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Abstract

Homophones pose serious issues for automatic speech recognition (ASR).
In order to deliver high quality ASR output, homophones need to be dis-
ambiguated. Homophone disambiguation is usually done by analysing the
homophonic word’s context. Whereas this method reaches good results in
read speech, it fails in conversational, spontaneous speech, where utterances
are often short, contain disfluencies and/or are realized syntactically incom-
plete. From phonetic studies, however, we learned that words which are ho-
mophonic in read speech often differ in their phonetic detail in spontaneous
speech. Whereas humans use phonetic detail to disambiguate homophones,
ASR systems usually ignore it. In this paper, we show that phonetic detail
can be used to automatically disambiguate homophones. For our experi-
ments, we use 3146 homophonic tokens from a corpus of spontaneous Ger-
man. We collect a set of acoustic features and train a random forest model.
Our results show that homophones can be disambiguated reasonably well
using acoustic features (71% Fy, 92% accuracy). In particular, this model
is able to outperform a model based on lexical context (48% F1, 89% accu-
racy). A module using phonetic detail similar to our model is suitable to be
integrated in ASR systems in order to improve word recognition.
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1. Introduction

Homophones and near-homophones pose serious issues for automatic speech
recognition (ASR) (Goldwater et al., 2008). If an ASR system encounters
a homophonic word, it needs to decide which lexeme underlies this word in
order to deliver high quality output. This process is called homophone dis-
ambiguation. Homophone disambiguation is usually done within a stochastic
language model (Lee, 2003) or by an analysis of the homophonic word’s con-
text, similarly to word sense disambiguation (Béchet et al., 1999; Jurafsky
and Martin, 2009). While this context-based form of homophone disambigua-
tion is often successful, it is not for homophones that share similar syntactic
contexts, so-called doubly confusable pairs (Goldwater et al., 2010). Whereas
it has been suggested to exploit more syntactic and discursive information to
distinguish between members of doubly confusable pairs (Goldwater et al.,
2010), we propose to exploit acoustic cues. This proposal is motivated by
two reasons: (1) Strong syntactic constraints worsen word error rate (Béchet
et al., 1999). This is especially true in spontaneous speech which contains
breaks, repairs and similar discontinuities. (2) A number of phonetic studies
highlighted differences in phonetic detail between homophones (e.g., Ward
(2004); Gahl (2008); Rena Nemoto and Adda-Decker (2008); Niebuhr and
Kohler (2011); Samlowski et al. (2013); Volin et al. (2014)). To our knowl-
edge, however, such differences in phonetic detail have not yet been used for
homophone disambiguation in an ASR system.

In the last decade there was a growing interest in studying the predictors
for pronunciation variation (see Section 1.1). Besides the well studied pre-
dictors such as segmental context, word frequency and phrase position, we
hypothesize that the realization of a word also depends on its morphosyntac-
tic attributes. In this regard, it has already been shown that differences in
word duration can aid in learning syntactic structures (Pate and Goldwater,
2013). We, however, propose to look at a more constrained line of research
that is directly applicable to ASR. If morphosyntactic information is directly
encoded in the speech signal, then many homophones can be disambiguated
using acoustic features alone. As there is generally more variation in spon-
taneous speech (e.g., Ostendorf et al. (2003)), we expect these differences to
be particularly pronounced in spontaneous speech. Moreover, our research is
also particularly relevant for spontaneous speech for another reason: Due to
the high amount of reduction in spontaneous speech, there are more phono-
logically homophonic tokens than in read speech (Niebuhr and Kohler, 2011).



In order to test our hypothesis that homophones can be disambiguated
acoustically, we analyze the German word forms (der) [dere], (die) [di:], (das)
[das] and their inflections (des) [des], (dem) [dexm], (den) [demn]. Each of
these word forms take either the function of determiner (DET), relative pro-
noun (REL) or demonstrative pronoun (DEM). All of these can surface in
similar contexts!:

(1) Freitag der 13. passt
NouN DET ADJ VERB

Friday 13" is fine

(2) der Freitag der nach Ostern kommt passt
DET NoUN REL ADP NOUN VERB VERB

the Friday after Easter is fine

(3) Freitag der passt
NouN DEM VERB

Friday, that is fine

All grammatical functions of a word form share the same phonological form.
Despite this, significant acoustic differences between different functions of
the same word forms could be found in a controlled reading task (Samlowski
et al., 2013). This paper aims at making these findings usable for ASR
in spontaneous speech. This is especially relevant, as the articles, and the
demonstrative and relative pronouns occur frequently in spontaneous conver-
sation (e.g., 68% of all utterances in the Kiel Corpus of Spontaneous Speech
(Kohler et al., 1995) contain at least one instance of these word forms).
Furthermore, our approach of using acoustic features for homophone disam-
biguation can be applied to other types of homophones.

