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Abstract. Euler-Lagrange (EL) simulations of particulate suspension flow are an important 

tool to understand and predict multiphase flow in nature and industrial applications. Unfor-

tunately, solid-liquid suspensions are often of (mathematically) stiff nature, i.e., the relaxation 

time of suspended particles may be small compared to relevant flow time scales. Involved 

particles are typically in the size range from µm to mm, and of non-spherical shape, e.g., 

elongated particles such as needle-shaped crystals and/or natural and man-made fibres. De-

pending on their aspect ratio and bending stiffness, those particles can be treated as rigid, or 

flexible. In this paper we present a recent implementation into the open-source LIGGGHTS® 

and CFDEM® software package for the simulation of systems involving stiff non-spherical, 

elongated particles. A newly implemented splitting technique of the coupling forces and tor-

ques, following the ideas of Fan and Ahmadi (J. Aerosol Sci. 26, 1995), allows significantly 

larger coupling intervals, leading to a substantial reduction in the computational cost. Hence, 

large-scale industrial systems can be simulated in an acceptable amount of time. We first pre-

sent our modeling approach, followed by the verification of our code based on benchmark 

problems. Second, we present results of one-way coupled CFD-DEM simulations. Our simu-

lations reveal segregation of fibres in dependence on their length due to fibre-fluid interac-

tion in torus flow.  
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1 INTRODUCTION 

Understanding the transport of suspended particles is of great importance for the rational 

design of industrial equipment. Early studies concentrated on suspension of spherical particles 

due to their relative simplicity. However, such systems are rarely found in industrial applica-

tion and rather limited to academic cases, i.e. spherical glass beads in suspensions. Thus the 

application of simulation results for the design of industrial equipment might not be advisable. 

In the last two decades, efforts were made to model and simulate elongated particles, i.e. cel-

lulose fibres, needle shaped crystals, in suspension flow. We will review selection of recent 

studies in the following chapter. We then introduce our simulation approach which is based 

entirely on open-source code, i.e., OpenFOAM, LIGGGHTS®, and CFDEM®. The capabili-

ties of our code will be demonstrated on hand of an examples of suspension flow of cellulose 

fibres. 

1.1 Approaches to simulate Elongated Particles 

Most of the previous studies [1] use an Euler-Lagrange approach to simulate the suspen-

sion flow of elongated particles. It allows the tracking of individual particle and thus to de-

scribe the segregation and orientation of single particles in suspension flow. For example, 

Soldati and Marchioli extended their simulation studies of particle deposition in turbulent 

boundary layer from spherical particles to elongated particles of different aspect ratio and 

density [2–4]. Thus, varying the particle response time and particle inertia. Rigid elongated 

particles were regarded as point particles. Collisions between particles were neglected, and 

collisions of particles with the wall was not fully resolved, i.e., only the wall-normal velocity 

of a particle was reversed upon impact. Creeping flow around the particle is assumed, and the 

calculation of hydrodynamic force and torque follows the analytical solution presented by 

Kim and Karrila [5]. Comparing non-spherical particles to spherical particles, they found that 

the wallward drift increased with the particle length, and thus the longest particles deposited 

near the wall at a higher rate. 

Lindström, and later Andric extended fibre modelling from rigid fibres to flexible fibres 

[6,7]. In their approach they followed earlier work of Schmid et.al [8,9] who studied the floc-

culation behavior of flexible fibres in shear flow. Ca. 7 to 10 spheroids, i.e., rigid elements 

were linked together in the model for one flexible fibre. This, however, increased the simula-

tion effort. Their model was capable to consider inertial effects and included particle-particle 

interaction. Back-coupling of forces from the particle exerted on the fluid was considered in 

the code, however not actively used in their simulation work. Findings of their study were that 

the specific viscosity for non-straight but curved fibres increased with the fibre curvature. In 

suspension flow, flexible fibres tended to align with the vorticity axis. This was in difference 

to rigid fibres which tended to align in the shear-plane [10]. 

