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Abstract

The scientific field of Networked Control plays a more and more important role in
control engineering. The conventional wired connections between the plant and the
controller are replaced by (wireless) communication networks to enable novel control
architectures. This is especially important, e.g., if the plant and hence the actuators
and sensors are spatially distributed as it is the case in large factories. But also low-
level feedback loops where, for example, the sensors are placed on rotating parts are
possible applications for Networked Control Systems (NCS).

The main challenge in such feedback loops is to design controllers and perform a stability
analysis in the presence of network imperfections such as time-varying delays of the
transmitted packets. The present work thus contributes to tackle this field of research.

First, the modeling and simulation of NCS is considered, where special emphasis is
placed on the fact, that each transmitted data packet experiences an individual delay
in communication channels. This packetized character is often either neglected or not
explicitly incorporated in existing approaches, although it might have a significant
impact on the closed loop performance.

Based on that, different techniques are proposed for NCS that depend on a trade-off
between achievable properties and the assumptions made for the considered networked
connections. This means that, for example, a buffering mechanism is used in one
approach to mitigate the effect of time-varying delays. Consequently, the introduced
conservatism with respect to the network allows to fully exploit the properties of sliding
mode techniques to get robust controllers that might also be spatially distributed over
the network.

The other extreme case treated in this work is given by NCS with networked channels,
where arbitrary but bounded time-varying packet delays can occur. Thus, the actual
packet skipping, packet dropping and hold mechanisms at the receiver side play impor-
tant roles for the stability of the closed loop system. Different criteria for packetized
NCS are proposed that allow to prove the stability under the presence of time-varying
packet delays and uncertainties in the plant model description.

The third setup constitutes an intermediate case between the previously mentioned
cases, where the assumptions are less strict than in the case with arbitrarily varying
packet delays. Adaptive control approaches are proposed for such situations in which,
e.g., the delays depend on the current task classes in the communication links.

In summary, this work sheds light on effects caused by time-varying packet delays
in networked systems and proposes novel methods for the robust stability analysis
and controller design of packetized feedback loops. The presented techniques allow to
further push the technology towards robust and reliable networked systems.

i



ii



Kurzfassung

Das Forschungsgebiet der vernetzten Regelung erlangt einen immer größeren Stellen-
wert in der Regelungstechnik. Konventionelle verdrahtete Verbindungen zwischen Re-
gelstrecke und Regler werden hierbei durch (drahtlose) Netzwerkverbindungen ersetzt,
um neuartige Regelkreis-Architekturen zu ermöglichen. Dies ist beispielsweise für Stre-
cken mit örtlich verteilten Sensoren und Aktuatoren, wie in großen Produktionsstraßen,
wichtig. Es bietet aber auch neue Einsatzmöglichkeiten in unterlagerten Regelkreisen,
in denen zum Beispiel die Sensoren an rotierenden Teilen angebracht sind.

Die größten Herausforderungen stellen der Reglerentwurf und die Stabilitätsanalyse
unter Berücksichtigung der Unzulänglichkeiten von Netzwerkverbindungen dar. Die in
dieser Arbeit vorgestellten Verfahren dienen vor allem der Berücksichtigung von zeitlich
veränderlichen Verzögerungen (Totzeiten) einzelner übertragener Datenpakete.

Zuerst wird die Modellierung und Simulation vernetzter Regelkreise betrachtet, wobei
besonders auf die paketbasierte Datenübertragung Wert gelegt wird, wie sie in realen
Netzwerken vorkommt. In existierenden Ansätzen wird der paketbasierte Charakter oft
vernachlässigt oder nicht explizit berücksichtigt, obwohl er einen erheblichen Einfluss
auf den Regelkreis haben kann.

Aufbauend darauf werden verschiedene Methoden für vernetzte Regelkreise entwickelt.
Ausschlaggebend ist dabei immer eine Abwägung zwischen den Annahmen über das
Netzwerk und den, durch die Regelung, erreichbaren Eigenschaften. Beispielsweise wird
bei einem vorgestellten Ansatz ein Pufferungs-Mechanismus verwendet, um die Effek-
te durch zeitlich veränderliche Verzögerungen zu verringern. Durch diese Erweiterung
können, wie in der Arbeit gezeigt, Sliding Mode Methoden zum Entwurf robuster Re-
gelkreise verwendet werden und zusätzlich die Regler auch örtlich über das Netzwerk
verteilt sein.

In einem anderen betrachteten Extremfall können in den Netzwerkverbindungen belie-
bige, aber beschränkte zeitliche Veränderungen der Verzögerungen auftreten. In diesem
Fall spielen die implementierten Mechanismen zur Auswahl und/oder zum Verwerfen
der Pakete auf Empfängerseite eine wichtige Rolle im Regelkreis. Verschiedene neu-
artige Kriterien erlauben einen Stabilitätsbeweis für den vernetzten Regelkreis unter
Berücksichtigung des paketbasierten Charakters der Netzwerkverbindung und Unsi-
cherheiten in der mathematischen Streckenbeschreibung.

Zusätzlich wird eine weitere Konfiguration eines vernetzen Regelkreises betrachtet, die
- bezüglich der Annahmen über das Netzwerk und der erreichbaren Eigenschaften - zwi-
schen den zuvor behandelten Fällen liegt. Für Netzwerke in denen die Verzögerungszeiten
von der aktuellen Task-Klasse abhängen können, werden adaptive Regelungsmethoden
vorgeschlagen.

Somit erlaubt die vorliegende Arbeit eine Betrachtung von vernetzten Regelkreisen mit
paketbasierten Datenübertragungen. Es werden neue Methoden zur robusten Stabi-
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litätsanalyse sowie zum Reglerentwurf vorgestellt, die einen weiteren Schritt in Rich-
tung zuverlässiger, robuster, vernetzter Systeme ermöglichen.
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Notation

N set of natural numbers including zero

R set of real numbers

R+ set of non-negative real numbers

Rα×β set of real matrices with α rows and β columns

0α×β zero matrix with α rows and β columns

Iα identity matrix with α rows and columns

(yk) sequence (y0, y1, y2, . . .). One element is written as yk using the
iteration index k ∈ N.∣∣∣∣(yk)

∣∣∣∣
2

2-norm of sequence (yk)

Z {(yk)} z-transformation of sequence (yk)

G(z) discrete-time transfer function∣∣∣∣G(z)
∣∣∣∣
∞ infinity norm of G(z). Maximal amplitude of the Bode magnitude

plot corresponding to G(z) evaluated for z = ejωh, frequencies
ω ∈ [0, π/h) and sampling interval h.

bαc floor operator; largest integer smaller than α

dαe ceil operator; smallest integer larger than α

∣∣∣∣A
∣∣∣∣
F

Frobenius norm of matrix A

ρ(A) spectral radius of matrix A

R(A) right nullspace of matrix A

A ≺ 0 matrix A = AT is negative definite

A � 0 matrix A = AT is negative semi-definite

diag (A,B) diagonal matrix composed of elements A and B in the main diag-
onal. The resulting matrix is in block diagonal form if the argu-
ments are matrices.
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Chapter 1

Introduction

In classical control, the systems to be controlled - also referred to as plants - are linked to
sensors, actuators and controllers via fixed wired connections. Over the last decades this
rigid feedback loop has been replaced by more flexible structures, so-called networked
control systems.

In Networked Control Systems (NCS), plants are controlled over a (shared) communica-
tion medium. Figure 1.1 shows an example of such a feedback loop, where the measured
states x(t) ∈ Rn of the continuous-time plant are sampled (S) using a constant sam-
pling interval h such that xk = x(kh) for all k ≥ 0. The measured and sampled state
vectors xk are sent in separate data packets from a transmitter at the sensor side (TS)
to a receiver at the controller side (RC). The controller provides actuating signals that
are forwarded from the transmitter at the controller (TC) to the receiver (RA) at the
actuator side of the plant. A zero-order hold block (H) converts the arriving sequence
of packets into a continuous-time actuation signal u(t) that is actually applied to the
plant. The sample element S and the hold element H have to work in a synchronized
fashion. Each data packet j experiences an individual packet delay between sensor and

discretized plant

continuous-time
plantHRA S TS

packetized communication network τscjτ caj

discrete-time
controller

TC RC

(uk) u(t) x(t) (xk)

Figure 1.1: Networked feedback loop with a packetized communication network, hold
element H and sampling element S. Transmitters T and receivers R are used at the
controller as well as at the actuator and sensor side of the plant.

controller τ scj and controller and actuator τ caj due to the used communication network,
see Figure 1.1.

The networked structure of the feedback loop offers a huge variety of new possibilities.
NCS can be used in low level control loops where, e.g., the sensors are mounted on
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rotating parts or for the supervisory control of, e.g., paper mills or large chemical
plants, where a large number of sensor and actuators are spatially distributed over
long distances. If, for example, multi-hop wireless networks are utilized one can reduce
the wiring effort and increase the flexibility to add and replace components of the
infrastructure without drastically changing the control architecture. It is also possible
to keep sensor and actuator nodes simple and exploit central (or distributed) controller
nodes with high computational power.

All these nice possibilities are traded for new challenges related to the controller design
and stability analysis. The most important ones are effects due to time-varying packet
delays and packet losses in the transmission channels. Also the power and communi-
cation constraints may play an important role in NCS, since it might not always be
possible, e.g., for a sensor to transmit the data at any time instant resulting in an in-
creased packet delay. In addition, the question of the used protocol has to be addressed.
Either protocols with reduced overhead as, for example, the User Datagram Protocol
(UDP) [Pos81] or more dependable protocols like WirelessHART for industrial wireless
networks [SXLC15] can be used. This choice also affects the characteristics of packet
losses and transmission delays.

Extensive overviews of important aspects in NCS are provided in [PEF+18, ZSWY17,
HvdW10, GC10, HNX07] and the references therein. A more detailed discussion of
the state of the art that is relevant for this work is presented in Section 1.2 before the
main contributions of this work are described briefly in Section 1.3. In the subsequent
section, a motivating example of reduced complexity is use to show that the effects of
time-varying packet delays and different network protocols might have a strong impact
on the closed feedback loop and, thus, have to be considered in the controller design
and stability analysis in NCS.

1.1 A motivating Example

Consider an unstable, single-input single-output, continuous-time plant with a constant
delay and transfer function [SH20]

P (s) =
0.1

20s− 1
e−5s . (1.1)

A discrete-time representation of P (s) is given by

P (z) =
Z
{

(yk)
}

Z
{

(uk)
} = P̂ (z)z−d̂ =

0.0051271

z − 1.051
z−5 , (1.2)

where the input sequence and output sequence are symbolized by (uk) and (yk), respec-
tively and the constant sampling interval is set to h = 1 s. Relation Z

{
(yk)

}
represents

the z-transform of sequence (yk). Transfer function P (z) consists of a delay-free part
P̂ (z) and a constant nominal delay equal to d̂ = 5 sampling steps. The goal is to design
a controller that allows to track a reference sequence (rk) despite the time delay in the
plant, see Figure 1.2.

