1(b) → Fig. 1(c). While the first step
from (a) to (b) has to be performed only once for ev-
ery electron band (of the sum over m), the second step
has to be repeated (i) for every value of the q vector,
(ii) for every electron band of the sum over n, and (iii)
for every point group element of the crystal. The main
benefit of this approach is that a lot of numerical issues
encountered when integrating over tetrahedra, which do
not fulfill condition (4) but only Θ(εF − εmk ) = 1, can
be avoided and a simpler set of integration formulas can
be used. Besides the simplified numerical integration,
the number of k points in the IW can be significantly
reduced. For example, the results for chromium, which
we are going to discuss in Sec. III, were obtained by us-
ing approximately 500 k points in the IW. To achieve the
same accuracy without the second carving of the 1BZ, we
would have needed to consider more than 2000 k points.

Finally, we also tested a quadratic interpolation of
the electron energies and transition matrix elements [26],
which requires DFT calculations for additional k points.
We found, however, that it is more advantageous to use
these additional k points directly to create a tighter tetra-
hedral mesh and to use a linear interpolation.

III. STATIC BARE SUSCEPTIBILITY

The CMA is the simplest approximation to avoid the
cumbersome evaluation of the matrix elements entering
the bare susceptibility formula. This approximation has
been used to interpret susceptibility data and SDW order
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FIG. 2. (Color online) LDA bandstructure of Cr, decorated
with partial characters: s (green), d-t2 (blue), and d-e (red).
The coordinates of the high-symmetry points are Γ0=(0,0,0),
H=(0,1,0), N=( 1

2
, 1
2
,0), and P=( 1

2
, 1
2
, 1
2
), all in units of 2π

a
with

a being the lattice constant.

in many transition metals, such as Pd and Cr. The con-
cept of Fermi surface nesting, which derives from these
early CMA calculations, is still quite popular nowadays
in several materials, such as FeSCs and layered metal
dichalchogenides. We will demonstrate that although
CMA in some cases may lead to reasonable results, it
fails in other cases. In the light of this unpredictability
it is advisable to include matrix elements in all static
susceptibility calculations and even more so in the dy-
namical ones.

In order to calculate the matrix elements
〈m,k|e−iq·r|n,k+q〉 correctly we expand the LAPW [20]
eigenvectors |m,k〉 in a plane wave basis. We carefully
checked that our results are converged with respect to
the number of plane waves (typically around 4000).

We start our discussion with the 3d transition metal
chromium (Cr), a classical SDW material [29], for which
different approximations for susceptibilities have been
proposed. Neutron scattering experiments show an in-
commensurate SDW with |qSDW| ∼ 21

22
2π
a , which corre-

sponds to one of the nesting vectors of the Fermi sur-
face. Fermi surface nesting was however not sufficient
to explain why Mo, which has a very similar Fermi sur-
face, does not display any SDW. This led to more refined
susceptibility calculations [30–32], which showed that the
susceptibilities of the two materials with matrix elements
are quite different, with no obvious SDW instability in
Mo.

The electronic structure of Cr in the experimental
body centered cubic (BCC) crystal structure is shown
in Fig. 2; the colored symbols indicate the partial char-
acter of the electronic bands: s (green), d-e, i.e., 3z2− 1,
x2 − y2 (red) and d-t2, i.e., xy, xz and yz (blue). The
s band is entirely full, and extends from ∼ 8 to ∼ 4 eV

− 2π
a

2π
a

− 2π
a

2π
a
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qN1

e

t2
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y

FIG. 3. (Color online) FS of Cr in the kz=0 plane. The dif-
ferent colors indicate different orbital character as described
in Fig. 2 and the boundary of the 1BZ is indicated by dotted
lines.

below the Fermi level (εF ). The d bands lie higher, with
a clear separation between t2 bands, which form a nar-
row structure ±2 eV around εF , and e bands extending
to higher energies. In many cases, however, the bands
are not pure, i.e., they display contributions from more
than one partial character, and this indicates a substan-
tial hybridization between the corresponding real-space
orbitals.

The resulting Fermi surface is three dimensional and
comprises three types of sheets: large octahedral hole and
electron pockets around the center (Γ) and at the corner
(H) of the BZ, and several smaller hole pockets around
the N points. A two-dimensional section of the FS in the
kz=0 plane is shown in Fig. 3; the color coding for the
dominant partial characters is the same as in Fig. 2. The
large pockets around Γ and H are mostly of t2 character,
the small ellipsoids around N are mostly of e character.