Zhao and van Wachem extended their simulation studies and included effects of particle 

motion on the fluid motion [11]. Particles were coupled to the fluid by adding a source term 

which represented the sum of the drag force of particles in one fluid cell averaged over the 

volume of the fluid cell. They also considered particle-particle interaction and particle-wall 

interaction. Contact detection was performed by placing small spheres at the hull of one sphe-

roid and thus using common contact detection algorithms for spherical particles. The repelling 

force was calculated using a Hertzian-like force model. Comparing their findings to findings 

of Marchioli and Soldati [4], they found that the turbulent kinetic energy decreased by 4.8% 

for suspensions of spheroids at a volume concentration of 0.0219%. Elongated particles were 

orientated randomly in the channel center. Closer to the wall particle orientation was preferen-
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tially into the flow direction. They found the effect of the particle-wall interaction more pro-

nounced, which was attributed to a more realistic interaction model. 

Common in the above studies is that the authors used the same test geometry: a rectangular 

channel (dimension: 4, 2, 2, in x, y, z) which is wall bounded in the y-direction, and cyclic 

in the x-, and z- direction. The test case was based on studies of turbulent channel flow per-

formed by Kim et.al. [12]. Following their settings, Marchioli and Soldati [3] used a semi-

spectral method to solve the fluid motion. Lindström and Uesaka [6], Andric et.al. [13], as 

well as Zhao and van Wachem [11] used a finite-volume solver to simulate the Navier-Stokes 

equation. 

Differently, the research group of Salcudean and Gartshore focused on simulation of fibre 

suspension flow in process equipment, i.e., the head-box of a paper machine, a hydrocyclone, 

and in a slotted channel [14–16]. To solve for the fluid motion, they used LES and RANS ap-

proaches, i.e., not resolving all flow structures. Elongated particles were modelled as stiff and 

flexible fibres. Flexible fibres were again modelled as chain of 4 spheroids linked together. A 

wall model was developed to account for fibre-wall interaction. Specifically, the wall was re-

solved by a fine mesh, smaller than the spheroid elements. Calculating the normal and tangen-

tial force, a force was applied on the spheroid element in contact with the wall being large 

enough to prevent the fibre from penetrating the wall. Hydrodynamic drag and torque interac-

tion followed the work of Kim and Karilla [5] for creeping flow around the spheroid. Mass 

and lift forces were neglected. They found an accumulation of fibres in the vicinity of the wall. 

For a fibre-suspension in a wall bounded channel flow, they found an accumulation of fibres 

at a distance of the wall equal to their half-length. 

2 MODELING APPROACH 

We use an open-source CFD-DEM code to solve for the particle motion in a dilute fibre-

suspension. The Navier-Stokes equations are solved using OpenFOAM (The OpenFOAM 

Foundation, 2014). Particles are placed into the developed flow field. Particle motion is 

solved with LIGGGHTS®. The coupling to the fluid is performed with CFDEM®coupling 

[17], which was extended to account for non-spherical, elongated stiff particles. 

The translational and rotational motion of the fibre (in an inertial frame of reference) can 

be described by Newton’s Equation of motion: 
h w c

p tm d   v f f f  , (1) 

  h cd

dt
  I ω t t . (2) 

Here, mp is the mass of the prolate spheroid, and I is the moment of inertia tensor for a prolate 

spheroid. fh and th are force and torque exerted on the particle by hydrodynamic interaction. fc 

and tc are interaction force and torque due to particle collision with the wall and/or other par-

ticles. fw are body forces on the fibre. On the particle side (LIGGGHTS®), the elongated parti-

cle is represented as a spherocylinder, i.e., a cylinder with to half-spheres on each end of the 

cylinder (Figure 1a). The geometries are described by the cylinder length l and the cylinder 

diameter c. The radius of the half-sphere is thus 2c . It is possible to account for additional 

particle roughness, i.e., fibrils of a cellulose fibres. The height of the roughness is defined by 

rough in our model.  

For computing the fluid interaction forces and torques, the elongated particle is represented as 

a spheroid (Figure 1b). There is an analytical solution for spheroids under creeping flow con-

ditions presented by Kim and Karrila [5], which we follow in the hydrodynamic interaction. 



Jakob D. Redlinger-Pohn, Lisa M. König, Christoph Kloss, Christoph Goniva, and Stefan Radl 

The major semi-axis a of the spheroid equals half the length of the cylinder, 2a l . The mi-

nor semi-axis of the spheroid b is defined such that the hydrodynamic properties of the cylin-

der and the spheroid in shear-flow are identical. According to Cox [18], b calculates to: 

 
1

ln
2.48

cylinderb c 
. 