A classical approach for the controller design of stable plants with constant time delays
was originally proposed by O. Smith [Smi59]. It consists of a copy of the plant model
that is used in parallel to the real world plant (green block in Figure 1.3) to generate
an error signal that is added to the feedback of a nominal control loop consisting of
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C̃(z)

controller
plant P (z)

P̂ (z) z−d̂
(rk) (ek) (uk) (yk)

−

Figure 1.2: Unity feedback loop with a linear controller C̃(z), nominal plant P̂ (z) and
a nominal delay of d̂ time steps.

C(z) plant P (z)

P̂ (z) z−d̂

(rk) (ek) (uk) (yk)

−

−

Figure 1.3: Classical Smith predictor structure.

a nominal controller C(z) and the nominal, delay-free plant model P̂ (z) as shown in
Figure 1.3. However, this classical Smith predictor structure can only be utilized for
stable plants, as explained in detail in Appendix A.

Several extensions of the classical predictor as in Figure 1.3 exist in literature as, for
example, in [NRC09] that introduces a filtered Smith predictor to robustly stabilize
uncertain unstable plants subject to constant time delays. A specific choice of the
introduced transfer functions H(z) and F (z) allows to achieve an internally stable
[DFT09] feedback loop as detailed in Appendix A. Figure 1.4 depicts the structure of

filtered Smith predictor

V (z) C(z) P (z)

plant
H(z)

F (z) τj

network

(rk) (uk) (yk)

−

Figure 1.4: Filtered Smith predictor structure.

the resulting feedback loop, where, in contrast to [NRC09], an additional networked
induced packet delay τj (blue block) is present in the transmission of output sequence
(yk). This delay is set to zero, i.e. τj = 0 for all packets j, for the first investigations
but will be changed later on. Transfer function H(z) is specified depending on the
nominal plant and filter transfer function

P̂ (z) =
µ̂(z)

ν̂(z)
and F (z) =

µF (z)

νF (z)
(1.3)
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and the nominal delay d̂ such that

H(z) = P̂ (z)
(

1− z−d̂F (z)
)

=
µ̂(z)

(
zd̂νF (z)− µF (z)

)

zd̂ν̂(z)νF (z)
(1.4)

is fulfilled. Since the plant has unstable poles, one chooses

zd̂νF (z)− µF (z) = 0 , ∀z
∣∣ ν̂(z) = 0 ∧ |z| ≥ 1 (1.5)

to get a stable H(z). The zeros of νF (z) can, e.g., be fixed at the same positions z = λ
with 0 ≤ λ < 1. In [NRC09] it is shown that one can also design (1.4) to compensate
for stable but “too slow” poles of P̂ (z). Parameter λ is a tuning parameter to balance
the disturbance rejection against the robustness to uncertain plant information. The
use of H(z) as designed in (1.4), (1.5) and filter transfer function (1.3) leads to an
internally stable feedback loop shown in Figure 1.4. See Appendix A for a more detailed
explanation.

For the example plant model in (1.2), a nominal controller C(z) is designed by alge-
braic synthesis [Che06, FPW97], where the poles of the nominal, delay-free closed loop
system are assigned to p1 = p2 = 0.95. Additionally, the controller should be able to
compensate for constant disturbances and therefore includes an integral action. This
results in

C(z) =
29.504(z − 0.9835)

z − 1
, (1.6)

which is used together with a prefilter transfer function

V (z) =
0.16527(z − 0.9)

z − 0.9835
(1.7)

to decrease the overshoot for step responses of the feedback loop shown in Figure 1.4.
The corresponding step responses for the case with and without prefilter are shown
in Figure 1.5. Due to V (z), the nominal design causes no overshoot and a reduced
actuating signal uk. The filter transfer function for the given example is selected as

F (z) =
1.561(z − 0.968)

z − 0.95
, (1.8)

see Appendix A for details.

Often, the considered structure is also used in scenarios, where the nominal delay is not
precisely known or changes, e.g., due to additional time delays introduced in NCS. For
example, the authors of [BJ18] proposed to use an adaptive Smith predictor approach
in that sense that a classical Smith predictor is used but the nominal plant delay is
roughly estimated online and used in the predictor. Surprisingly, the effect of time-
varying delays is not explicitly taken into account in the approach and no stability
analysis is presented. However, already the simple example presented in this section
will show that the time-varying packet delays of the transmitted data packets have to
be taken into account for the stability analysis.

To see this, we first introduce additional constant packet delays τj 6= 0 in the feedback
loop depicted as blue block in Figure 1.4. The framework proposed in [STHJ20] and
explained in detail in Chapter 3 is utilized for all subsequent simulations that include
time-varying delays. Figure 1.6 show the resulting control signal uk and output yk for
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rk

V (z) = 1
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Figure 1.5: Example: Actuating signal uk (top); reference rk and output yk (bottom)
for the nominal design for the case without (blue) and with prefilter V (z) (red), respec-
tively.

0 25 50 75 100 125 150 175 200
−20

−15

−10

−5

0
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10

k

u
k

τ̄ = 0 τ̄ = 2 τ̄ = 4 τ̄ = 6

0 25 50 75 100 125 150 175 200
0

0.25
0.5

0.75
1

1.25
1.5

1.75

k

y k

rk τ̄ = 0 τ̄ = 2 τ̄ = 4 τ̄ = 6

Figure 1.6: Example: Actuating signal uk (top); reference rk and output yk (bottom)
for different constant network delays τj = τ̄ for all packets j.

different constant network delays, i.e. τj = τ̄ for all packets j. As expected, the case
τ̄ = 0 yields a time-shifted version of the nominal, delay-free response (represented by
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the red curve in Figure 1.5) seen in blue in Figure 1.6. For τ̄ = 2 and τ̄ = 4, it is still
possible to track the desires reference rk. The closed loop stability is lost for constant
network delays of τ̄ = 6. It is now tempting to conclude that a packet delay of τ̄ = 4 is
the maximal admissible delay for the introduced network connection. This is supported
by the simulation result in Figure 1.7, where random packet delays τj between τ = 0
and τ̄ = 4 are present. Due to the time-varying delays, there are time instances, where

0 25 50 75 100 125 150 175 200
0

1

2

3

4

j

τ j

0 25 50 75 100 125 150 175 200
0

0.25

0.5

0.75

1

1.25

1.5

k

y k

rk
yk

Figure 1.7: Example: Random delay pattern for 0 ≤ τj ≤ 4 (top); reference rk and
corresponding output yk (bottom). The newest packet is selected if more packets are
available at the same time instant.

no packet arrives and hence the packet received last is used. The most recent packet is
selected if more packets arrive at the same time instant.

However, the situation changes whenever other protocols are used. If, for example, no
packet synchronization nor packet numbering is used in low-cost realizations of NCS
the actual packet selection and skipping mechanism may have a strong impact on the
closed loop dynamics. This is exemplified in Figure 1.8 for the case of a repeating delay
pattern with a minimum delay of τ = 0 and a maximum delay of τ̄ = 4. The selection
of the oldest packet leads to instability for the case with variable time delays, although
stability can be achieved for constant delays of τj = 4 for all j.

To conclude, it is evident that the stability of the closed loop system as well as the
control performance significantly depends on the time-varying delays due to the net-
work connections and the considered protocols, i.e. packet selection, skipping and hold
mechanisms. However, this packetized nature of real-world network transmissions is
often neglected in literature. It triggers the need of advanced control concepts that
allow to consider the packetized communication networks in Figures 1.1 and 1.4. In
addition, the network protocol has to be included in the stability analysis as pointed
out in this work.
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Figure 1.8: Example: Repeating delay pattern for 0 ≤ τj ≤ 4 (top); reference rk and
corresponding output yk. The oldest packet is selected if more packets are available at
the same time instant.

1.2 State of the Art

As indicated at the beginning of this chapter, the challenges in NCS are manifold.
Reliable transmissions can be, for example, be achieved by using protocols like the
Transmission Control Protocol (TCP) [Pos80]. Data losses are automatically detected
and retransmissions of the data packets ensure that the data is received in the end.
This might lead to larger variable time delays in the network. An alternative is to use
the User Datagram Protocol (UDP) [Pos81] to reduce the overhead and the delay in
NCS. However, reliable transmissions cannot be guaranteed in this case.

The example of the two mentioned protocols already shows that there is always a trade-
off between many aspects in (possibly multi-hop wireless) networked control systems.
Consequently, the literature is very rich as can, e.g., be seen by inspecting the sur-
vey papers [PEF+18, ZSWY17, ZHY16, HvdW10, GC10, HNX07] and the references
therein. Various methods and approaches for the analysis and controller design respect-
ing the different network properties are available. The main issues are the effects of
variable packet delays (communication delays) and packet dropouts (packet losses) in
combination with packet discard mechanisms, e.g., to skip old packets if more recent
data packets are available. Also the energy consumption plays a role in wireless NCS.
One possible approach to account for this aspect is to reduce the power consumption by
event-triggered approaches, where variable sampling/transmission intervals are utilized.
This also allows to include the effect of communication constraints such as situations
in which the transmitter is not allowed to send data at any time instant. Nevertheless,
the consideration of time-varying delays is not straight forward for such approaches.
In addition to the presented network imperfections, quantization effects might be of
interest for the realization of low-cost network connections.
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For example, [PEF+18] is more focused on protocols and first steps towards a co-design
of the transmission network and the controller; [ZSWY17] presents an overview of input
delay approach and methods based on switched systems. Network based filtering, as,
e.g., the estimation of state variable over networks subject to imperfections, is described
in [ZHY16].

It is important to note that this section does not provide a complete overview of available
methods. There is always a trade-off between the complexity of the considered network
model and the corresponding control design approaches. Hence, only a small selection
of methods and approaches are presented subsequently, which are of interest in the
context of the techniques proposed in this work.

Stochastic Approaches

One major distinction between different existing approaches is in terms of the assump-
tions on the delays and packet dropouts. Stochastic properties as delay distributions
are the basis of, e.g., [PSH21, SSF+07, XL07] and [Azi03].

The authors of [SSF+07] provide an overview of the design and analysis of lossy networks
where TCP- and UDP-like protocols, i.e. protocols with and without acknowledgment
signals, are used. A Kalman filter in combination with a linear state controller is em-
ployed in the stochastic dropout setting. Packet losses with a specific packet dropping
rate and its influence on the mean square stability are tackled in [Azi03]. In [XL07],
a packet-loss dependent Lyapunov approach is proposed for different loss processes,
e.g., represented by Markov models. An optimal control law for NCS is presented in
[PSH21], where networks between the sensors and the controller as well as between the
controller and the actuators are considered. Random delays and packet dropouts are
modeled as independent Markov decision processes. Methods from stochastic optimal
control are combined in [XJL12] with ideas from machine learning for unknown linear
NCS with known probability distribution functions for the delays.