In this paper, we automatically extract acoustic features from 3184 re-
alizations of homophonic word forms. We analyze these acoustic features
and search for systematic differences between the realizations of the same
word form. We then use this information to automatically disambiguate ho-
mophones by means of random forests. In order to learn more about the
variation of homophonic structures and about the relevance of each feature
class, we further analyze our data by means of mixed effects logistic regression

n this paper, we use a combination of part-of-speech (POS) tags as developed in
Petrov et al. (2012) and category labels as developed in Bickel et al. (2008).



models. Furthermore, we also propose a way to integrate this information in
current ASR system designs and thus improve word recognition.

1.1. Phonetic detail in speech production and perception

Phonetic production experiments and corpus studies have shown that the
realization of the same word differs in dependence of several factors: One of
the best understood type of factors are the connected speech factors (e.g.,
speech rate (Jurafsky et al., 1998), speaking style (Ernestus et al., 2015), seg-
mental context (Schuppler et al., 2012)). Other parameters which are known
to affect the pronunciation of a word are the speaker’s social identity (Drager,
2011), word frequency (Gahl, 2008), bigram frequency (e.g., Schuppler et al.
(2012); Torreira and Ernestus (2009)), word predictability (Jurafsky et al.,
2002), and word identity (Pierrehumbert, 2002). Furthermore, also syntac-
tic structure (Pate and Goldwater, 2013) and morphological properties have
been shown to affect the degree of reduction of a word. For English, Baker
et al. (2007) found that the prefix mis has longer duration in words where it
functions as a productive morpheme (e.g., mistimes) than in words where it
is a non-productive pseudo morpheme (e.g., mistakes). Similarly, Schuppler
et al. (2012) found that homophoneous word pairs differ in their phonetic
detail depending on their morphological properties: For instance, the word
final /t/ in the Dutch word vind ‘(I) find’ with the canonical pronunciation
[vint] is more likely to be reduced than the /t/ in the homophoneous word
vindt ‘(he) finds’ where the final /t/ also carries a morphological function.
Finally, Samlowski et al. (2013) found in German read speech that homopho-
neous demonstrative pronouns, relative pronouns and definite articles differ
in duration, prominence and spectral characteristics. In this paper, we aim
at investigating whether also in German spontaneous speech homophoneous
demonstrative pronouns, relative pronouns and definite articles differ with
respect to their phonetic detail. In our set of features, we include temporal
and spectral features which reflect mentioned vowel and consonant reductions
and deletions.

Furthermore, the different pragmatic (Plug, 2006) and interactional func-
tions (Local, 2003) of words have been shown to differ with respect to their
phonetic detail. A quantitative approach to studying the relationship be-
tween phonetic detail and communicative function and/or meaning has been
presented by Volin et al. (2014). In their study, they used a set of 36 prosodic
features to automatically classify eight functional categories of the Czech af-
firmation particle jasné. They compared three different statistical approaches
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for classification: discriminant analysis, regression trees and artificial neural
networks and interpreted the outcome linguistically. They conclude that each
of the classification outcomes significantly reflect that the prosodic variation
is linked systematically with the different functional categories of jasné and
that their methods are suitable to learn about the relative importance and
the interplay of the individual predictors for the different categories. Also
in this paper, we will use statistical modeling techniques to study the inter-
play of acoustic features (a set of 189 features) and to investigate whether
also grammatical categories (determiner, relative pronoun or demonstrative
pronoun) can be distinguished automatically (in contrast to classifying func-
tional categoris as in Volin et al. (2014)). Instead of using discriminant
analysis and artificial neural networks, we prefer to use random forests (L.,
2001), a relatively novel statistical approach which serves well to discover
context-dependent relationships and which deals well with highly correlated
variables (see Section 3.2 for more details on the method). In addition, we
will use mixed effects logistic regression (Jaeger, 2008) in order to study the
details of the interplay of certain factors.