(3) 

cylinder is the aspect ratio of the spherocylinder, defined as cylinder l c  . 

 

Figure 1: Schematic representation of the spherocylinder (a), and the prolate spheroid (b). l and c are the length 

and the diameter of the spherocylinder. p and d are the origin of the line segment and its (normalized) direction 

vector. rough represents the particle surface roughness. a, and b are the major and minor semi-axis of the sphe-

roid respectively. The global and particle associated Cartesian coordinate systems are indicated by (x,y,z) and 

(x'',y'',z'') respectively. 

Point-volume particles are assumed, and the fluid translational velocity u, as well as the local 

rotation rate , are taken from the fluid cell coinciding with particle center, defined as 

  / 2l c p d . 

2.1 Hydrodynamic Interactions 

Our model for the hydrodynamic interaction coincides with the model presented by 

Lindström and Uesaka [6]. Assuming creeping flow, hydrodynamic force fh and hydrodynam-

ic torque th will be dominated by viscous effects modeled as: 

 v v  f A u v  . (4) 

 v v v    t C Ω ω H γ . (5) 

Here v is the fibre velocity at its center of mass position. γ  is the rate of strain tensor 

  / 2
T  

 
γ u u  . Av, Cv, and Hv are hydrodynamic resistance tensors defined as: 

 3v A A Al Y X Y     
 

A d d  . (6) 

 3v C C Cl Y X Y     
 

C d d . (7) 

 3v Hl Y H εd d . (8) 

 and  denote the unit tensor and the permutation tensor. The parameters XA, YA, XC, YC, and 

YH depend on the eccentricity  
1/2

2 21e b a   of the prolate spheroid [6]. Previous work [6] 

also introduced a term considering inertial effects, i.e., an inertial drag force fI and torque tI. 
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The resulting total hydrodynamic force fh and hydrodynamic torque th on an elongated parti-

cle thus calculates to:  

   h v I   f A A u v  . (9) 

     h v I v I      t C C Ω ω H H γ . (10) 

As described by Fan and Ahmadi [19], the equations for the particle motion (eqn. 1, and eqn. 

2) are of stiff nature, and need to be solved using a forward-differencing scheme. To do so, 

the fluid-particle interactions terms in the governing equations must be decomposed into and 

an explicit (indicated by subscript ‘exp’ below) and an implicit contribution. Furthermore, it is 

useful to solve the translational equation of motion in the inertial reference frame, and that for 

rotational motion in a reference frame aligned with the principal axes of the particles. The lat-

ter is indicated by primed variables in what follows. In our work we also consider a simple 

model for added mass effects (due to liquid rotating with the particles). In analogy to Fan and 

Ahmadi [19], the equations of motion read:  

   exp1 /addM f p p t slC m d     v f K u v , (11) 

     '

' ' ' ' ' ' ' ' '

exp ,p p sl rott
d       I ω ω I ω t K Ω ω , with (12) 

 ' ' 1p add f pC   I I  (13) 

Here Ksl and Ksl,rot are the diagonal part of the translational and rotational drag resistance ten-

sors defined above, respectively. Note that I’ is the moment of inertia tensor in the body-fixed 

coordinate system, which is constant for each particle. 

We now apply a Crank-Nicholson forward discretization scheme (with CN being the Crank-

Nicholson blending factor) to arrive at the following explicit evolution equations for the trans-

lational and rotation speed of each particle at timestep n+1: 

 

 

 
          

 

 

exp

1

1
1 /

1 / 1 /

n n

n

n n n

sl

addM f p pn

sl addM f p p

t
CN

C m

t CN C m





 

 



      
 


   
 

v f K u v

v
K

, 

(14) 

 

             
 

' ' ' ' ' ''

, , ,'

' 1 ,

' '

, , ,1 /

n n n n n n

i tot i i p i sl rot i i
i

n p ii

i n

sl rot i p ii

t
CN

t CN







      
 


 

ω t ω I ω K ω
I

ω
K I

, with 

(15) 

          ' ' ' ' '

exp ,

n n n n n

tot sl rot   t t K Ω ω  (16) 