However, stochastic approaches are not the focus of the present work. Instead methods
only assuming the boundedness of the time-varying delays and the subsequent number
of packet dropouts as, e.g., in [HvdW10] are considered. Please note that although no
delay distributions are assumed, the resulting network feedback loops do not represent
deterministic settings since the delays are subject to not foreseen, and not influenceable
changes, within given bounds.

Modeling and Simulation

Modeling the effects of delays and dropouts is one crucial aspect in NCS. As pointed
out in [HvdW10], there are in principle three different approaches:

(a) In the discrete-time approach, a discretized continuous-time plant that is linked
via sample and hold elements to a transmitter and receiver is considered. Con-
sequently, linear systems are used in most of the works because they allow for
an exact discretization. For nonlinear systems, more sophisticated discretization
methods have to be utilized.

(b) The continuous-time approach (or emulation approach) rests on the design and
analysis of a continuous-time controller in closed loop with a continuous-time
plant in the absence of network effects. A stability analysis then allows to de-
rive conditions, e.g., for the maximal allowable delay and the maximal allowable
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sampling and transmission interval. Hybrid system modeling is often applied to
enable an analysis of the resulting properties of the networked loop.

(c) In the sampled-data approach, continuous-time plant models are used without
any form of discretization. The stability analysis and controller design take into
account the fact that, e.g., the control signal provided by a discrete-time controller
can only be changed (updated) at specific sampling instances. The analysis is
challenging and can be done, e.g., by different forms of the Lyapunov-Krasovskii
functional approach.

In the present work, the discrete-time approach is followed. It allows to include the
properties of the transmission channel in a nice way in the design and analysis. This is
vital since real-word communication is discrete by nature in networked feedback loops.
At the same time, it enables one to reduce the mathematical complexity and to include
a bounded number of subsequent packet dropouts in the framework as, for example,
shown in [vDHv10].

An important aspect that is directly linked to the modeling of a NCS is its simulation.
State of the art simulation tools are, for example, TrueTime [Tru, CHL+03] and OM-
NeT++ [OMN]. They aim to include properties of the transmission channels based
on implemented communication protocols and physical effect as, for example, fading
channel effects and the actual locations of the network nodes. However, models that
are employed for the analysis and design of NCS are usually not so detailed to render
model-based approaches manageable. Often, simulation approaches using Matlab stan-
dard blocks [ZY12] and the Matlab toolbox TrueTime [CHL+03] are applied for the
direct validation of derived stability criteria and design techniques. Especially Matlab
standard blocks are the basis of lots of simulation examples since they provide the pos-
sibility to arbitrary define bounded time-varying channel delays. As it will be pointed
out in Chapter 3, such simulations have to be carried while respecting the packetized
nature of real transmission channels. This means that the individual packet delays that
may, e.g., depend on the actually present network load and task priorities, have to be
included in the simulation to avoid incorrect results.

Disordering and Reordering

In wireless multi-hop networks, packet disordering can occur. This means that packets
containing older data are available at the receiver side after packets with more recent
information have been received. Two possibilities to alleviate the effects of packet dis-
ordering are presented in [LZY+15] and [WZ18]. In the first paper, a packet reordering
method is introduced such that a sufficient condition for the NCS to be exponentially
stable can be stated. An alternative packet reordering mechanism, which makes use
of the assumed Markovian delays, is proposed in [WZ18] for nonlinear networked sys-
tems with medium access constraints. Conditions based on Linear Matrix Inequalities
(LMIs) can be stated as in [LZL18] to integrate packet disordering by using Markov
jump systems in the analysis.

Smith Predictor Approaches

Various extensions of the original Smith predictor [Smi59] can be found in literature for
NCS. For example, a version of a filtered Smith predictor is introduced for the robust
stabilization of unstable plants with constant time delays in [NRC09] and extended in
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[STNR16] to multivariable systems with individual constant time delays in the different
output channels.

Smith predictors are also utilized in the context of NCS with variable time delays.
The authors of [LH10] make use of the original Smith predictor and a PI-controller.
The round trip time, i.e. the difference between the sending time at the sensor and the
receive time at the actuator, is measured for a network with an Ethernet and Controller
Area Network (CAN) connection. The measured delay is directly used as nominal delay
in the predictor.

In [RMQF14], the mean value of an estimated network delay is utilized in a Smith
predictor with PI-controller. Adaptive buffers avoid packet dropouts due to late ar-
rivals and packet disordering. The average delay for successfully transmitted packets
are employed in a Smith predictor for IEEE 802.15.4 wireless personal area networks
in [GSRA16]. Similarly, the authors of [BJ18] apply the classical Smith predictor ap-
proach for an optical oven, where the feedback loop is closed via the internet and CAN
connections. In all the previously mentioned papers, standard Smith predictors and
average values for the time-varying delays are used in the networked context but no
stability analysis is conducted.

A robust stability analysis of the filtered Smith predictor proposed in [NRC09] for time-
varying delay processes is presented in [NRGG12]. Delay dependent Linear Matrix
Inequality (LMI) conditions are used to prove the closed loop stability for the case with
norm-bounded uncertainties. In [BSG17], polytopic over-approximation techniques and
LMI conditions are utilized for the stability analysis of the standard Smith predictor.
Nevertheless, the important aspect of packetized transmissions is not included in any
of the referenced works. This aspect was already mentioned in the introduction and
will be further addressed in subsequent chapters of this work.

Predictive Approaches

A natural way to handle time-varying delays and dropouts is given by predictive ap-
proaches as, e.g., in [ZMW19, QN11, Liu10, LMRC06] and [MLR05]. This is possible
since the future actuating signals are calculated based on an internal plant model in
the Model Predictive Control (MPC) framework. The entire predicted sequence of ac-
tuating signals can then be sent over a network to a receiver, which selects the most
recent data out of the received packets depending on the actual time instant.

Generalized predictive control (GPC) is combined in [MLR05] with a modified Smith
predictor to compensate for fixed delays in the feedback channel, i.e. between sensor
and controller, and time-varying delays in the forward channel, i.e. between controller
and actuator. In [LMRC06], analytical criteria are obtained for both fixed and random
communication time delays. An application to a servo motor control system points out
the main features of the proposed approach. An alternative way if followed in [Td06],
where generalized predictive controller is extended by a minimum-effort estimator to
deduce missing or delayed sensor data. The proposed control structure is implemented
on a dual-axis hydraulic position system of an industrial fish-processing machine and
allows to compensate for transmission delays.

An MPC based network controller is proposed in [QN11] for constrained nonlinear
plants that are subject to disturbances. For a bounded number of consecutive packet
dropouts, input-to-state stability is shown for a suitable choice of the controller pa-
rameters. The authors of [ZMW19] introduce a predictive approach for a NCS with
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quantizers using an event-driven strategy to compensate for delays in the forward and
the backward channel. A proper design of the event generator at the sensor side allows
to state sufficient stability conditions using LMIs.

As for the conventional MPC, it is easy to include constraints, e.g., of the inputs or
states in the controller design. This advantage induces the need of more computational
power to solve the online optimization problems involved.

Event-triggered Approaches

One way to reduce the energy consumption in wireless multi-hop networks is to reduce
the operation time of the corresponding network nodes. A reduction of the number of
data transmissions is possible by introducing event-triggered and self-triggered control
approaches, see [HJT12] for an overview. The reduced network load should indirectly
yield smaller time delays and fewer packet dropouts. Examples can, e.g., be found in
[DH12] and [LL10]. Also the issue of scheduling can be tackled in an event-triggered
framework as shown in [Tab07] to guarantee a predefined performance of the networked
feedback loop. The stability of systems with aperiodic sampling is investigated in
[HFO+17].

Gain Scheduling

In [TC04], gain scheduling is used to modify the output of an existing controller (e.g.
PI-controller) with respect to the current network traffic conditions. An estimator
provides network parameters like the mean delay or the loss rate as a basis for the
scheduling of the control parameters.

Gain scheduling state feedback integral controllers are designed in [LSCS11] where the
control parameters depend on the round trip time. The controller calculates a set
of control signals for different delays. This allows to formulate the feedback loop as
a switched system with different outputs and use delay-dependent LMI conditions for
the stability analysis. An optimization problem is formulated to calculate the controller
gains within the stable region provided by the LMI conditions.

LMI-based Approaches

The theory of time delay systems (TDS) play an important role in networked control,
see, e.g., [Ric03]. A nice introduction to time delay systems can be found in [Fri14].
It deals with retarded time delay systems, i.e. systems with delayed states in the
differential equations, and with neural type time delay systems, where the delay is
present in the highest state derivative with respect to time. As described in [Fri14], time
delay systems can be represented by classical transport partial differential equations.

Since continuous-time time delay systems are infinite dimensional, generalizations of
the classical Lyapunov-based stability analysis are necessary. Lyapunov functionals are
used in the Krasovskii approach to take into account the initial state function of TDS.
For example, the delay-induced stability of second-order systems is presented in [FS16]
with the resulting LMI conditions that are found via a model transformation-based
approach.

An alternative technique is the Razumikhin approach, where Lyapunov functions are
employed instead of Lyapunov functionals as in the Krasovskii approach. Consequently,
the time derivative of the Lyapunov function and an additional Razumikhin condition
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can be checked in an easier way. However, the results are often more conservative
[Fri14]. In the Lyapunov-Krasovskii as well as the Lyapunov-Razumikhin approach
one makes extensive use of LMI conditions that might be delay independent or delay
dependent. Because delay-independent conditions are usually limited to either slowly
varying delays or stable systems, delay dependent criteria have been proposed that
prevent such limitations.

The key for such methods are different model transformations such as, e.g., in [KR99]
that are exploited in the analysis. The authors of [GN01] showed that these model
transformations lead to conservative results. An improvement of the approaches is
possible by using the descriptor model transformation proposed in [Fri01]. For example,
[FS03] make use of the Krasovskii method to analyze TDS with fast varying delays.

Both the Lyapunov-Krasovskii and the Lyapunov-Razumikhin method are also available
for discrete-time delay systems. The discrete-time nature enables one to use state
augmentation techniques for the finite dimensional TDS. Again, delay independent and
delay dependent LMI conditions can be formulated for the discrete-time case [Fri14].
It is shown in the following chapters of the present work that it is quite challenging to
include effects due to the packetized nature of real-world data transmissions within the
analysis when using this framework. Nevertheless, techniques based on LMI conditions
are widespread in literature and offer a lot of nice possibilities in the context of NCS.

An alternative path to follow is the time-delay approach to sampled-data systems, where
a continuous-time plant receives an updated piece-wise constant input signal whenever
new data arrives via the network. Usually, old packets are skipped whenever new data
is available. The analysis is based on a formulation of the closed loop system with
a piecewise continuous time-varying delay, see [Fri14] and references therein for more
details.

