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HOW WELL–CONDITIONED CAN

THE EIGENVALUE PROBLEM BE?

CARLOS BELTRÁN, LAURENT BÉTERMIN, PETER GRABNER,
AND STEFAN STEINERBERGER

Abstract. The condition number for eigenvalue computations is a well–studied
quantity. But how small can we expect it to be? Namely, which is a perfectly
conditioned matrix w.r.t. eigenvalue computations? In this note we answer
this question with exact first order asymptotic.

1. Introduction and Result

For a matrix A ∈ Cn×n and an eigenpair (λ, x) ∈ C × Cn, the classical Schur
decomposition yields an unitary matrix Q such that

(1) QHAQ =

(

λ wH

0 B

)

,

where ·H denotes the Hermitian conjugate and w ∈ Cn−1 is a vector. Denoting by
y ∈ Cn the corresponding left eigenvector, the condition numbers for the eigenvalue
λ and eigenvector x are given by (see for example [5])

κλ(A) =
‖y‖ ‖x‖
|yHx| and κx(A) =

1

σmin(B − λ · Id(n−1)×(n−1))
,

where σmin denotes the least singular value and Id is the identity matrix. In other

words, if we allow for a ε–size perturbation of A, the eigenpair (λ̂, x̂) of the per-
turbed matrix will satisfy

|λ̂− λ| ≤ εκλ(A) +O(ε2), ∠(x, x̂) ≤ εκx(A) +O(ε2).

If the matrix A ∈ Cn×n is diagonal with pairwise different entries z1, . . . , zn, we
have κzi(A) = 1 for all i and the eigenvector condition number admits a simpler
expression

κei(A) =
1

min
j 6=i

|zi − zj |
.

In this note we investigate the following natural question: how good can the eigen-
vector conditioning of a n × n matrix be? The answer has a concrete application
in the search for good starting points for homotopy methods for the eigenvector
problem, see [1], but it is just such a natural and basic question that it deserves an
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answer on its own right! The answer is not trivial. For example, if A = Idn×n we
clearly have κx(A) = ∞ (and it is a rather well–known fact that one can perturb
the identity matrix Idn×n with very small changes to get any desired collection of
eigenvectors). In general, one is interested in perturbations which are relative to
the size of A, that is, perturbations of size ε‖A‖∗ where ‖A‖∗ is either the operator
or the Frobenius norm.

Problem. Which is the optimal value for the relative–error perturbation eigenvec-
tor conditioning of A ∈ Cn×n, that is, which matrix minimizes the quantity

κmax,∗(A) = max
x

(κx(A)‖A‖∗) ,

where x runs over all eigenvectors of A and ‖A‖∗ = ‖A‖Frob or ‖A‖∗ = ‖A‖op is
the Frobenius or the operator norm?

We recall the unit–side triangular (sometimes called hexagonal!) lattice in C ≡ R2

which is the set of points of the form
(

1 1/2

0
√
3/2

)(

a
b

)

, a, b ∈ Z.

Figure 1. An extremal configuration (to leading order): a circle
at the origin and the points of a triangular lattice inside the circle.

Our main result states that the diagonal matrix whose entries range over the tri-
angular lattice, solves Problem 1, at least with respect to the leading order term.

Theorem. Let {z1, . . . , zn} ⊂ C
n be first n points in the unit–side triangular lat-

tice, in increasing modulus order (if two points have the same modulus, we take any
of them). Then, as n → +∞,

κmax,Frob(Diag(z1, . . . , zn)) =
31/4

2
√
π
n+ o(n),

κmax,op(Diag(z1, . . . , zn)) =
31/4√
2π

√
n+ o(

√
n).

Moreover, this diagonal matrix is asymptotically optimal in the sense that for any
matrix A ∈ C

n×n the equalities above give lower bounds for κmax,Frob and κmax,op.