We have verified our implementation against the analytical solution of Jeffery [20]. Thus, 

an elongated particle (of zero mass) in a linear shear flow will rotate with a time period: 

 2 12

p

  


 


  . (17) 

p  is the flipping frequency of the particle, and   is the fluid shear rate.  is the aspect ratio 

of the spheroid defined as, a b  . A characteristic of the rotation of elongated particle in 

laminar shear flow is, that the particles remain in their initial orbit of rotation, i.e., the initial 
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orientation of the particle rotational axis with respect to the shear plane remains constant 

[5,21]. The orbit constant C is defined as 

      
1/2

2 2 2tan sin cosC       ,with (18) 

 tan tan
1

t
 

 

 
  

 
, (19) 

 
    

1/2
2 2 2

tan
sin cos

C


  



. (20) 

 

Figure 2: Coordinate system and definition of the Cartesian and polar coordinates with respect to the shear plane. 

Figure 3a, compares the orientation angle  from our simulation of an elongated particle, 

 = 10, in a linear shear flow, 1666s  , to the analytical solution derived by Jeffery. The 

initial orientation is: 2  , and 2  , yielding an orbit constant of C = 0.709. In Figure 

3b we plot the angular velocity, and observe that the simulation results perfectly represent the 

analytical solution for low density ratios. However, for increased particle density and thus in-

creased particle inertia, Lundell and Carlson [22] found that the time-dependent flipping be-

havior of the elongated particle changes to a time independent rotational motion of the 

elongated particle. Figure 3c and d show the angular position and the angular velocity of a 

particle, initially orientated in shear plane (C = ) with a density ratio (particle to fluid) of 

5000, respectively. We find, that the oscillation frequency increases and the particle actually 

is never at rest, i.e.  > 0. Thus, our code captures very well the transition from a time-

dependent flipping to a time-independent rotational motion.  

We note in passing that Rosén et.al. [21,23] performed detailed simulations of a single 

elongated particle, fully resolving the fluid-particle forces. He showed that at increased fluid 

inertia, elongated particles leave their initial orbit and drift towards a stable orbit. Unfortu-

nately, our code is currently not able to account for this effect. Thus, simulations performed 

are yet limited to cases of small particle Reynolds number where we can assume creeping 

flow around the particle. 
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Figure 3: Time dependent orientation angle , and angular velocity , for an elongated particle,  = 10, in linear 

shear flow. The particle relative density is 0.001 (panel a and b), and 5000 (panel c and d). 

2.2 Contact Force and Torque 

Calculation of contact force fc and contact torque tc follows a linear spring-dashpot model 

in normal and tangential direction [24,25]: 

   c

p n ij n ij t ij t ijk k      f n vn t vt  . (21) 

kn and kt are the normal and tangential spring stiffness, and n and t are the normal and tan-

gential damping coefficient respectively. The vector nij and tij are the normal and tangential 

directions of the collision. Within the surface roughness region, the roughness adds to the to-

tal collision force, 
c c c

p rough f f f . The formulation of frough
c is identical to the collision force 

of the particle. The torque is calculated as the cross product of the contact force fc and the dis-

tance between the bodies r. 
c c t f r  . (22) 

The contact detection algorithm follows the calculation of a line intersecting with another line 

(particle-particle), or a triangle (particle-wall, see Figure 4 for an illustration). The implemen-

tation follows the strategy proposed by Schneider and Eberly [26], and below the main idea of 

the algorithm is summarized. More details can be found in König [27].  
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Figure 4: Graphical illustration of the (a) line-triangle interaction, and (b) line-line interaction [26,27]. 

The line segment is presented by its point of origin, the direction of orientation and its exten-

sion: 
0 0 0( )s s l p d , and 

1 1 1( )t t l p d . The two points on the line segment with the small-

est distance are q0 and q1. The length of the vector dij presents the distance between both lines. 