Based on this electronic structure, we have used our
highly accurate susceptibility program to compute the
corresponding χ0 along the (010)-direction from the Γ
point of the 1BZ (Γ0) to the center of the next BZ (Γ1).
In Fig. 4 we compare exact results where matrix ele-
ments are properly taken into account (black curve) with
the CMA (red curve). The left scale belongs to the ex-
act results and the right scale to CMA. The cross at
|q| = 0 marks the value of the density of states at the
Fermi energy N(εF ) given by the LAPW calculation, a
value χ0(q) has to approach in the limit |q| → 0. Of
course, N(εF ) can only be calculated reliably when ma-
trix elements are correctly included. The agreement of
limq→0 χ0(q) with the exact value of the density of states
is a stringent test for the k-space integration.

The exact result yields a broad bell-shaped curve
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with a small and narrow peak at q = qN2
, with

|qN2
| ≈ 0.95 2π

a , which fits perfectly to the experimen-
tally observed wavelength of the SDW in chromium, [29]
and is in very good agreement with previous tight-
binding [30] and supercell calculations. [33] Although
there is a peak at the same wave number in the CMA
result (red curve) as well, the rest of the susceptibility
differs significantly from the exact result. In particular,
we observe a second very strong peak at q = qN1 , with
|qN1 | ≈ π

a , which is not present in the exact result.

In order to understand these results in detail, we first
compare the converged susceptibility [Fig. 4(b)], which
was obtained by summing over 30 bands, with the re-
sult we would obtain restricting the sum in Eq. (1) only
to bands at the Fermi level [Fig. 4(a)]. First of all, we
notice that the red curves in panels (a) and (b) are al-
most identical, i.e., in the CMA the shape of χ0 is almost
entirely determined by the transitions between bands at
the Fermi level. The situation is very different for the ex-
act susceptibility (black curves), where matrix elements
strongly enhance transitions between “outer” bands, i.e.,
bands that do not cross the Fermi level; in this partic-
ular case, this enhancement is very strong for k points
half-way between Γ and H.

While it is almost impossible to give a detailed ac-
count of all the transitions involving outer bands, since
their number is very large, it is extremely instructive to
trace back the enhancement of the susceptibility due to
matrix elements, when only bands at the Fermi surface
are included [panel a]. Indeed, the two peaks seen at
qN1

=0.52 2π
a and qN2

=0.95 2π
a in the CMA correspond

to two nesting vectors of the Fermi surface, illustrated in
Fig. 3. The shorter vector (qN1

) connects the large hole
FS with small ellipsoidal pockets around N, while the
larger one (qN2

) connects it to the large electron pocket
at H. The large difference in the matrix elements stems
from the fact that qN2

connects parts of the Fermi surface
for which not only the geometrical, but also the orbital
overlap, is large, and this does not happen for qN1 . [34]

The main conclusions of our first detailed comparison
is that the CMA is a very poor approximation for the
full susceptibility for two reasons: (i) it overemphasizes
the role of the bands that cross the Fermi surface; (ii) it
neglects completely the information on the orbital char-
acter of the electronic states, which has a major effect on
matrix elements. Finally, we also want to remark that in
CMA, the q-dependence of the susceptibility solely stems
from the energies εk+q, which are periodic with respect to
any reciprocal lattice vector K of the crystal. Therefore
one has χ0(q) = χ0(q+K), as observed in all red curves
of Figs. 4, which is an artifact of the approximation. [35]

After the classical example of Cr, we next present re-
sults for FeSe as a representative example of the wide
class of the recently-discovered FeSCs [3, 4], where mod-
els based on susceptibilities have played a major role in
the past few years. For the following discussion we have
chosen FeSe because it is one of the “simplest” FeSCs in
terms of chemical formula and crystal structure. This al-

(a): Fermi surface bands

(b): all bands

0

0.5

1

χ
0
(e
V

−
1
)

4.4

4.8

χ
0 C
M

A
(e
V

−
1
)

0

0.5

1

1.5

χ
0
(e
V

−
1
)

Γ0 H Γ1

16.8

17

17.2

17.4

χ
0 C
M

A
(e
V

−
1
)

FIG. 4. (Color online) Static bare susceptibility χ0 for Cr.
CMA results (red, right axis) are compared with the exact re-
sults (black, left axis). Γ1 stands for the Γ point in the second
BZ. The upper panel (a) shows the converged results, while
in the lower panel (b) only the contributions of the bands at
the Fermi level have been included in the susceptibility.

lows us to discuss the electronic structure without enter-
ing the details of hybridization with intercalated atoms
and layers and three-dimensional interlayer hopping; to
avoid the problem of unfolding, we also chose to work in
the two-Fe unit cell.