Additional examples of LMI-based approaches are [LFH12, LF12] and [Liu10]. The
controller design for TDS using linear quadratic regulators and H∞ approaches are
presented, e.g., in [Fri14]. An approach using over-approximation techniques is pro-
posed in [CHvdW+10] to deal with time-varying network delays. This work will form
the basis of the nominal controller design in Chapter 4.

Adaptive Approaches

For the case with constant or slowly varying time delays, approaches from adaptive
control [GS84, AW08, NA12] can be used, see also [Tao14] for an overview of adaptive
approaches for multivariable systems. In [ACK19, ASP20], adaptive methods are used
in the context of event-triggered networked control. The output regulation of linear
systems with known input time delays is presented in [GJ18]. Bounded but unknown
delays in the states can be handled, e.g., using the adaptive approach in [LLL15].

For unknown time delays, [ASP20] introduces a technique for continuous-time systems
by employing a reduction approach, where the assumptions on the input delay are
very restrictive. Less restrictive assumptions can be used in the work of [TTY18] that
suggests to use a multi-model approach with a set of adaptive controllers that are
selected depending on a certain performance index.

Sliding Mode Approaches

Since each control architecture is, in the end, dedicated to operate under real-world con-
ditions, the effect of perturbations should be considered also in the context of networked
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systems. One nice way to incorporate disturbance rejection properties in a robust con-
troller design is given by sliding mode techniques [SEFL15, ES98, Utk92]. Usually,
only the worst case bound of the perturbation or its time-derivative is given whereas
the actual time-varying perturbation is unknown. Different steps towards networked
sliding mode control were followed in the last years.

Event-triggered sliding mode approaches are proposed in [IFM17, BB16] and [IF16]. A
smart sensor acts as an event generator that uses information about the states or the
sliding variable. Depending on the actual realization, nominal models can be used to
calculate the control signal at the actuator side if no new information is transmitted
via the network. No guarantees on the stability for the case with time delays can
be given because network imperfections are not directly included in the analysis. An
experimental evaluation of event-triggered sliding mode control strategies can be found
in [SSGH20].

In [XZL+10], robust adaptive sliding mode techniques are considered for discrete-time
delay systems where the states as well as the delayed state are present in the systems
description. Sufficient LMI conditions are derived for the case of norm bounded distur-
bances and uncertainties. Also continuous-time sliding mode methods are introduced
for systems with input and output or only output delays to track the desired output
[COC14, LZS09] or to estimate the present time delay [DLR+20].

A buffering approach is incorporated in combination with discrete-time sliding mode
techniques by the author of this work in [LSR+17] and extended in [LSH+18] by intro-
ducing different switching and non-switching reaching laws. This allows to compensate
the time-varying delays via the buffer and fully exploit the advantages of sliding mode
techniques with respect to the rejection of external perturbations in NCS. This forms
the basis for the presented networked sliding mode approaches presented in Chapter 4.

Adaptive sliding mode techniques are shown to be very effective to accomplish a de-
sired behavior of the feedback loop as, e.g., presented in [HLD97, CHCL03]. Various
formulations for continuous-time systems exist, where different adaptation strategies
are followed. For example, the gains are only increased in [MNTF16], increased and de-
creased [BLP+13] or derived through the equivalent control signal in [UP13, ES16] and
[OCH16]. Model Reference Adaptive Control (MRAC) is utilized in [ORF18]; adap-
tive methods based on barrier functions [OFLH18] are presented for continuous-time
systems with an uncertain bound of the perturbations.

Interestingly, only a few discrete-time versions are available although real-world NCS
sent separate packets at discrete instances. The ideal notions of continuous-time sliding
modes are replaced by quasi-sliding modes in this discrete-time setting, where a sliding
variable is driven to a band around zero in a finite number of steps. This is also referred
to as discrete-time sliding mode, see [CB16, Bar98, BFU95]. Design techniques based
on discrete-time MRAC and a gain adaptation using the equivalent control can be, e.g.,
be found in [BFU95] and [LO98] respectively. Adaptive sliding mode designs resting
on transfer function models are, for example, published in [Cha97].

An alternative, computationally cheap, adaptive approach for network control systems
with unknown transmission delays is presented in Chapter 5.

Additional Methods for the Stability Analysis

As mentioned above, the stability analysis of NCS may be based on continuous-time,
discrete-time or hybrid formulations, see also [HvdW10]. Different LMI-based ap-
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proaches can be used to show the stability of discrete-time formulations as, e.g., in
[SGF15, LG11] and papers mentioned above in this section. One major aspect in such
stability criteria is to reduce the number of variables in the LMIs to allow computation-
ally cheaper computations while proving stability for an admissible transmission delay
that is as large as possible.

An alternative way for the stability analysis of linear systems subject to time delays
was introduced in [KL04], where the small gain theorem [Vid02, Sas99] was applied to
feedback loops with variable time delays. This has the benefit that the calculations are
computationally inexpensive and can be done in a straight forward way.

However, the packetized character of networked transmissions is usually not included
in the analysis. Appropriate modeling and simulation techniques as well as stability
criteria are needed to incorporate packet transmission in NCS as shown in Chapters 2,
3, 6, 7 and 8.

1.3 Contributions of this Habilitation Thesis

The focus of this work is the controller design and the stability analysis for packetized
networked systems as depicted in Figure 1.9.

Controller Design and Stability Analysis
for packetized Networked Systems

buffering mechanism

constant known delay

nominal control (LMI)

robustification (SMC)

spatially distributed
controllers

(Chapter 4)

different task classes

constant unknown delay

adaptive control

centralized controller

(Chapter 5)

packetized transmissions

time-varying delays

different protocols

nominal controller design

robust stability analysis

(Chapters 6, 7, 8)

modeling of networked control systems (Chapter 2)

simulation of time-varying packet delays (Chapter 3)

Figure 1.9: Properties of the considered networks (blue) and corresponding controllers
(gray) for three different approaches.

Chapters 2 and 3 deal with the modeling of NCS and the accurate simulation of trans-
mission channels with time-varying delays, respectively. Hence, they form the basis for
all subsequent chapters and are adopted from

[STHJ20] M. Steinberger, M. Tranninger, M. Horn, K.H. Johansson: How
to Simulate Networked Control Systems with Variable Time Delays?, IFAC Pa-
persOnLine 53 (2), pp. 3098-3103, 2020
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to some extent. Modeling techniques are reviewed and commented with respect to
packetized NCS. Techniques to accurately simulate networked control systems with
bounded time-varying delays are presented to link delays in transmission channels to
individual packets. In addition, effects like packet disordering that may occur in wireless
multi-hop networks can be included. Simulation examples underline the features of the
proposed approach and illustrate why other simulation and modeling approaches may
fail.

Chapters 4 to 8 present different approaches for NCS where a trade-off between the
assumed properties of the network connections and the achievable properties of the
control system is made, see Figure 1.9. This means that, e.g., the use of a buffer-
ing mechanism in Chapter 4 reduces the complexity using time-varying delays in the
network (see blue boxes), and make more sophisticated control approaches possible as
visualized in Figure 1.9 using gray boxes. This makes it possible to design even spatially
distributed controllers that are robust with respect to external perturbations. At the
same time, it introduces some conservatism due to the involved buffering.

In the case of packetized transmissions subject to time-varying delays and different
protocols, the network model is much more sophisticated. Hence, the variability in the
network is interchanged with a more challenging controller design. A nominal controller
design, i.e. a design for a nominal constant time delay, is used together with an addi-
tional robust stability analysis to prove the admissible range for the time-varying packet
delays as shown in Chapters 6 to 8. The middle column in Figure 1.9 represents an
intermediate case, where the assumptions on the network are less restrictive compared
to Chapters 6 to 8 and makes it possible to adopt adaptive control methods.

In Chapter 4, the robust control of buffered networked systems is covered as published
in

[LSH+18] J. Ludwiger, M. Steinberger, M. Horn, G. Kubin, A. Ferrara:
Discrete Time Sliding Mode Control Strategies for Buffered Networked Systems,
IEEE Conference on Decision and Control, pp. 6735-6740, 2018

[LSH19] J. Ludwiger, M. Steinberger, M. Horn: Spatially Distributed Networked
Sliding Mode Control, IEEE Control Systems Letters, 3, pp. 972-977, 2019

and preliminary works in [LSR+17] and [LRSH19]. The main contribution is an ap-
proach that robustly stabilizes a networked feedback loop subject to external per-
turbations. The effect of time-varying packet delays is compensated via a buffering
mechanism that converts the delay into a time-invariant one. On the basis of that,
a combination of a nominal controller (designed using LMI conditions) and an addi-
tional discrete-time integral sliding mode part is proposed. The algorithm is designed
such that the m controllers of the considered multivariable system with m inputs can
be implemented in a spatially distributed fashion, without any communication links
between them. Matched perturbations, i.e. disturbances that can be, in principle, be
compensated, are rejected by the algorithm.

Adaptive control approaches are considered in Chapter 5, which are adopted from

[SHF19] M. Steinberger, M. Horn, A. Ferrara: Discrete-time Model Reference
Adaptive Sliding Mode Control for Systems in State-Space Representation, IEEE
Conference on Decision and Control, pp. 6007-6012, 2019.
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[SHF21] M. Steinberger, M. Horn, A. Ferrara: Adaptive Control of Multi-
variable Networked Systems with uncertain Time Delays, IEEE Transactions on
Automatic Control, early access, DOI: 10.1109/TAC.2021.3083563, 2021.

Based on the idea of model reference adaptive control, adaptive laws are derived for
uncertain linear multivariable networked systems in state-space form. They allow to
control a plant over a network connection with unknown but (piece-wise) constant1 de-
lays. This enables one to reduce the conservativeness, which is usually present whenever
the time delays are unknown. Two different approaches are presented and compared to
a non-adaptive solution. In contrast to Chapter 4, the controller has to be implemented
in a centralized way.

Chapters 6, 7 and 8 rest on the following publications:

[SH21b] M. Steinberger, M. Horn: A Stability Criterion for Networked Control
Systems with Packetized Transmissions, IEEE Control System Letters, 5 (3), pp.
911-916, 2021

[SH20] M. Steinberger, M. Horn: From classical to Networked Control: Retrofitting
the Concept of Smith Predictors, arXiv:2010.05486, submitted for journal publi-
cation

[SH21a] M. Steinberger, M. Horn: A Less-Conservative Stability Criterion for
Networked Control Systems with Time-Varying Packet Delays, arXiv:2103.16514,
revised version submitted for journal publication

Several stability criteria are proposed for networked feedback loops with packetized
transmissions characterized by bounded time-varying packet delays. The plant, which
is modeled by a transfer function, transmits its output through a network. A nominal
controller design forms the basis to perform trajectory tracking despite an uncertain
time-varying communication.