Based on the assumption that humans use phonetic detail particularly
extensively when disambiguating homophones (Hawkins and Smith, 2001),
a series of experiments revealed information about which type of phonetic
detail humans actually use in speech perception. It has been shown that
the perceived meaning of junctural minimal pairs (e.g., So he diced them vs.
So hed iced them is effected by the voice of individual speakers. Smith and
Hawkins (2012) found in a production experiment that the speakers vary
significantly as in how they use certain acoustic features to distinguish such
junctural minimal pairs. A subsequent perception experiment designed to
test the intelligibility of those junctural minimal pairs in noise revealed that
when listeners hear tokens spoken by the same voice as in the familiarization
period they perform better with regard to the identification of words and
the syllable boundaries than when they hear tokens spoken by a different
voice. Not specific for homophones, but for the perception of word meaning
in general, Nzgaard et al. (2009) showed in a production and perception ex-
periment revealed that speech contains prosodic characteristics specific for
word meaning and that listeners also use these cues to disambiguate mean-
ings. They conclude that their study provides evidence for the existence of
prosodic correlates to word meaning. Finally, Nzgaard and Lunders (2002)
have shown that the emotional tone of voice is relevant for the processing
of lexically ambiguous words and affects the selection of the word meaning.



Whereas Nzgaard and Lunders (2002) showed the effect of tone of voice for
native speakers, Hanulikova and Haustein (2016) found effects of emotional
prosody on the processing of lexically ambiguous words also for non-native
speakers. In this paper, we will not present any perception experiments. We
will, however, integrate acoustic features for the automatic disambiguation
of the homophones which are related to the here presented findings from
speech perception (e.g., we use prosodic and spectral features which also
showed good results in emotion recognition (Schuller et al., 2007)).

1.2. Phonetic detail and ASR for spontaneous speech

In comparison to read speech, spontaneous speech poses serious problems
for automatic speech recognition (Nakamura et al., 2008, p.172): “Sponta-
neous speech can be characterized by accelerated speaking rate, sloppy pro-
nunciation, filled pauses, repairs, hesitations, repetitions, partial words, and
disfluencies.” In order to be able to deal with these difficulties, Nakamura
et al. (2008) suggests to “ (a) analyzing quantitative differences between
spontaneous and read speech, and (b) clarifying the reason why the recogni-
tion performance for spontaneous speech is low [p.172].” A series of studies
has focused on the misrecognitions of ASR systems and finding the factors
which cause the errors?. In such an error analysis of ASR systems for English
and French spontaneous speech, Adda-Decker and Lamel (2005) found that
male speakers are harder to recognize than female speakers. Their detailed
phonetic analysis revealed that the speech of men contains more temporal
segment reductions. Bell et al. (2002) also found that women are more likely
to use fuller forms, even when controlling for speech rate. Another evidence
for reduced words being difficult to recognize comes from Nakamura et al.
(2008), who found that the reduction of the MFCC space of vowels and
consonants directly contributes to the decrease of speech recognition perfor-
mance for spontaneous speech in comparison to read speech. Moreover, these
reductions are especially relevant for fast speech. Siegler and Stern (1995)
observed among others that ASR performance drops when speech rate in-
creases. Also Shinozaki and Furui (2001) provide a detailed error analysis
for automatic speech recognition of conversational Japanese. They found
higher word error rates for low probability words and for short words (sim-
ilar as Goldwater et al. (2008)) as well as for utterances produced at higher

2For an overview of the role of speech variability see Benzeghiba et al. (2007)



speaking rate. Finally, a fairly large percentage of misrecognized words in
ASR are connected to specific words. In other words, there are words that
are harder to recognize than others. These words which are harder to recog-
nize are mostly confused with homophones or near-homophones Goldwater
et al. (2008), which is exactly the focus of this paper.