It would naturally be interesting to have a better understanding of the error terms
and, in particular, to have a better understanding of the extremal configurations.
We believe it to be conceivable that our construction may perhaps be quite close to
optimal even with respect to lower order error terms. For a configuration minimizing
the Frobenius norm it is clear that the center of mass has to be at 0. This can of
course be achieved by a translation of less than unity and does not affect the
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asymptotic main term. In order to get the Theorem, we will prove the following
asymptotic inequality which is interesting on its own right.

Proposition. Let p > 0 be fixed. We have, for any z1, . . . , zn ∈ C, as n → ∞,

1

min
i6=j

|zi − zj |

(

n
∑

i=1

|zi|p
)1/p

≥
(

2

p+ 2

)1/p
31/4√
2π

n
1
2
+ 1

p + o
(

n
1
2
+ 1

p

)

,

and this bound is matched by z1, . . . , zn as in the Theorem.

Just as in the Theorem, it might be interesting to get a better understanding of
the lower-order terms. If optimal configurations are indeed close to a subset of
the hexagonal lattice, then this is strongly related to the Gauss Circle Problem
and these techniques might apply (we observe that the function z → |z|p is also
smoother than the cut-off function used in the Gauss circle problem).

2. Proofs

§2.1. gives a proof of the Theorem (assuming the Proposition). Section 2.2 contains
a simple geometric Lemma, the proof of the Proposition is given in Section 2.3.

2.1. Proof of the Theorem.

Proof. From (1) it is clear that the eigenvector conditioning of a matrix is invariant
under conjugation by unitary matrices. From the Schur decomposition, we can thus
assume that A is upper–triangular. Now, for any eigenvector x the definition of
κx(A) does not involve w in (1), but w contributes to the norm ‖A‖∗, so the value
of κmax,∗ does not grow by setting w = 0 for all eigenvectors. It follows that the
matrix with optimal value of κmax,∗ can be chosen diagonal (of course, conjugating
it by any unitary matrix we get a normal matrix with identical conditioning). Thus,
to prove the last claim of the Theorem we can assume that A is diagonal, but in
this case we note that

κmax,Frob(Diag(z1, . . . , zn)) =max
i6=j

‖(z1, . . . , zn)‖2
|zi − zj|

,

κmax,op(Diag(z1, . . . , zn)) =max
i6=j

‖(z1, . . . , zn)‖∞
|zi − zj |

,

and the result is immediate from Proposition 1 for the cases p = 2 and p = ∞. �

2.2. A Lemma. We denote a ball of radius r centered in the origin by

Br = {z ∈ C : |z| < r}.
We say that a set {z1, . . . , zn} ⊂ C is 1-separated if, for all i 6= j

|zi − zj | ≥ 1.

We also introduce the counting function N : [0,∞] → N as follows: N(r) is the
cardinality of the largest possible 1-separated set contained in Br. This quantity
was already studied by L. Fejes Tóth in 1940 who determined its growth.

Lemma 1 (Fejes Tóth [2]). We have, as r → +∞,

N(r) =
2π√
3
r2 + o(r2).

Equality is attained for the unit–side triangular lattice in Br.
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We give a simple sketch why this would be the case – the simple geometric argument
makes use of Apollonian Circle Packings and the well-understood fact that the
asymptotically densest packing of circles in the plane is given by the hexagonal
lattice (which, not entirely coincidentally, is also a result of Fejes Tóth [3]).

Sketch of Proof. The claim on the triangular lattice (which implies the lower bound
for the equality in the lemma) follows from [4, Eq. (1.6)]: for any lattice L ⊂ R2

(given by the set of points of the form T
(

a
b

)

with T ∈ R2×2 and a, b ∈ Z,

#{L ∩Br} =
πr2

det(T )
+O(r

1
3

√

log r), r → +∞.

In the case of the triangular lattice, det(T ) =
√
3/2 and we get the desired result.

As for the upper bound, we argue by contradiction. Suppose that there exists ε > 0
such that there exists a divergent sequence (rn) → ∞ such that

N(rn) ≥
(

2π√
3
+ ε

)

r2n.