Different protocols, i.e. different packet selection and packet skipping mechanisms, are
included in the stability analysis. The derived criteria can easily be checked in frequency
domain without adopting any computationally expensive algorithms. An extension to
uncertain plant models facilitate a robust stability analysis with respect to time-varying
packet delays and uncertainties in the model description. The presented approaches are
exemplified for a NCS consisting of a filtered Smith predictor, and an unstable plant
model and a packetized transmission network.

The analysis points out clearly, that the packetized character of the network has to
be considered explicitly, as it is evident in the modeling and simulation of networked
systems, as presented Chapters 2 and 3. In Chapter 8, the criteria are improved to
yield less conservative results. This is possible by exploiting a splitting of the considered
feedback loop into a causal and an acausal part for the purpose of analysis. In addition,
conditions for the optimal choice of a nominal time delay (out of a bounded interval)
are given, which can be utilized for the nominal controller design. Consequently, it is
shown that one can prove the closed loop stability with respect to a larger maximal
admissible variable time delay.

1From a practical point of view, it is also possible to utilize this approach for sufficiently slowly
varying delays.
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Hence, the present work provides different control approaches that are robust with
respect to uncertain network delays. The complexity and capabilities of the different
approaches strongly depend in the properties (and thus also assumptions) about the
transmission network. This is also highlighted in Chapter 9, where an outlook is given.
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Chapter 2

Modeling of packetized
Networked Control Systems

This chapter presents all steps to model networked control systems that are relevant for
the subsequent chapters. The modeling takes into account the packetized transmission
channels and is adopted from [STHJ20, SHF21, SH20] and [SH21a].

It forms the basis for the later introduced techniques for the analysis and controller
design of networked feedback loops. First, basic assumptions concerning the plant
and the transmission channels, including the considered protocols, are stated. Then, a
mathematical model for the combination of a plant and a network is shown. Variable
time delays and packet dropouts imply that the corresponding system matrices are
unknown and time-varying.

2.1 Considered Network Feedback Loop

The feedback loop consists of a continuous-time plant, i.e. a real-world system to be
manipulated, and a discrete-time controller that are connected via two transmission
channels as shown in Figure 2.1, where the transmitter and receiver blocks at the plant
and the controller sides (see T and R in Figure 1.1) are omitted.

discretized plant

continuous-time
plantH S

packetized communication network τscjτ caj

discrete-time
controller

τ cj

u(t) x(t) (xk)

Figure 2.1: Networked control system with a plant that is connected to a controller via
a packetized communication network.

The plant is modeled as a linear time-invariant multivariable system

dx

dt
= Ãx(t) + B̃u(t) (2.1)

21



with state vector x(t) =
[
x1(t) x2(t) . . . xn(t)

]T ∈ Rn, input vector u(t) =
[
u1(t)

u2(t) . . . um(t)
]T ∈ Rm and system matrices Ã ∈ Rn×n and B̃ ∈ Rn×m. All states

x(t) are sampled with a constant sampling period h at the transmitter on the plant side
(S in Figure 2.1) resulting in a sequence (xk) with elements xk = x(kh) for k ∈ N. The
transmission of the jth data packet containing xk towards the receiver on the controller
side is subject to a time-varying delay symbolized by τ scj .

The discrete-time state feedback controller acts in an event-triggered fashion, i.e. it
determines the control signal as soon as a new packet arrives, where τ cj represents the
corresponding calculation time. A transmitter on the controller side sends packet j with
a time-varying delay τ caj to the receiver at the plant side. A zero-order-hold mechanism
is employed at the actuator (receiver) side of the plant to obtain a continuous control
signal u(t), see Figure 2.1.

Assumption 2.1 (Plant). The pair (Ã, B̃) in (2.1) is controllable. Sampling is
done with a non-pathological sampling period h in the sense of [KHN63] so that
the full rank of the input matrix as well as the controllability are preserved during
discretization.

Details about non-pathological sampling are presented, e.g., in [KHN63] and [Lud20].

Assumption 2.2 (Network delays). The data is transmitted in separate packets
j that experience an individual bounded packet delay τNj such that

0 ≤ τN ≤ τNj ≤ τ̄N (2.2)

with τN , τNj , τ̄
N ∈ R+ for the sensor-to-controller and controller-to-actuator delay,

i.e. N ∈ {sc, ca}.

Please note that there are no further assumptions on the delay distribution nor on
the maximal admissible delay change rate between two subsequently sent packets. The
upper bounds τ̄ sc and τ̄ ca may be larger than the sampling period h, which is sometimes
referred to as large delay case in literature. It is important to note that one distinguishes
between packet index j and index k to be able to link delays to packets, i.e. τj is not the
delay at a certain time k but the delay of a specific packet. This allows to also consider
situations, where packets might take different routes between sender and receiver, e.g.,
depending on blocked paths or time-varying network traffic conditions and may arrive
at the same time or out of order.

Assumption 2.3 (Computational delays). The time for evaluating the control
law in the controller is bounded such that

0 ≤ τ c ≤ τ cj ≤ τ̄ c (2.3)

with τ c, τ cj , τ̄
c ∈ R+.

This computational delay is very small for the algorithms presented in this work because
they are designed also considering this aspect. However, τ cj can be relevant if, for
example, model predictive controllers are utilized in the networked feedback loop.
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2.2 Simplifications

In Figure 2.1, three independent delays are considered in the sensor-to-controller and
controller-to-actuator path. However, there are situations in which one can lump the
individual delays to one single delay

τj = τ scj + τ cj + τ caj (2.4)

for the analysis as shown in Figure 2.2. This delay is often referred to as round trip
time or round trip delay. To see the concrete assumptions that have to hold in this

discretized plant

continuous-time
plantH S

packetized communication networkτj

discrete-time
controller

u(t) x(t)

Figure 2.2: Feedback loop, where the network is described by one lumped time delay
τj .

case, one considers a general formulation of a dynamic discrete-time controller that
calculates the control signal uk based on the state xk and some of its previous values,
i.e.

uk = C (xk, xk−1, xk−2, . . .) . (2.5)

Control law (2.5) can only be evaluated if all necessary states xk, xk−1, xk−2, . . . are
available at the actual time, as explained, e.g., in [Lud20]. Figure 2.3 depicts the

τscj
discrete-time
controller

τ cj τ caj

x
∣∣
0 x

∣∣
τsc
j

u
∣∣
τsc
j

u
∣∣
τsc
j

+τc
j

u
∣∣
τsc
j

+τc
j
+τca

j

Figure 2.3: Three independent delays.

underlining configuration with three independent delays, where the notation x|t means
that a packet containing x arrives at time t at the indicated position. Hence, the control
law can only be applied whenever

τ scj ≥ τ scj−1 − h and so τ scj−1 − τ scj ≤ h (2.6)

hold for all packets j. In other words, packet j has to arrive not before packet j − 1
at the controller side to not introduce an additional waiting delay. Control signal u
related to packet j is then sent to the actuator with time delay τ scj +τ cj and experiences
an additional delay of τ caj . Consequently, Figure 2.3 is equivalent to Figure 2.4 if
condition (2.6) is fulfilled because no overtaking packets can occur in the channel from
the sensor to the controller.
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Figure 2.4: One lumped delay between controller and actuator.

τj
discrete-time
controller

x
∣∣
0

x
∣∣
τj

u
∣∣
τj

Figure 2.5: One lumped delay between sensor and controller.

An alternative situation is shown in Figure 2.5, where the three delays τ scj , τ cj and τ caj
are lumped at the sensor side to τj . As a result, control law (2.5) can only be evaluated
if condition (2.6) holds and the states that are delayed by τj have been received, which
is ensured by condition

τj ≥ τj−1 − h and so τj−1 − τj ≤ h (2.7)

for all packets j.

Please note that all three structures in Figures 2.3, 2.4 and 2.5 are equivalent for static
controllers

uk = C (xk) (2.8)

since the control signal can be calculated immediately after packet arrival. Whenever
the delays are lumped in the subsequent chapters, one combines them between the
controller and the actuator to benefit from less restrictive conditions about the delays.

Assumption 2.4 (Lump delays at actuator side). At least one of the following two
conditions holds to lump the delays in the channel between controller and actuator:

(a) a dynamic control law (2.5) is used and the sensor-to-controller delay fulfills
(2.6), i.e. τ scj ≥ τ scj−1 − h.

(b) a static control law (2.8) is used.

Consequently, the following assumption holds for the simplified structure presented in
Figure 2.4:

Assumption 2.5 (Round trip delay). The round trip delay τj = τ scj + τ cj + τ caj of
each individual packet j is bounded by

0 ≤ τ ≤ τj ≤ τ̄ (2.9)

with τ , τj , τ̄ ∈ R+.

The violation of condition (2.6) yields situations, where overtaking of sent packets
occurs. This non-trivial effect has to be explicitly taken into account in the stability
analysis of the closed loop system as shown in Chapters 6 to 8.
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2.3 Mathematical Model

In this section, a mathematical model is derived for the network structure presented
in Figure 2.1 where Assumption 2.4 holds. Hence the network structure is equivalent
to Figure 2.4 and the round trip delay is bounded as stated in Assumption 2.5. In
addition, it is assumed that old packets are skipped, i.e. packets that are related to
previously sampled values are skipped at the receiver side if more recent data packets
are available, see [HvdW10] for more details. A formal definition of such a protocol is
given in the subsequent section as protocol P1.

Two important entities are defined based on the upper bound τ̄ and the lower bound
τ as the largest integer smaller than τ/h and the smallest integer larger than τ̄ /h, i.e.

d =

⌊
τ

h

⌋
and d̄ =

⌈
τ̄

h

⌉
. (2.10)

Thus, d stands for the number of sampling instants, after which a transmitted packet can
arrive in principle at the receiver (under-estimation of the minimum delay). Parameter
d̄ is the maximal number of sampling instances after which a transmitted packet has
been arrived for sure at the receiver (over-estimation of the maximum delay).

A simple example of a scalar system

dx

dt
= ãx(t) + b̃u(t) (2.11)

with x ∈ R, u ∈ R, ã, b̃ ∈ R and bounded packet delays 0 ≤ τj ≤ 2h is considered to
point out properties that are relevant to the modeling process. As a result, one gets
τ = 0, τ̄ = 2h and so d = 0 and d̄ = 2. Figures 2.6 and 2.7 depict all arriving patterns
of (uk) that can occur between two sampling steps sk and sk+1 = sk + h for bounded
packet delays 0 ≤ τj−1 ≤ 2h and 0 ≤ τj ≤ 2h.

t

u(t)

sk−1 sk sk+1

uk−2

uk−1

uk

uk+1

(a) Delay free case: τj−1 = 0 and τj = 0.

t

u(t)

sk−1 sk sk+1

uk−2

uk−1

ukτjτj−1

(b) Case 0 ≤ τj−1 ≤ h and 0 ≤ τj ≤ h.