Rena Nemoto and Adda-Decker (2008) dealt with homophone disam-
biguation of the French words et ‘and” and est ‘to be’ in spontaneous broad-
cast speech. Motivated by the high word error rate (WER) for these words
(25% for et and 20% of est), they compared their ASR results with the per-
formance of humans in a perception test. The participants listened or read
the homophones in a 7-gram context (3-gram left, 3-gram right). In general,
they concluded that humans do five times better than the ASR system, but
that the conditions which were especially difficult for ASR also posed prob-
lems for the human listeners. Furthermore, their results suggest that listeners
make use of prosodic/acoustic information especially when homophones oc-
cur in ambiguous syntactic structures. In order to find those acoustic features
that aid homophone disambiguation, they tested 25 different classification al-
gorithms with a set of 41 acoustic features (e.g., duration, fO, pauses) and
reached accuracies of the best performing algorithm of 77% for et and 78%
for est. Rena Nemoto and Adda-Decker (2008) subsequently suggested that
the use of acoustic information might be useful not only for humans but also
for an ASR system. They did, however, not provide information on how to
implement that type of information into an ASR system nor did they provide
performance comparisons with the traditional context-based approach. This
paper investigates whether our large set of acoustic features (189) performs
well on homophone disambiguation and whether the performance of acoustic
features compares favorably to lexical features.

1.3. Our approach

To improve homophone disambiguation, we slightly change the way an
ASR system uses its two main information sources: the acoustic signal and
the language model®. Within the probabilistic paradigm, ASR in its most
basic form is the act of searching for the most probable word sequence W =
wy, ..., w, given acoustic observations r = xy, ..., xr:

W* = argmax p(W|x) (1)
W

3We here ignore the pronunciation model as it is irrelevant for the current discussion
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or using Bayes rule

W — arg max p([W)p(W)
w p(z)

(2)

in which p(x) does not affect the maximization and thus can be ignored.
Homophone disambiguation is usually performed on the level of the language
model p(W). For large vocabulary ASR this is generally a trigram model:

n

p(W) = p(wi)p(ws|wn) | [ pwilw; 1, wis). (3)

=3

In speech recognition, the acoustic model discovers phones and discards noise
Jurafsky and Martin (2009). What is considered noise in this paradigm,
however, is not only noise but contains relevant information: phonetic detail.
Humans use phonetic detail particularly extensively when disambiguating
homophones Hawkins and Smith (2001). This is to say that phonologically
homophonic structures are potentially phonetically distinct. In order to show
this in a practical setting, we disambiguate homophones in the following
way: After word recognition — in our experiments this is replaced by manual
transcriptions done by human transcribers — we treat homophonic words
as separate tokens. For instance, (der) is now split into one token derpgr,
one token derzgy, and another token derygy. We then extract acoustic features
designed to represented phonetic detail. We use these features to train a
learner which rescores the ASR output. Through this rescoring step, the
language model now also depends on acoustic features:

p(w') = p(w)p(wlf), (4)

in which 6 represents features of phonetic detail. Our approach leaves the fun-
damental architecture of the ASR system unchanged. Through its simplicity,
the overhead can be kept low as rescoring is necessary only for homophonic
words.

2. Material and annotation

Our analysis is based on spontaneous speech data from the Kiel Corpus of
Spontaneous Speech (Kohler et al., 1995). We chose this speech material
as it comes with detailed transcriptions at the orthographic, segmental and
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Table 1: Absolute frequencies of category labels per word form.

DET REL DEM total

(der) 472 4 17 493
(die) 276 28 20 324
(das) 153 3 1148 1304
(des) 38 0 0 38
(dem) 275 0 2277
(den) 714 5 29 748

total 1928 40 1216 3184

supra-segmental level. Moreover, there are already detailed phonetic studies
available which are particularly focused on acoustic characteristics of reduc-
tions present in the speech material (e.g., Kohler et al. (1996); Kohler and
Rodgers (2001); Wesener (1999)). The Kiel Corpus of Spontaneous Speech
contains 126 conversations from 18 speaker pairs, each conducting 7 dia-
logues. These 36 speakers produced a total of 4721 utterances in 2061 turns
which equals to 42945 tokens. Of these, (der, die, das, des, dem, den) account
for 3184 tokens. Of all 2061 turns, 1406 turns (68%) contain at least one in-
stance of (der, die, das, des, dem, den) and are therefore likely to contain
recognition errors due to the multi-functionality of these word forms.