All calculations presented here employ the crystal
structure at ambient pressure measured by Kumar et al.
in Ref. 36. Our electronic structure, shown in Fig. 5,
agrees nicely with previous studies [36, 37]; similarly to
what we did in Fig. 2, we have colored the bands ac-
cording to their dominant character and/or position with
respect to the Fermi level. This choice allowed us to in-
troduce a compact notation for the susceptibility plots,
but it does not permit one to appreciate the full complex-
ity of the electronic structure. This issue is discussed in
more detail in other publications [38–40]. Here we only
want to recall that, due to the sizable p−d hybridization,
there is a substantial contribution of Se p states to the
Fe d bands, and vice versa.

The sixteen Fe d - Se p bands form a manyfold which
extends from ∼ −6 to ∼ +2 eV around the Fermi energy;
the six lowest bands have mostly selenium character, and
are separated by a small gap from the ten Fe bands at
±2 eV. The Fermi level cuts the iron bands at a nominal
electron count d6, creating three hole pockets at the Γ
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FIG. 5. (Color online) LDA bandstructure for FeSe at ambi-
ent pressure with the bands labeled according to their dom-
inant orbital character. The five Fe d bands that form the
Fermi surface are shown in red, while all other Fe d bands are
depicted in blue. The Se p are shown in black and the bands
above Fe d in green.

point, and two electron pockets at the M point. The kz
dispersion of the bands is so small that the FS is essen-
tially two dimensional.

The inner and outer hole pockets have dominant xz, yz
orbital character, while the middle hole pocket is mostly
of xy character; the electron pockets are formed by two
ellipsoids with the long axis along the 110 and 11̄0 di-
rections, with dominant xz/yz character on the long side
and xy on the short one.

A clear geometrical nesting for q ∼ M = (πa ,
π
a , 0) ex-

ists between the hole and electron pockets; this feature
is common to many Fe-based superconductors, but the
different shape and orbital composition in different com-
pounds can lead to marked differences in the full suscep-
tibility. Note also that all partial character of the hole
and electron pockets match over a considerable part of
the BZ.

We analyze its behavior in detail for FeSe, studying
χ0 in the (110)-direction in k-space. We start from the
CMA picture, shown in Fig. 6. The color coding in the
figure is consistent with Fig. 5: χ0

CMA results calculated
considering only transitions between the Fe bands that
create the Fermi surface are drawn in red, those which
also involve the rest of the Fe d bands not crossing εF in
blue, while in black we have all transitions from Se p to
Fe d. The converged results with respect to the number
of bands is shown in green.

In χ0
CMA, since matrix elements are neglected and the

denominator of Eq. (1) is almost k independent for large
energies, the inclusion of more bands in the sum results
in an almost rigid shift in the susceptibility, which de-
creases as 1/∆ε for bands away from the Fermi level.
This background shift has no physical meaning, and in or-

Γ0 M Γ1

0

50

100

150

200

χ
0 C
M

A
(e
V

−
1
)

conv.
Se p - Fe d

Fe d
Fe fs

FIG. 6. (Color online) Static bare susceptibility in CMA
χ0
CMA for FeSe calculated by including different sets of bands,

as shown in Fig. 5. From bottom to top the included bands
are: Fe d that cross the Fermi energy (red), all Fe d bands
(blue), Se p plus all Fe d bands (black), and Se p plus Fe d
plus all higher bands which are needed to ensure convergence
of the full susceptibility χ0.

der to compare susceptibility curves with different num-
bers of bands, it is more meaningful to shift them to
a common offset. This is done in the right panel of
Fig. 7, where χ0

CMA is set to zero at |q| = 0 for all
curves. Due to the constant matrix elements, χ0

CMA
depends purely on 1/(εmk − εnk+q). This expression is
large only for the partially filled Fermi surface bands and
χ0
CMA(q)− χ0

CMA(0) therefore depends mainly on these
bands; the most evident feature is a pronounced peak
at the M point, due to the nesting of hole and electron
Fermi sheets. An enhancement is seen also around the
Γ point, for q <∼ 0.4 ΓM due to hole-hole and electron-
electron transitions; no inter- or intra-band transitions
are possible for 0.4 <∼ |q| <∼ 0.6 ΓM, and this accounts for
the depletion seen in χ0