The triangle segment is presented by 
0 0 1, )u v u v  a a e e(  with 

0 1 0 e a a , and 

1 2 0 e a a . All points within the triangle are represented by 0 u , 1v  , subject to the con-

straint 1u v  . The code first checks if the elements, lines or line-triangle, are parallel to 

each other by calculating the dot product, 
0 d n  and 

0 1d d , where n is the normal vector of 

the plane, 
0 1 n e e . If the result is 0, both elements are parallel to each other. The minimum 

distance between the elements is found by minimizing the square distance function. In case 

the closest point of the two elements is of smaller distance than 2c  for line-triangle, or c for 

line-line interaction, the two elements are in contact with each other. In case the contact point 

is found on either end of the line segment, contact detection for spherical particles is applied. 

While particle-particle interactions have been verified by König [27], selected results of 

the particle-wall interaction verification study are presented below. Specifically, the rebound 

translational xv  and rotational z
  velocities were calculated following Kodam et.al. [28]: 

   

 2 2

1 'cos '

' cos '

x

z

zz

m v h

I mh

  


 




  


 

 (23) 

 'cos 'x y xv h v         (24) 

Here the superscript + and – denote the post impact and pre impact quantities. v and  are 

components of the translational and rotational velocity of the cylinder.  is the coefficient of 

restitution, m is the mass of the prolate spheroid and Izz is the spheroid inertia around the 

shorter semi-axis. h' and angle ' are geometrical values of the cylinder (Figure 5a). To apply 

the analytical solution, a rectangular cylinder corresponding to the spherocylinder had to be 

projected into the spherocylinder. Figure 5a illustrates the spherocylinder and its correspond-

ing rectangular cylinder for a certain inclination . The shape of the projected cylinder (i.e., ', 

h', l', and c') changes with   as follows: 

 ' sinc c   . (25) 

  ' 1 sinl l c    . (26) 
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2 2' ' ' / 2h c l  . (27) 

 ' arctan '/ 'c l   . (28) 

Figure 5b compares the simulation results to the analytical solution, showing excellent 

agreement. 

 

Figure 5: a: Fibre-wall impact presenting the sphero-cylinder and its corresponding rectangular cylinder. b: 

Comparison of simulation results to an analytical solution for rectangular cylinders [28]. Translational vx
+ and 

rotational z
+ velocity for different inclination angles . 

3 RESULTS 

In this section we illustrate our methodology by considering a general suspension flow test 

case, i.e., flow in a torus as previously considered by Redlinger-Pohn et al. [29]. The fibre-

fluid density ratio is 1.3. The aspect ratio of the fibres was varied to model differently-sized 

fibres. The flow field was solved with OpenFOAM®, version 2.3.0. Time derivatives were 

approximated with a second-order Euler backwards scheme, and convective terms were ap-

proximated with the second-order Gauss linear interpolation scheme. The PISO algorithm was 

used to solve the equations. Settings for the fluid solver were in accordance with settings used 

by Andric et.al. [7]. 

3.1 The Motion of a Fibre Suspension in a Torus  

Due to the curvature of coiled tubes the resulting flow field differs from the flow field in a 

straight pipe flow. In order to approximate such tubes, we here consider flow in a closed torus 

as an academic test case [30]. It is well known that centrifugal forces lead to a deflection of 

the fluid flow towards the outer bent, thus yielding a pressure gradient in the cross section 

[31,32]. Consequently, a secondary flow arises within the cross section from the outer bent O 

towards the inner bent I along the pipe wall, and from the inner bent to the outer bent along 

the equatorial mid plane. This secondary motion usec is called Dean flow, and the intensity is 

quantified by the Dean number Da: 

d D   . (29) 
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sec bulku u  . (30) 

bulku d
Re




 . (31) 

sec Re
u d

Da 



    . (32) 

The torus is sketched in Figure 6. d and D are the diameter of the tube cross section and the 

coil diameter of the torus respectively. ubulk is the mean bulk velocity of the fluid, and  is the 

kinematic viscosity of the fluid. The section above the equatorial mid-line is defined as upper 

half (UH), and the section below is defined as lower half (LH). I and O denote the inner and 

outer wall of the torus. Cartesian coordinates are donated as (x,y,z), and the corresponding to-

roidal coordinates as (r,,). 

 

Figure 6: Schematic representation of the half torus in the Cartesian (x,y,z) and toroidal (r,,) coordinate sys-

tem. g denotes the direction of gravity. D and d present the torus and pipe diameter. I and O denote the inner and 

outer wall of the torus. Projected in the cross section is a typical flow profile of a laminar toroidal flow. Left 

cross section: flow in the stream wise direction, right cross section: secondary motion (Da = 1049, figure 

adapted from [29]). 