We annotated all target words with information regarding their function:
determiner, relative pronoun or demonstrative pronoun. For the distribution
of annotation labels see Table 1. We also annotated all target words with
information regarding their gender (feminine, masculine, neuter), number
(singular, plural) and case (nominative, genitive, dative, accusative). How-
ever, this information is not used in the present analysis due the very low
number of observations in most of the resulting classes (e.g., there are only
two instances of (dem) as demonstrative pronoun). The 38 instances of (des)
had to be excluded completely from the following analysis because they sur-
face only in the function of a determiner.

It also has to be noted that there is no unique relation mapping word
forms to lexemes for (der, die, das). No word form corresponds to only
one inflected form. With the exception of (das), all word forms can also
be the surface form of at least two different lexemes. See Table 2 for an
overview. These words share both acoustic and syntactic properties are also



Table 2: Word form—lexeme relation: The lexemes at the top take the respective word
form on the left if inflected for case and number as shown in the fields.

lexeme
word form der die das
(der) 1sG, 2PL 238G, 2PL  2PL
(die) l4pL 14sa,14pL 14PL
(das) l14sa
(des) 2saG 2saG
(dem) 3saG 3sa
(den) 4sG, 3PL  3PL 3PL

called doubly confusable pairs Goldwater et al. (2010). The examples 4 and
5 illustrate this point with a pair of German sentences that are identical
sequences of words.

(4) Hans, der Floh, hatte ein gutes Leben.
John, the flea, had a good life.

(5) Hans, der floh, hatte ein gutes Leben.
John, who fled, had a good life.

If these two sentences are the output of an ASR system and thus capital-
ization is absent, they cannot be distinguished without further contextual
information. However, only in example 4, (der) (canonical realization [dee])
— the masculine singular nominative determiner — can be reduced to the
forms [de], [do] or [d]. In example 5, (der) — the masculine singular nomina-
tive relative pronoun— can take neither of these reduced forms. It is always
pronounced as [dee]. This difference is not due to differences in syntactic
structure but is lexically fixed. With our acoustic-based approach to homo-
phone disambiguation, we aim at making use of these differences with respect
to phonetic detail.

We do not take any measures to assure that the target words occur in
the same prosodic context. We do, however, include their position in the
clause as a feature. This is particularly important as some positions are
known to lead to articulatory strengthening (Goldwater et al., 2010). All
target words tend to occur phrase-initially. Yet, demonstrative pronouns
may behave differently as they frequently receive contrastive stress in the
present speech data. We do not control other factors even though they are
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known to influence the realization of words as well (e.g., syntactic factors
(Jurafsky et al., 1998), segmental context: for instance segments tend to be
less reduced when the following word begins with a vowel than when it begins
with a consonant (Jurafsky et al., 1998), the speaker’s dialect).

3. Method

3.1. Feature grouping and feature extraction

For feature extraction, we use Praat Boersma and Weenink (2013), and
the R packages tuneR Ligges et al. (2014) and seewave Sueur et al. (2008).
We collect the following 189 features from each word and group them into
five feature classes:

1. Temporal (10 features): Word duration, segment durations, onset
duration, nucleus duration, coda duration. Segmental deletions are
indirectly encoded as segments having 0 duration.

2. Fundamental frequency (19 features): Static descriptors (e.g., ex-
tremes, position of extremes, mean, higher order moments, coefficients
of linear regression).

3. Intensity (19 features): Static descriptors (e.g., extremes, position of
extremes, mean, higher order moments, coefficients of linear regres-
sion).

4. Spectral (138 features): Coefficients of parabolic regression of for-
mants 1-3, perceptual linear predictives (PLP), long term average spec-
trum (LTAS).

5. Other (3 features): Speaker gender (male or female), speaker identity,
position of word in the clause.

All feature values are normalized by speaker using the respective z-scores.
The values of temporal features are also normalized by speech rate. Speech
rate is defined as clause duration divided by the number of words contained
in this clause. No feature values are manually corrected.