CMA for these values of |q|.
The full susceptibility, with matrix elements correctly

taken into account, is shown in the left panel of Fig. 7.
We want to stress that in this case no scaling or shifting
of the results has been performed. As long as all bands
which cross the Fermi level are included in the calcula-
tion, χ0 approaches N(εF ) in the limit |q| → 0. Away
from Γ0 the absolute value does of course depend on the
number of included bands. All curves have a peak at
the M point. However, quite surprisingly, the absolute
maximum of the red curve, calculated based only on the
Fermi surface bands, is not at M, but close to Γ0. This
means that at the Fermi surface the matrix element en-
hances hole-hole and electron-electron transitions more
than electron-hole ones. Note that based on this result,
we could conclude that this particular system has a dom-
inant instability at small |q|, at variance with most other
FeSCs. However, the full susceptibility, including bands
fairly away from the Fermi energy, has its maximum at
M; the convergence to the exact curve in terms of in-
cluded bands is quite slow [41].
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FIG. 7. (Color online) Static bare susceptibility χ0 for FeSe at ambient pressure calculated by including different sets of bands,
as explained in Fig. 6. The left panel (a) shows the exact result while the right panel (b) contains the CMA result.

Fe fs

Se p - Fe d

F
e
d

FIG. 8. (Color online) Contributions of the band transitions
to χ0 for FeSe at ambient pressure at the M point. The red
square contains transitions only between Fermi surface bands
and the blue square contains all band transitions between the
Fe 3d bands. Inside the black square are all Fe d and Se p
bands. We employed a logarithmic color scale to visually
enhance small values.

This is also graphically illustrated in Fig. 8, where
the contributions of the individual band transitions to
the susceptibility χ0 at the M point are represented in
a two-dimensional histogram. The red square contains
all bands that create the Fermi surface, while the blue
square includes all transitions between Fe d bands and
the black square all Fe d and Se p bands. The biggest
contribution originates from the transition of the mid-
dle hole pocket to the outer electron pocket of the Fermi
surface. One can also observe that there are considerable
contributions to the susceptibility outside the red square
and also outside the blue square, again substantiating the
vital importance of including enough bands in a χ0 cal-
culation. We note in passing that similar calculations for
other FeSCs (not shown) display a different convergence
as a function of the number of included bands.
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FIG. 9. (Color online) Imaginary part of the dynamic bare
susceptibility χ0 for FeSe halfway between Γ and M. The black
line represents the result obtained with exact matrix elements
and the red line depicts the CMA result.

We can summarize this section noting that in systems
like FeSCs, with a complicated multi-orbital Fermi sur-
face and a large p-d hybridization which distributes the
spectral weight of the bands over a wide energy range,
susceptibility calculations are extremely delicate. In par-
ticular, one should avoid the CMA, as it can lead to
wrong results, and carefully monitor the convergence
of the results with the number of bands. The latter
caveat is particularly relevant for model studies of trends
in FeSCs based on downfolded models of the electronic
structure [38, 39].

Needless to say, the convergence of the interacting sus-
ceptibility with the number of bands might differ, since
s, p, and d bands will respond differently to correlations
due to different interaction parameters.
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(a): Imχ0(q, ω) (b): Imχ0
CMA(q, ω)
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FIG. 10. (Color online) Imaginary part of the dynamic bare susceptibility for FeSe at ambient pressure. The left panel (a)
shows Imχ0 whereas the right panel (a) contains the results for Imχ0

CMA. The q point shown in Fig. 9 is indicated by a vertical
white line.

IV. DYNAMIC BARE SUSCEPTIBILITY

In addition to the static susceptibility, which is con-
nected to instabilities towards ordered ground states,
valuable information can be obtained also from the dy-
namic susceptibility. This quantitity describes the ele-
mentary excitations of the system. We focus here on
its imaginary part, which is directly related to scatter-
ing experiments and has therefore a transparent physical
interpretation. We show below that the approximations
discussed in the previous section for the static suscep-
tibility have even more dramatic effects in the dynam-
ical case. Of course, direct comparison to experiments
requires knowledge of the full interacting susceptibility,
which is beyond the scope of this work. However, a cru-
cial ingredient to all theoretical descriptions is a proper
calculation of the bare susceptibility, which we discuss
here.