Simulation of the toroidal flow is documented in Redlinger-Pohn et.al. [29]. The position of 

the Dean vortex is indicated by a black dot in Figure 6. At this position the secondary motion 

describes a rapid change in the flow direction. 

Particles introduced into the flow field will be affected by the secondary motion. Depend-

ing on their mass and density, and thus their terminal settling velocity uset particles will be (i) 

mixed in the cross section [33] or (ii) settle towards the LH and are pushed to the inner bent I 

by the secondary motion [34]. At the latter position we find particles in a region of low 

stream-wise fluid velocity. 

In an extensive numerical study, fibres of different aspect ratio (ranging from 2 to 160) 

were introduced into the above shown flow profiles [29]. Here we document some additional 

findings from our previous simulation results that are illustrated in Figure 7: colored in yellow 

are regions where the (vertical) secondary motion exceeds the terminal settling velocity, and 

thus particles are lifted against gravity. Regions where the fibre settles in direction of the 

gravity are indicated in blue. We find, that regions in the UH where longer (and thus heavier) 
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fibres ( = 160) are lifted are confined to the inner wall of the torus. Specifically, these re-

gions are located at the outer bent where the secondary motion is strongest, and extend to the 

center of the Dean vortex. Regions where the smaller fibres ( = 2) experience a lift are sig-

nificantly larger, explaining the more homogeneous distribution of these fibres. 

 

 

Figure 7: a and b: Sum of the secondary motion in direction of gravity and the fibres’ terminal settling velocity. 

Yellow: secondary motion exceeding the settling velocity. c and d: Relative fibre concentration. Da = 1049 for 

this simulations. 

The consequence of the fact that longer fibres only experience lift in certain regions explains 

the accumulation into a narrow band. Here the longer fibres orbit in the cross section in the 

UH (Figure 7c). Especially close to the equatorial midplane, where the fibres slowly move 

from the inner bent I to the outer bent O, we find a high concentration of fibres. Most likely, 

fibres will entangle in these regions and form a larger fibre-flock. Smaller fibres are more ef-

fectively mixed by the secondary motion, and are distributed more homogenously in the to-

rus’ cross section (see Figure 7d). The consequence is a fibre length-dependent segregation in 

flow direction, with the longer fibres moving (on average) faster than the fluid. 

4 CONCLUSION AND OUTLOOK 

We present details of an open-source code for the simulation of non-spherical, elongated 

particles suspended in a fluid. In our modeling approach we follow a strategy involving (i) 

rigid elongated particles, (ii) one-way coupling to the fluid, as well as (iii) fibre-fibre and fi-

bre-wall interactions. For the particle interaction we represent the particle as spherocylinders, 

and detect the point of contact by a line-segment algorithm. Thus, we do not represent the par-

ticle surface by multiple spheres, allowing a comparably rapid calculation of the contact point. 

The code is successfully validated against standard cases for elongated particles, e.g., the Jef-

fery orbit. 

Finally, we performed a simulation study of a fibre suspension in a torus. A fibre length-

depended segregation was observed. The reason for this phenomena is that fibres are lifted by 
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the secondary motion in the upper half of the torus, i.e., they can move against gravity. This 

lifting effect differs for fibres of variable length. As a consequence we observe a localized 

high concentration of long fibres in the torus’ cross section, while smaller fibres are rather 

homogeneously distributed. This segregation is certainly of key importance for the transport 

rate of fibres through the torus. 

Future studies may include the simulation of fibre suspensions at higher Reynolds numbers, 

i.e., that exceeding the laminar flow regime. The investigation of more test cases used in liter-

ature (e.g., by Marchioli and Soldati [4], or Andric et.al. [7]) may pave the way towards an 

industrial application of our simulation tool. However, a more realistic flexible fibre model 

(than presented in our present work) should be used for these cases. This is because the for-

mation of fibre aggregates certainly becomes a dominating effect at fibre concentrations rele-

vant for industrial applications. Unfortunately, flexible fibre models require significantly 

more computational resources compared to the rigid fibre model in the present contribution. 
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