Figure 2.6: Actually employed actuating signal u(t) depending on different packet
delays 0 ≤ τj−1 ≤ 2h and 0 ≤ τj ≤ 2h (part 1).
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uk−2

uk−1

ukτjτj−1

(a) Case 0 ≤ τj−1 ≤ h and h ≤ τj ≤ 2h.

t

u(t)

sk−1 sk sk+1

uk−2

uk−1

ukτjτj−1

(b) Case h ≤ τj−1 < 2h and 0 ≤ τj ≤ h.

t

u(t)

sk−1 sk sk+1

uk−2

uk

τj−1

τj

(c) Case h ≤ τj−1 ≤ 2h and 0 ≤ τj ≤ h (second possibility).

t

u(t)

sk−1 sk sk+1

uk−2

uk−1

ukτjτj−1

(d) Case h ≤ τj−1 ≤ 2h and h ≤ τj ≤ 2h.

Figure 2.7: Actually employed actuating signal u(t) depending on different packet
delays 0 ≤ τj−1 ≤ 2h and 0 ≤ τj ≤ 2h (part 2).

Subplot 2.6a shows the delay-free case, whereas different packet delays τj and τj−1 are
used in the remaining subplots in Figures 2.6 and 2.7. There are cases, where only one
uk−i, i ∈ {0, 1, 2} is present between sk and sk+1, see Figures 2.6a, 2.7a as well as 2.7c
for τj−1 = 2h and τj ≥ h. Figures 2.6b, 2.7c and 2.7d show situations, in which only
one transition is visible between uk−1 to uk, uk−2 to uk and uk−2 to uk−1, respectively.
At maximum two changes can be present between two sampling instants as show in
Figure 2.7b. Consequently, at maximum d̄ − d + 1 = 3 packets containing uk, uk−1

and uk−2 may be received. Out of order arrival as, e.g., uk−2, uk and uk−1 are not
considered in the modeling since old packets are skipped as stated in the next section
for protocol P1.

Figure 2.8 shows a zoom of Figure 2.7b for the derivation of the mathematical descrip-
tion. In the following, the solution of (2.11) at time instant k + 1 is calculated based
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t

u(t)

sk = tk0 tk1 tk2 sk+1 = tk3

uk−2

uk−1

uk

Figure 2.8: Zoom of Figure 2.7b for one sampling interval.

on the state vector xk at time instant k and the input signal as in Figure 2.8. The
linearity of the system allows one to write the solution as

xk+1 = eãhxk+

∫ tk1

tk0

eã(h−ν)b̃dν uk−2 +

∫ tk2

tk1

eã(h−ν)b̃dν uk−1 +

∫ tk3

tk2

eã(h−ν)b̃dν uk (2.12)

and with a change of coordinates η = h− ν as

xk+1 = eãhxk+

∫ h−tk0=h

h−tk1
eãη b̃dη

︸ ︷︷ ︸
m0(τj)

uk−2+

∫ h−tk1

h−tk2
eãη b̃dη

︸ ︷︷ ︸
m1(τj)

uk−1+

∫ h−tk2

h−tk3=0
eãη b̃dη

︸ ︷︷ ︸
m2(τj)

uk , (2.13)

where tk0 = 0 and tk3 = h are used in addition. All integrals in (2.13) are functions of the
time instances tk1 and tk2, which depend on the actual packet delays τj for all relevant
packets j. This is also emphasized by the notation mi(τj) for i ∈ {0, 1, 2}.
After defining a new extended (lifted) state vector

ξk =
[
xk uk−1 uk−2

]T
, (2.14)

one can state an extended (lifted) state space model



xk+1

uk
uk−1





eãh m1(τj) m0(τj)
0 0 0
0 1 0





xk
uk−1

uk−2


+



m2(τj)

1
0


uk , (2.15)

which is a linear system

ξk+1 = Aξk + Buk (2.16)

with a time-varying dynamic matrix A and input vector B as

A =



eãh m1(τj) m0(τj)
0 0 0
0 1 0


 and B =



m2(τj)

1
0


 (2.17)

that depend on the actual packet delays. Please note that there are only two indepen-
dent time-varying parameters in (2.17) because

m0(τj) =

∫ h

h−tk1
eãη b̃dη =

∫ h

0
eãη b̃dη −

∫ h−tk2

0
eãη b̃dη

︸ ︷︷ ︸
m2(τj)

−
∫ h−tk1

0−tk2
eãη b̃dη

︸ ︷︷ ︸
m1(τj)

(2.18)
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holds and the first integral on the right hand side of (2.18) is a known constant. Pa-
rameters mi for i ∈ {0, 1, 2} can also be zero as can be seen, e.g., in Figure 2.7a, where
m0(τj) = 0 as uk−1 does not arrive in the considered interval between sk and sk+1 but
before that.

The scalar case presented above is now generalized to multivariable dynamic systems
as stated in (2.1) with x ∈ Rn, u ∈ Rm and bounded packet delays 0 ≤ τ ≤ τj ≤ τ̄
according to Assumption 2.5. Due to the definition of d and d̄ in (2.10), the packet
containing the oldest data uk−d̄ arrives for sure in the considered interval; the newest
packet that might be received may contain uk−d. Consequently, at maximum d̄ − d +
1 packets have to be considered as depicted in Figure 2.9. The number of arriving

t

u(t)

sk sk+1

uk−d̄

uk−d̄+1

uk−d̄+2

uk−d̄+3 uk−d

tk0 tk1 tk2 tk3 · · · tk
d̄+d

tk
d̄+d+1

i : 0 1 2 3 d̄ − d

Figure 2.9: Maximal number of packets i that might arrive between sampling instants
sk and sk+1.

packets between sk and sk+1 might be smaller if packets are received before or after
this interval. In addition, out of order arrivals reduce the number of relevant packets
due to the skipping mechanism for older packets. This yields the generalization of
(2.13) to multivariable systems such that

xk+1 = eÃhxk +

∫ h−tk0=h

h−tk1
eÃηB̃ dη uk−d̄ +

∫ h−tk1

h−tk2
eÃηB̃ dη uk−d̄+1+

. . .+

∫ h−tk
d̄−d−1

h−tk
d̄−d

B̃ dη uk−d−1 +

∫ h−tk
d̄−d

h−tk
d̄−d+1

=0
eÃηB̃ dη uk−d (2.19)

holds. Analogously to the scalar case, one can introduce matrices Mi(τj) depending on
the unknown network delays τj (for all relevant packets j) as

Mi(τj) =





∫ h−tki

h−tki+1

eÃηB̃ dη for 0 ≤ i ≤ d̄− d

0 for d̄− d < i ≤ d̄

(2.20)

and thus

xk+1 = eÃhxk +M0(τj)uk−d̄ +M1(τj)uk−d̄+1 + . . .+Md̄−d(τj)uk−d+

. . .+Md̄−1(τj)uk−1 +Md̄(τj)uk . (2.21)

Note that the most recent data packet contains uk−d as shown in Figure 2.9. As a
result, all Mi with i ∈

{
d̄− d+ 1, d̄− d+ 2, . . . , d̄− 1, d̄

}
are equal to zero, i.e. uk, uk+1

up to uk−d−1 does not play any role in the solution for the considered time interval.
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The plant states and the inputs uk−1 to uk−d̄ are combined an extended (lifted) state
vector

ξk =
[
xT
k uT

k−1 uT
k−2 . . . uT

k−d̄

]T
∈ Rn+md̄ . (2.22)

Hence, a model of the sampled plant in combination with a lumped variable network
delay shown in Figure 2.2 can be stated as

ξk+1 = Aξk + Buk (2.23)

with matrices

A =




eÃh Md̄−1(τj) Md̄−2(τj) · · · M2(τj) M1(τj) M0(τj)
0 0 0 · · · 0 0 0
0 Im 0 · · · 0 0 0

0 0 Im
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . Im 0 0

0 0 0 · · · 0 Im 0




(2.24a)

and

B =
[
Md̄(τj)

T Im 0 0 · · · 0 0
]T

. (2.24b)

Constant Im symbolizes the identity matrix with dimension m. System matrix A ∈
R(n+md̄)×(n+md̄) and input matrix B ∈ R(n+md̄)×m are unknown because of the unknown
network delay where only the bounds are known as stated in Assumption 2.5. Note
that the matrix dimensions increase with the maximal admissible network delay τ̄ and
thus with d̄. At least in simulation, the packet arrival times tki can be calculated as

tki = min

{
max

{
0, τj+i−d̄ −

k−1∑

`=k+i−d̄
h
}
,

max
{

0, τj+i−d̄+1 −
k−1∑

`=k+i−d̄+1

h
}
,

... (2.25)

max
{

0, τj−d −
k−1∑

`=k−d
h
}
, h

}

for i ∈ {0, 1, . . . , d̄− d+ 1} with 0 = tk0 ≤ tk1 ≤ . . . ≤ tk
d̄−d ≤ tk

d̄−d+1
= h, see [HvdW10]

for details.

For the simple example (2.11) presented above with the corresponding Figures 2.6, 2.7,
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it follows that d̄ = 2, d = 0, and consequently

tki = min

{
max

{
0, τj+i−2 −

k−1∑

`=k+i−2

h
}
, (2.26)

max
{

0, τj+i−1 −
k−1∑

`=k+i−1

h
}
,

max
{

0, τj+i

}
, h

}
(2.27)

for i ∈ {0, 1, 2, 3}. This yields

tk0 = min
{

max
{

0, τj−2 − 2h
}
, (2.28a)

max
{

0, τj−1 − h
}
,

max
{

0, τj
}
, h
}

= 0

tk1 = min
{

max
{

0, τj−1 − h
}
, (2.28b)

max
{

0, τj
}
, h
}

tk2 = min
{

max
{

0, τj
}
, h
}

(2.28c)

tk3 = min
{
h
}

= h (2.28d)

In principle, it is also possible to extend the presented mathematical description to
NCS with time-varying sampling intervals hk as explained in [HvdW10]. However, this
is not relevant for the present work.

It is also possible to extend the formulation to include the effects of packet dropouts.
The main idea [HvdW10] is to constrain the number of subsequent dropouts δ̄. Math-
ematically, this means that a variable mj is introduced such that

mj =

{
0 if packet j is successfully received

1 if packet j is dropped
(2.29)

and δ̄ is given by
j∑

`=j−δ̄
m` ≤ δ̄ . (2.30)

For example, δ̄ = 2 yields mj−2 +mj−1 +mj ≤ 2, which implies that at maximum two
out of three subsequent packets might be dropped.

The maximum number of subsequent packet dropouts δ̄ acts as an additional time delay
for the networked plant. Hence, d̄ is replaced by d̄+ δ̄ in Figure 2.9 and relations (2.20)
to (2.25).
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2.4 Protocols

The main point to consider for the networked connections is, apart from of the bounded
time-varying delay according to Assumption 2.2 and the computational delay as in
Assumption 2.3, the packetized character of the transmitted sequences. Such sequences
can represent states (xk), actuating signals (uk) but also output signals (yk) for the
case of output regulation treated in Chapters 6 to 8. Subsequently, only the case for
the transmission of the states (xk) as, e.g., in Figure 2.1 is considered.