In Fig. 9 we show the frequency dependence of Imχ0 for
a representative q point in the 1BZ, which sits half-way
between Γ and M. The black line shows the result with all
matrix elements properly included. As compared to the
CMA result, the matrix elements strongly enhance some
parts of the spectrum and suppress others. For example,
the small shoulder around 0.5 eV in the CMA result (red
line) is enhanced forming a well-defined peak, while the
high-energy contributions are strongly suppressed. The
reason for this deviation is again that the CMA com-
pletely neglects the effect of orbital character, leading to
an overestimation of certain transitions. This is most
obvious for energies above 4 eV, where the discrepancy
increases sharply. At this energy, the transitions are to
a very large extent from the bands with dominant Se p
orbital character to those with dominant Fe d and vice
versa. In this case, the matrix elements are small com-
pared to direct d-d transitions; this effect is not at all

reflected in the red curve of Fig. 9. As a result, the
overall spectral weight in the CMA is too large at high
frequencies. The susceptibility even shows a linear in-
crease for very large frequencies, which makes the use of
a Kramers-Kronig transformation meaningless.

Figure 10 shows intensity plots along high symmetry
lines in the 1BZ for Imχ0 (left) and Imχ0

CMA (right). The
q point used in Fig. 9 is indicated by a vertical white
line. The narrow peak at approximately 0.5 eV in Fig. 9
translates into a well-defined branch of single-particle ex-
citations, extending up to 0.7 eV. Another high-intensity
region of Imχ0 starts around 1 eV, concentrated at the X
point. In the CMA results, the spectral weight distribu-
tion is very different. For example, the low energy branch
is almost completely suppressed and a large, featureless
continuum above 1.5 eV appears.

The bare spectrum as presented here contains informa-
tion about the single-particle excitations of the system,
and these can be measured by inelastic neutron scatter-
ing. However, their intensity is rather weak compared to
collective excitations, such as (para)magnons.

As mentioned above, these require a calculation of the
full susceptibility, which is highly non-trivial. Even if
one of the simplest approximations is used, namely the
random-phase approximation (RPA) [7, 11], further as-
sumptions on the interaction Hamiltonian are needed to
make the calculation feasible; in particular, the computa-
tional cost grows with the number of included bands, and
this requires downfolding the electronic structure to an
effective low-energy model. More refined methods exist -
FLEX, fRG - which improve the treatment of many-body
interactions, but they are even more expensive computa-
tionally. An alternative approach that treats the inter-
acting kernel ab initio has been suggested recently by
Essenberger et al. [13].

However, every calculation for the full susceptibility re-
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lies on an accurate evaluation of the bare susceptibility.
Following results of Ref. 13, we want to note that the po-
sition of collective excitations is crucially influenced by
the precise structure of the bare susceptibility. For in-
stance, (para)magnon dispersions form in regions of the
q-ω plane, where the intensity of the single-particle exci-
tations is low. This of course means that a precise calcu-
lation of the bare susceptibility, as we present it in this
work, is an absolutely necessary ingredient also for an ac-
curate calculation of the interacting susceptibility, which
can then be compared to experimental results.

V. CONCLUSIONS

In this paper we have presented a practical implemen-
tation of bare static and dynamic susceptibilities, based
on full-potential LAPW calculations, and a very efficient
tetrahedron method for k-space integration. This allowed
us to study in detail the effect of matrix elements and
the convergence with the number of bands for some rep-
resentative and topical materials (Cr, FeSe). We were
able to show that the approximation, where all matrix
elements in the susceptibility formula are replaced by
a constant value (CMA), can lead to unreliable results.
Therefore, nesting arguments, which are based on this
approximation and are often employed to explain insta-

bilities towards different orderings, are many times un-
founded. [23, 42]

Moreover, we have studied the convergence of the re-
sults as far as the summation over the bands is concerned.
It appears that the convergence is slower then commonly
expected. This could affect schemes that are based on
downfolded models of the electronic structure, where only
a few bands are taken into account. These effects, already
significant in the static susceptibility, are even more se-
vere for the dynamic susceptibility. For instance, low-
energy excitations might not be visible or misplaced when
matrix elements are not treated properly.

In view of the unpredictable accuracy of CMA and/or
a band-summation restriction it is advisable to refrain
from any approximations and to evaluate the susceptibil-
ity formula exactly. One possible and efficient approach
has been presented in this paper.
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