3.2. Feature selection and classification with random forests

Since the main aim of this paper is to find phonetic characteristics which
are useful for improving ASR, we do not focus on the comparison of the
performance of different classification and/or feature selection algorithms.
Instead, we choose a method which not only has been shown to reach high
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performances in similar speech recognition tasks but whose outcome also is
well interpretable linguistically. Random forests (RF) fulfill both require-
ments. They provide good prediction quality and are able to handle highly
correlated feature spaces (Strobl et al., 2008). In the field of speech tech-
nology, they are known to perform well in paralinguistic recognition tasks
(Schuller et al., 2007), where similarly as in our case, a high number of cor-
related acoustic features are used as input to the model. Furthermore, RF's
have not only been shown to reach high performances with acoustic input,
but they also have been shown to outperform traditional n-gram language
models (Oparin et al., 2008; Xu and Jelinek, 2004). Given their potential
to generalize to unseen data, RF language models are superior to n-grams
both in terms of perplexity reduction and WER (Xu and Jelinek, 2004). This
is relevant also for our study, as we compare our acoustic-feature based re-
sults for homophone disambiguation with the performance of a RF language
model, with lexical features as input only.

Only recently conditional interference trees and random forests were ap-
plied to linguistic applications (e.g., Tagliamonte and Baayen (2012)). Com-
pared to the very commonly used regression-based approaches in linguistics
(e.g., Jaeger (2008)), random forests especially powerful when there are many
high-order interactions between the predictors and for problems where the
sample size is small but the number of features/predictors is relatively large
(Levshina, 2015). Furthermore, predictors can both be categorical or contin-
uous. RFs have been used in several linguistic topics such as modeling speech
errors and repairs in spontaneous speech (Plug and Carter, 2014), and turn
taking (Roberts et al., 2015). For the statistical analysis of psycholinguistic
experiments, Biirki et al. (2011) used random forests to reduce their set of
variables before entering them into a mixed effects logistic regression model.

An additional practical benefit of random forests is that they perform
both classification and feature selection in an integrated fashion (L., 2001).
For feature selection, we do not employ any methods that alter the feature
space (e.g., PCA) as we want to investigate the importance of features. In-
stead, we perform variable selection using tree minimal depth methodology
(Ishwaran et al., 2010) as implemented in randomForestSRC (Ishwaran and
Kogalur, 2015). In this process, we reduce the feature set to 30% of its
original size.
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3.8. Validation

We evaluate all models using F; measures. We use a definition of Fy

which is more suited to multiclass problems:
F = 20 (5)
+ RR
where BAC' is the balanced accuracy or unweighted average, and RR is the
overall recognition rate (Batliner et al., 2011). For each word, we perform a
speaker-independent tenfold cross-validation and average all folds. We then
average the results of all words for our overall results.

A simple way to assess feature importance is to evaluate the share and
the portion of a feature class (Batliner et al., 2011). Share is the number
of selected features from a feature class normalized by the total number of
features selected. Portion is the number of selected features from a feature
class normalized by the total number of features in this feature class.

3.4. Baseline: Lexical model

To evaluate the importance of acoustic features, we compare our acoustic
model to a baseline model trained on the target word’s lexical context. For
this, we train a random forest model on trigrams with the same configurations
as for the acoustic model. As previously done for instance in Jurafsky et al.
(1998) and Jurafsky et al. (2002), we estimated the log of the conditional
probability of a word given the previous words by using a backoff trigram
with Good-Turing discounting on the entire spontaneous part of the Kiel
Corpus. We decided to train on the entire corpus in order to ensure training
material is not limited in size. As the lexical model only uses the left context
of the target word, the setting is comparable to real-world ASR where there
is no possibility to look-ahead. Furthermore, this model does not receive the
POS gold labels of the context as they are not available in ASR either.

4. Results

4.1. Classification performance

Our model trained on acoustic features achieves good overall performance
on average (71% Fy, 92% accuracy). In particular, the model trained on
lexical features performs considerably worse. While its accuracy of 89% is

comparable to the model trained on acoustic features (92% accuracy), its F;
of 48% is not.
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While the reached accuracy is high for all analyzed word forms, this is
largely due to strong class imbalance. F;, however, varies considerably be-
tween word forms (see Table 3). The reasons for this variation are diverse.
The good performance for (dem) is misleading. Its very strong class imbal-
ance renders any performance highly difficult to interpret.