In the following, the packetized nature of real communication channels is taken into
account by including a network policy (protocol) consisting of specific packet selection,
skipping and hold mechanisms in the analysis. This is done in a discrete-time framework
for simplicity reasons to convey the main points. However, similar protocol definitions
can also be done for continuous-time delays as in Assumption 2.2.

The packet delays can also take continuous values within the considered interval such
that several packets may arrive between two sampling instants at the receiver side. How-
ever, they are associated with the next sampling instant by the discrete-time controller.
Thus, only delays that are multiples of the sampling interval have to be considered in
real-world implementations of the controller as well as for the actuator interfaces.

Assumption 2.6 (Discrete network delays). The samples of a sequence, as e.g.
(xk), are transmitted in separate packets j that experience an individual bounded
packet delay τNj h that is in integer multiple of the sampling interval h such that

0 ≤ τN ≤ τNj ≤ τ̄N (2.31)

with τN , τNj , τ̄
N ∈ N.

Remark 2.7. Please note that (2.31) describes the relation between the respective inte-
ger multiples of the sampling interval. This yields packet delays τNj h, which are lower

and upper bounded by τNh and τ̄Nh respectively.

Three different protocols are formally introduced in the following. A packet containing
output sample xk is sent at instant k. It is received at the controller at sampling instant

r(k) ∈
{
k + τN , k + τN + 1, . . . , k + τ̄N − 1, k + τ̄N

}
(2.32)

depending on the actual packet delay τNj . Since the maximal packet delay is bounded,
the packet containing xk reaches the receiver at the controller side at the latest at
r(k) = k + τ̄N . The packet including xk+1 arrives at

r(k+1) ∈
{
k + τN + 1, k + τN + 2, . . . , k + τ̄N , k + τ̄N + 1

}
. (2.33)

Consequently, the arrival instant of the packet containing xk+τ̄N equals

r(k+τ̄N ) ∈
{
k + τN + τ̄N , k + τN + τ̄N + 1, . . . , k + 2τ̄N − 1, k + 2τ̄N

}
. (2.34)
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At instant p = k + τ̄N ∈ N, at most τ̄N − τN + 1 packets may arrive that contain

xk+τN if r(k+τN ) = p , (2.35a)

xk+τN+1 if r(k+τN+1) = p , (2.35b)

...
...

xk+τ̄N if r(k+τ̄N ) = p (2.35c)

Hence, the set of all received packets at instant p is

Y(p) =
{
xk+i

∣∣ r(k+i) = p, i = τN , τN + 1, . . . , τ̄N
}

(2.36)

and the set of all indices of received samples is

I(p) =
{
κ
∣∣ r(κ) = p, κ = k + τN , k + τN + 1, . . . , k + τ̄N

}
. (2.37)

This allows one to define several protocols that differ in the corresponding packet se-
lection and packet skipping mechanisms.

Definition 2.8 (Protocols). The receiver chooses a submitted sample x̂p at time
instant p ∈ N depending on the protocol such that for

(i) protocol P1:

x̂p =




xκ̄p , κ̄p = maxκ

κ∈I(p)
if I(p) 6= {} ∧ κ̄p > κ̄p−1

x̂p−1 otherwise
(2.38a)

(ii) protocol P2:

x̂p =




xκ̄p , κ̄p = maxκ

κ∈I(p)
if I(p) 6= {}

x̂p−1 otherwise
(2.38b)

(iii) protocol P3:

x̂p =




xκ̄p , κ̄p = any κ

κ∈I(p)
if I(p) 6= {}

x̂p−1 otherwise
(2.38c)

The cases using x̂p−1 in (2.38a) to (2.38c) constitute a zero order hold mechanism for
each packet that is active whenever no packet is received at the actual time instant p,
i.e. I(p) = {}. The protocols differ in terms of the packet selection mechanisms.

In Protocol P1 (2.38a), the newest available packet with the corresponding index κ̄p is
selected. Sample xκ̄p is only employed if the actual available packet at time instant p
is newer than the packet used at the previous time instant κ̄p−1, i.e. κ̄p > κ̄p−1. As
a consequence, packets that are older than the previously selected packet are skipped.
Note that a unique packet number has to be attached to each sent packet but no
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synchronization, e.g., using [IEE08], is needed, e.g., between the transmitter at the
sensor side and the receiver at the controller side.

Protocol P2 (2.38b) selects the newest packet with the corresponding index κ̄p if more
packets are available but does not implement any skipping mechanism. Consequently,
out of order arrivals are tolerated.

In situations where no packet numbering is implemented for simplicity reasons, protocol
P3 (2.38c) is applied. It selects any of the actual received packets at time instant
p, e.g., based on the position in the internal packet buffer. This represents the most
reduced network transmission approach with the least possible overhead. Consequently,
it constitutes the worst case for the stability analysis because the order of arriving
packets is unknown and any arriving packet may be selected at the receiver side. More
details about the impact of the selected protocols are presented in Chapters 6 to 8.
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Chapter 3

Simulation of time-varying
Packet Delays

This chapter highlights important aspects for the simulation of NCS subject to packe-
tized transmissions. The presented simulation approaches are adopted from [STHJ20].

It is illustrated that existing NCS simulation tools might give inconsistent results for
loops with bounded time-varying delays, which is exemplified for a single packetized
transmission channel. Consequently, two new approaches of how such simulations could
be performed are proposed that make use of specific packet delay models. The first
technique is limited to delays equal to an integer multiple of the sampling interval, while
the second technique is also applicable for simulating arbitrary delays. The results can
be extended to simple models of networks with packet dropouts, but does not cover
more detailed network protocols or physical-layer models. Both techniques extend basic
Matlab/Simulink [MAT] and TrueTime [Tru, CHL+03] blocks to accurately simulate
packetized transmission channels with time-varying delays. Simulation examples pro-
vide insights to the properties of the different approaches and compare the outcomes
to simulation results based on models from [LG11], [GC07] and [HvdW10].

Figure 3.1 shows a basic communication channel, where an input sequence (vk) is sent
from a transmitter (T) to a receiver (R). The arriving packets containing wk experience
variable transmission delays τj .

T
packet

delays τj
R

(vk) (wk)

Figure 3.1: Communication channel with transmitter T, time-varying packet delays τj
and receiver R.

In a test scenario, a ramp signal v(t) is sampled with a sampling interval of h = 1 and
sent over the channel with corresponding time delays τj as depicted in the top plot of
Figure 3.2. For simplicity reasons, the time-varying delay is assumed to be a multiple
of the sampling time. The signal v(t) and its sampled version vk are shown in blue
in Figure 3.2. Packet 0 should be delayed by 1, packet 1 by 3, packet 2 by 5, and so
on. The correct, i.e. the accurately simulated, arriving packets wk at the receiver are
plotted in gray in Figure 3.2. Note that several packets could arrive at the same time
(e.g., at t = 6) yielding by definition a value of wk according to the most recent packet
(e.g. packet 5 at t = 6). Also note that packet disordering is possible at the receiver,
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Figure 3.2: Example for the evaluation of simulation methods for a transmission channel
with variable time delay τj (top plot): continuous-time signal to be transmitted v(t),
transmitted packets vk (blue) and accurately received packets wk (gray).

which can be seen in Figure 3.2, where packets 1, 5, 2 and 6 are received subsequently.
In the following, approaches based on standard simulation blocks are analyzed and
extended.

3.1 Simulations with Simulink Standard Blocks

A natural way to simulate time-varying delays is to exploit the Simulink built-in blocks
Variable Integer Delay or Variable Time Delay. The block Variable Transport Delay
must not be used in the context of NCS because it relates to physical processes where
a medium is transported with a specified speed as pointed out in [ZY12]. This is
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Figure 3.3: Comparison of the accurate result (gray) with results from simulations using
the Simulink Variable Transport Delay block (red).

also visible in Figure 3.3, where the simulated signal wk (using a variable-step solver)
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strongly deviates from the accurate (gray) plot.
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Figure 3.4: Comparison of the accurate result (gray) with results from simulations using
the Simulink Variable Integer Delay (red) and Variable Time Delay block (green).

More surprisingly, also the simulation results using the Variable Integer Delay or Vari-
able Time Delay blocks yield non-accurate results as shown in Figure 3.4. This can
be explained, e.g., for the Variable Integer Delay block as follows. The internal struc-
ture of the Variable Integer Delay block is a tapped delay line in combination with a
switching mechanism to realize a variable time delay as depicted in Figure 3.5. In the

z−1

z−1

z−1

z−1

z−1

1

2

3

4

5

(vk)

(wk)

Figure 3.5: Functional principle of the Simulink Variable Integer Delay block.

example presented in Figure 3.4, all delay blocks in Figure 3.5 are initialized with zero.
The input sequence vk increases by one in each sampling interval h and is transferred
to the five delay blocks with internal states x1, x2, . . . , x5, as shown in Table 3.1.

Table 3.1: Results for the simulation example plotted in Figure 3.4 for the case with
the Simulink Variable Integer Delay block.

t 0 1 2 3 4 5 6 7 8 9

x1 0 0 1 2 3 4 5 6 7 8
x2 0 0 0 1 2 3 4 5 6 7

x3 0 0 0 0 1 2 3 4 5 6
x4 0 0 0 0 0 1 2 3 4 5

x5 0 0 0 0 0 0 1 2 3 4

τk 1 3 5 3 5 1 3 5 3 5

The internal switch selects port 1 to 5 depending on the specified delay τj for the
actual sampling step depicted in the top plot of Figure 3.2. The resulting sequence
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wk is visualized in Table 3.1 by using blue boxes. These values coincide with the
presented red and green signals in Figure 3.4. Non-integer values for the desired delays
are truncated in this Simulink implementation.

Hence, the desired delay should not directly be used as an input signal to the Simulink
Variable Integer Delay block. Instead the proposed Algorithm 1, which extends the
Simulink built-in block, can be used to link the packets to the desired packet delays
to achieve accurate simulation results. The key element is a packet buffer of length
d̄ + 1 (see (2.10) for the definition of d̄) that allows to keep track of all packets and
corresponding packet delays on the way between transmitter and receiver.

Algorithm 1 Pseudo code for the delay input signal generation for the Simulink Vari-
able Integer Delay block.

Algorithm: Input generation for the Simulink Variable Integer Delay Block

Initialize packet buffer (length: d̄+ 1);
while simulation is running do

Shift elements in buffer by 1;
Subtract h from all delays in the packet buffer;
Get actual packet delay (round to multiples of h);
Write actual packet delay at first position in buffer;
if skip old packets then

Replace negative delays in buffer by 0;
end
Choose most recent packet with delay 0 from buffer;

end

It also features the possibility to skip old packets in the case that newer packets are
available. Algorithm 1 is implemented in the compute index block in Figure 3.6 to
provide a proper index, i.e. a selection of the correct multiplexer signal in Figure 3.5.
In the case where old packets are skipped, the corresponding delay values in the buffer
are set to zero to keep them in play for the next time steps. Otherwise, negative delay
values will be assigned for the subsequent time steps (because h is subtracted in each
iteration) and, as a result, they will never be selected any more.