Let us pick a sufficiently large rn and let us tile R2 using balls of radius rn in the
fashion of a square or hexagonal lattice (it does not really matter). This allows us
to cover a large amount of space with very efficient 1-separated point sets.

Figure 2. Using more disks with smaller radii allows for more
precise approximation.

We then refine the disk packing by packing disks of smaller radius (see Fig. 2)
between the big balls and use a standard hexagonal lattice to fill those disks. We
can iterate this construction until we capture ∼ 1− of the entire plane. Not that,
since rn can be chosen to be arbitrarily large, this can always be done with a finite
number of steps only depending on ε. However, this then allows us to generate
a period packing of disks whose asymptotic density exceeds π/

√
12 which is a

contradiction.
�

2.3. Proof of the Proposition.

Proof. Let p > 0 and let {z1, . . . , zn} ⊂ R2 be a 1-separated set. Our goal is to
prove a lower bound on

the quantity
1

min
i6=j

|zi − zj|

(

n
∑

i=1

|zi|p
)1/p

.

We use invariance under dilation to assume without loss of generality that

min
i6=j

|zi − zj | = 1
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and this will be assumed in all subsequent arguments. We abbreviate

M = max
1≤i≤n

|zi|

and write
n
∑

i=1

|zi|p = p

n
∑

i=1

∫ |zi|

0

yp−1 dy

= p

∫ M

0

yp−1 ·# {1 ≤ i ≤ n : |zi| > y} dy

= p

∫ M

0

yp−1 · (n−# {1 ≤ i ≤ n : |zi| ≤ y}) dy

≥ p

∫ M

0

yp−1 max(n−N(y), 0) dy.

Now, by the Lemma (or the theorem given in [2]) for every ε > 0 there is an n0

such that for every n ≥ n0

(2) M >
31/4 − ε√

2π

√
n.

From this we derive

n
∑

i=1

|zi|p ≥ p

∫
31/4−ε

√

2π

√
n

0

yp−1 max

(

n− 2π√
3
y2 + o(y2), 0

)

dy

=

(

31/4 − ε√
2π

√
n

)p(

1− p

p+ 2

(31/4 − ε)2√
3

)

n+ o
(

n
p+2

2

)

,

which implies the proposition. For p = ∞, the assertion is just equation (2).
By observing that the bounds used for N(r) are sharp to leading order for the
hexagonal lattice, we see that all the inequalities are asymptotically sharp.
However, there is also a direct geometric argument, valid for p > 1, using the
construction in [1, Lemma 2.27]: For any given n, we take the first n points in
the unit-side triangular lattice, with increasing norm (if two points have the same
norm, we take any of them). We first note that the function z → |z|p is convex,
hence by Jensen’s inequality, for any regular hexagon H centered at zi we have

Ez∈H(|z|p) ≥ |Ez∈H(z)|p = |zi|p,

where E has to be understood as the expected value in the hexagon. Since by
construction the points are in the unit-side triangular lattice, the Voronoi cells
surrounding each zi is a hexagon Hi and we thus have

n
∑

i=1

|zi|p ≤
n
∑

i=1

Ez∈Hi(|z|p) =
1

vol(H)

∫

⋃
i Hi

|z|p dz.

(note that all the hexagons have the same area, which we denote by vol(H) =√
3/2). Now, from the Lemma it follows that in the disk of radius r there are at

least 2πr2/
√
3+O(r1/3

√
log r) points of the unit–side triangular lattice. Therefore,

it follows that all the Hi are contained in a disk of radius rn := 31/4
√
n/

√
2π+o(n),
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which yields
n
∑

i=1

|zi|p ≤ 1

vol(H)

∫

|z|≤rn

|z|p dz

=
2πrp+2

n

(p+ 2)vol(H)
=

4π3
p+2

4

√
3(p+ 2)(2π)1+p/2

n1+p/2 + o(n1+p/2),

which proves the upper bound. �
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