For other word forms, however, phonetic characteristics are likely to in-
fluence performance. Disregarding (dem), the best performance is achieved
for (der) (74% F;). Its diphthong [ere] is very frequently monopthongized in
more reduced settings. This is easily detectable when analyzing the spectral
features. The worst performance is achieved for (die) (59% F;). There might
be a connection between its performance and (die) being the only open syl-
lable in our analysis (in (der) the coda /r/ is vocalized but not empty). The
empty coda is very likely to increase coarticulatory influences from the fol-
lowing syllable (cf. segmental influence discussed in Jurafsky et al. (1998)).
Syllable structure and performance for the word forms (das) (61% F;) and
(den) (62% F) are comparable.

Table 3: Results for each word form and for all word forms combined: Unweighted
and weighted average; chance values are given for reference. These are computed by
predicting always the most frequent class.

Fy Fy, chance ACC ACC chance

(der) 740 .49/ 918 .95
(die) 596 479 869  .851
(das) 610 .48/ 880  .880
(dem) 965 .665 993 .993
(den) 626 .49/ 954 955
unweighted .707 .523 923 .927
weighted 664 .503 912 .916

Interestingly, accuracies for the acoustic models are approximately equal
to chance or in in the case of (der) and (den) slightly worse. We may conclude
that the model trained on acoustic features is trading accuracy for Fi: In
contrast to accuracy, Fy is constantly higher than chance (see Table 3).

4.2. Selected features

During feature selection, 57 features were selected. A complete list with
all selected features can be found in Appendix A.
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4.2.1. Share

The biggest share the selected features is taken by spectral features (28).
Fy features (10), temporal features (9) and intensity features (8) make up
the second half of the selected features. Additionally, the word’s position in
the clause and speaker identity are also included in the final feature set.

4.2.2. Portion

For portion, the situation is inverted, however. Of all feature classes,
spectral features achieve the lowest portion. From both temporal features
and the other feature class (comprised of speaker gender, speaker identity
and word position), all but one feature each are selected. From f; features
and intensity features, about half the features are selected. See Table 4 for
details.

Table 4: Share and portion of feature classes.

# features # selected share portion

spectral 138 28 491 203
fo 19 10 175 527
temporal 10 9 158 9
intensity 19 8 .140 421
other 3 2 .035 .667
total 189 o7 1

Notably, the speaker’s gender is not included in our final feature set.
However, this is unsurprising as speaker identity is one of the selected fea-
tures. Apparently the differences between homophonic word forms are truly
idiosyncratic and are not covered by gender-related generalizations.

In summary, all feature classes employed in this paper contribute to homo-
phone disambiguation. Whereas most selected features are spectral features
nearly all temporal features survive feature selection.

5. Discussion

our results reflect the importance of using F1 measure instead of accura-
cies. hard to compare with results from literature, where acc are shown, but
not the chance level nor class imbalances...
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Our results indirectly support previous results which showed that acoustic
features predict the amount of pronunciation variation in spontaneous speech
better than a trigram model Ostendorf et al. (2003). By only analysing the
target word’s acoustic characteristics we were able to exploit pronunciation
variation to classify functions of word forms. Much variation in spontaneous
speech is apparently more directly connected to phonetic characteristics than
syntax.

Our results also point out some crucial differences between ASR and hu-
man speech perception that negatively influence ASR performance. It has
been proposed before that there is a link between information on the level
of lemmata and phonetically rich information in human speech perception
Drager (2011). Our experiments simulate this link and show without strongly
diverting from a standard ASR architecture that access to phonetic informa-
tion benefits the correct identificaiton of lexemes. While humans probable
access phonetic detail in earlier stages of speech perception, it is question-
able if access to phonetic detail in earlier stages of ASR (e.g., on the level
of features or tagged clustering Ostendorf et al. (2003)) would warrant the
increase in computational load. Simple rescoring as proposed in this paper
allows to avoid this overhead in most cases. It consults phonetic detail only if
the target word is easily confusable with another word. Thus, the overhead is
rather small in many circumstances. Furthermore, in the current setup, both
training and — more importantly — prediction can be done in a reasonable
amount of time. This is possible due to the fact that a rescoring system can
run in parallel to the core ASR system.

More generally, our results suggest that the complete separation of speech
undestanding systems from the acoustic signal is undesirable. A stronger
integration of speech recognition and speech understanding may lead to im-
proved output quality for both modules. For this, simple rescoring is likely
to be insufficient, however.

5.1. Future work

Our analysis ignored some of the target words” morphosyntactic informa-
tion — gender, case and number — entirely. All of these, however, are also
likely to influence the target words’ phonetic realisation. While we do not
expect that every combination of word function, gender, case and number
is acoustically separable, we believe that some of them are. For instance,
from listening and manual inspection we deduce that the differences between
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dasxyom and daspkk are perhabs negligible. However, it is very much imprac-
tical to test any possible comparison due to the resulting very low number
of available occurences for less frequent cases.

Research on English function words has shown that not all words are
affected identically by changes in environment (e.g., speech rate, segmental
and lexical context) Jurafsky et al. (1998). This was also confirmed by our
own results as we were not able to perform equally well on all word forms.
Therefore, our analysis is limited in as much as it focuses on only five different
German word forms. Analysis of more German homophones and homophones
in other languages is needed.

6. Conclusions

In this paper, we investigated the possibility of disambiguating Ger-
man homophones in spontaneous speech using acoustic features. We ex-
tracted 7 different feature classes comprising only acoustic features and meta-
information (speaker identity, speaker gender, word position) from the Kiel
Corpus of Spontaneous Speech, a corpus of naturalistic German dialogues.
In total, we extracted 189 features. We showed that in spontaneous German,
lexeme-specific information is present in the acoustic signal. We further
showed that this information can be used to automatically disambiguate ho-
mophones. In our setup, acoustic features generalised well and performed
considerably better than a model based on trigrams. Due to the fact that
we chose target words with different syllable structure we were able to show
that our model’s predictive power is dependent on phonological characteris-
tics: We achieve best performance on diphthongues and link this to the fact
that the likelihood with which they occur monophthongised is dependent on
word function. We achieve worst performance on open syllables and we be-
lieve this is due to greater coarticulatory influence from the following syllable
which is obviously not correlated with word function.

Our results have important implications for ASR. Phonetic detail can be
used in later steps of speech recognition to decrease error rates when homo-
phones are encountered. This is of particular importance for systems dealing
with spontaneous speech which contains a high amount of reduction-induced
homophones and in languages with high proportion of homophones. Further-
more, in contrast to syntactic analysis, acoustic analysis of homophones is
decoupled from general ASR. Thus, it can start before core ASR has finished.
Most importantly, our work not only demonstrates novel methods for ASR,
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it introduces a new perspective: Whereas previously, the high degree of pro-
nunciation variation in spontaneous speech was primarily seen as a problem
for ASR, we view it as an additional resource which is not present in read
speech. This change in perspective will guide our future research.
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APPENDIX A

Table 5: Set of acoustic features selected for the random
forest models. Features are sorted by feature class

feature class 1D feature description
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temporal 1 dur duration of the whole word
2 sldur duration of the first segment
3 s2dur duration of the second segment
4 s3dur duration of the third segment
5  sddur duration of the fourth segment
6
7
8
9
fo 10 frange
11 fstdev
12 fmad
13 fargmin
14 fargmax
15 fargon
16  fargoff
17 fslope
18 fstderr
19 fskew
20 fkurt
mntensity 21 irange
22 istdev
23  imad
24 iargmin
25 iargmax
26 islope
27 istderr
28  iskew
29  ikurt
spectral 30 Itasl
31 ltas2
32 ltas3
33 ltas4
34 ltasd
35 ltas6
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36 ltas23
37 ltas27
38  1tas30
39 ltas3l
40 ltas32
41 1tas33
42 ltas34
43 ltas3b
44 ltas37
45  ltas38
46 ltasdb
47  ltas46
48 plp2
49  plp3
50 plp4
51 plp5
52 plp6
53 plp7
54  plp8
55 plp9
56 plpl0
57 plpll
58  plpl2

other 59  position
60 speaker identity
token?
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