An additional case selection block at the output implements the necessary hold mech-
anism that is active, whenever no new packet is received, see Figure 3.6.
The simulation results for the considered example utilizing Algorithm 1 and the exten-
sion of the Simulink Variable Integer Delay block as in Figure 3.6 is shown in Figure 3.7
for the case without skipping (red) and with skipping mechanism (black). It is evident
that the introduced extension allows to correctly simulate packetized transmission chan-
nels, i.e. link individual delays to its corresponding packets.

An alternative, and more flexible, solution for the simulation of a channel is shown in
Figure 3.8. It does not incorporate any standard delay blocks, but uses Algorithm 2 to
easily implement protocols P1, P2 and P3 from Section 2.4 and can easily be extended
to, e.g., choose a random packet if more packets are available at one time instant. This
will become valuable in Chapters 6 to 8 with the focus on the stability analysis.
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Figure 3.6: Extension of the Simulink Variable Integer Delay block to account for
packetized transmissions.
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Figure 3.7: Comparison of the accurate result (gray) with results from simulations using
the Extension for the Simulink Variable Integer Delay block without skipping (red) and
with skipping mechanism (black) for old packets.

Figure 3.8: Implementation of a packetized network connection using Algorithm 2.
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Algorithm 2 Pseudo code for a network connection with time-varying packet delays.

Algorithm: Packetized Network

Initialize packet buffer (length: d+ 1);
while simulation is running do

// include new packet and packet delay in buffer

Shift elements in buffer by 1;
Subtract h from all delays in the packet buffer;
Get actual packet delay (round to multiples of h);
Write actual packet and packet delay at first position in buffer;

// skipping mechanism

if skip old packets then
Replace negative delays in buffer by 0;

end

// packet selection and hold mechanism

if number if delays equal to zero in buffer 6= 0 then (packet arrival)
find indices of arriving packets;
switch packet selection do

case choose newest do
choose packet with minimal index;

case choose oldest do
choose packet with maximal index;

case choose rand do
choose packet with random index;

end

end
Send chosen packet to output;

else (no packet arrival)
hold previous output value;

end

end
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3.2 Simulations using TrueTime

A possibility to simulate a time-varying channel is to use the Matlab toolbox TrueTime
[CHL+03]. It was developed to enable a co-simulation of controller tasks in real-time
kernels, continuous plant dynamics and network transmissions including task schedul-
ing. A big variety of different (wireless) network configurations and protocols can be
chosen within the simulation toolbox.

Figure 3.9 shows the packets that are sent (blue) and received (green) when a basic
TrueTime simulation (TT) is used. Since no additional network traffic is simulated in
this example, the green packets immediately appear at the receiver. Hence, an extension
of TrueTime to specify individual packet delays is necessary to enable, e.g., simulations
to verify stability criteria that provide a certain range of admissible time-varying delays.
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Figure 3.9: Comparison of the accurate result (gray) with results from simulations using
a basic TrueTime setting as well as an extended TrueTime setup for the case without
skipping (red) and with skipping mechanism (black) for old packets.

The link between specified delays and the individual packets can be established by the
following proposed extension for TrueTime. It introduces an additional block (Network
Delay Node) between transmitter (Send Node) and receiver (Receive Node) as shown
in Figure 3.10. This node schedules the arriving packets in the considered transmission

Figure 3.10: TrueTime implementation of a packetized communication channel. The
key ingredient is the Network Delay Node that links packets to its corresponding time
delays.

channel. Packets on the way are stored in an internal list with size d̄ − d + 1, where
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Algorithm 3 Pseudo code for the network delay node that schedules the packet arrivals
in the transmission channel.
Algorithm: Network Delay Node

Initialize packet list (length: d̄− d+ 1);
while simulation is running do

Get actual packet (to be scheduled for time t∗) from transmitter;
Read actual delay job (next packet that has already been scheduled to be received
next) from list;
if no packet has already been scheduled for t∗ then

// not scheduled

if time t∗ less than next planned packet arrival at receiver then
Cancel running delay job (next packet to be received);
Include actual packet at first position in list;
Move other packets backward in the list;
Start new delay job for the actual packet;

else
Include actual packet in list;
Sort list based on the planned arrival times;

end

else
// already scheduled

Replace packet in list (that was scheduled for time t∗) with the actual packet;
end

end

integers d and d̄ depend on the sampling interval h as well as on the minimal delay τN

and maximal delay τ̄N respectively, due to the definitions in (2.10).

Algorithm 3 is implemented in the Network Delay Node to schedule the packets that
should be sent with individual specified delays τj . In addition, a delay job is used that
sleeps until the packet related to the first entry in the list is sent to the receiver. Then,
the first element is removed and a new delay job corresponding to the next packet in
the list is started.

Figure 3.9 shows the results (in red) using this proposed extended TrueTime simula-
tion approach. It perfectly reproduces the accurate (gray) behavior of the packetized
transmission channel. A slight modification of the code of the receiving node allows
to skip old packets in the case that newer packets are available, see black signal in
Figure 3.9. Please note that a newer packet replaces an older packet in the packet list if
they are scheduled for the very same arrival time. However, this can be changed easily
as desired.

One advantage of the presented approach is that it is also capable to deal with variable
packet delays, where the delays are not multiples of the sampling instant. The downside
is its larger effort with respect to the implementation compared to the solution presented
in the previous section.
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3.3 Comparison of NCS models for variable time delays

This section compares the approaches for the simulation of time-varying delays in the
context of networked feedback loop as in Figure 2.1 using a linear state feedback con-
troller

uk = Lxk−τk (3.1)

with constant gain L that uses the delayed plant state xk−τk . For static controllers,
the time-varying delays can be combined to one round-trip-delay τk = τ sck + τ ck + τ cak
as described in Section 2.2. The simulation is carried out for a configuration, where
the delay is present between sensor and controller only. Two different ways to model
the closed loop are evaluated with respect to the simulation approaches shown in the
previous section. The delay is denoted as τk as it is often done in literature. This
means that there is no link between packets and corresponding delays, in contrast to
the modeling steps presented in Chapter 2. The implications of such an approach are
highlighted below.

A first possibility to model the closed loop is to directly discretize the continuous-time
plant from (2.1) such that

xk+1 = Axk +Buk (3.2)

with

A = eÃh and B =

∫ h

0
eÃηB̃ dη (3.3)

hold and to combine it with controller (3.1) yielding

xk+1 = Axk +BLxk−τk (3.4)

as, for example, described in [LG11] and [GC07]. The model for the closed loop (3.4)
combines the actual states xk and the delayed states xk−τk ; the delay is assumed to be
an integer-multiple of the sampling interval. This model is referred to as Model with
Time Delay in the following.

An alternative way to model the considered networked feedback loop is on the basis of
the Lifted Model as presented in Chapter 2, with the lifted state vector

ξk =
[
xT
k uT

k−1 uT
k−2 · · · uT

k−d

]T
∈ Rn+md̄ (3.5)

and the closed loop model
ξk+1 = Aξk + Buk (3.6)

with matrices A and B as defined in (2.24) and a state control law

uk = Lxk =
[
L 0m×md̄

]
ξk . (3.7)

Note that the effect of the time-varying delays and protocol P1 are implicitly embedded
into model formulation (3.6), as described in Chapter 2 in detail.

A simple simulation example is considered next, to compare the Model with Time Delay
and the Lifted Model for the closed loop system, where the plant dynamics is given by
a double integrator represented by matrices

Ã =

[
0 1
0 0

]
and B̃ =

[
0
1

]
(3.8)
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and a linear state controller with gain L is designed as proposed in [CHvdW+10]. It
stabilizes the feedback loop under the presence of a bounded but time-varying delay,
where h = 1, d = 0, d̄ = 4 and controller design parameter γ = 0.001 are used. The
initial states of the plant and the initial conditions of the network are chosen equal to
x(t = 0) = [2 −1]T and zero respectively. The packet delays are defined by a repeating
sequence that is shown in Figure 3.11.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

j

τ j

Figure 3.11: Simulation example for the closed NCS: Repeating sequence of time-
varying delays τj for packets j.

Figure 3.12 depicts the simulation results for the proposed extended TrueTime simu-
lation where, in addition, old packets are skipped (Ext. TrueTime, skip). The plots
show the control signal as well as the transmitted (tx) and received (rx) states. It can
be seen, that the lifted model yields identical results when compared to the continuous
plant states at the sampling instants.

In contrast, deviations from these accurate (gray) signals can be seen in Figure 3.13
where the extended TrueTime simulation without the skipping mechanism for old pack-
ets is used, which becomes evident by inspecting the transmitted signals shown in blue
in Figure 3.13.

Figure 3.14 reinforces the statements from the previous sections that the Simulink
built-in block Variable Integer Delay is not suitable for solving the considered task.
Interestingly, the Model with Time Delay (3.4) yields the same results as indicated in
Figure 3.14. This is due to the fact that the desired delays (see Figure 3.11) should be
related to a specific packet, but are actually associated with the iteration index instead
of the individual packets.

For the Model with Time Delay, the relations between packets and simulated delays are
lost. In contrast, the Lifted Model exactly reproduces the expected results for the case
that old packets are discarded whenever newer packets are available. This is possible
due to the calculation of the arrival times tkj in simulation. However, the lifted model
is not valid any more if different protocols as, e.g., protocols P2 and P3 from Chapter 2
are considered.

To sum up, the simulation of packetized transmissions with individual time-varying
delays for each packet should be done with care and the inclusion of individual packet
delays is vital to get accurate simulation results. Therefore, two different simulation ap-
proaches are proposed in this chapter: (i) an extension of TrueTime to simulate packet
delays that are not integer multiples of the sampling time and (ii) an extension of the
Simulink Variable Integer Delay block as well as an easy-to-use and easy-to-implement
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Figure 3.12: Simulation example for the closed NCS: Extended TrueTime simulation
with a mechanism to skip old packets. Comparison of the accurate continuous-time
signal, the transmitted (tx) and received (rx) signal, as well as the lifted states corre-
sponding to (3.6).

Packetized Network simulation block for packetized transmissions with variable time
delays. All versions allow to also easily include different packet skipping and hold
mechanisms.

The presented simulation approaches can easily be extended to incorporate packet
dropouts in transmission channels of networked systems with variable time delays by
excluding the packets to be dropped from the packet buffer or packet list depending on
the actually chosen simulation approach.
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Figure 3.13: Simulation example for the closed NCS: Extended Truetime simulation
without skipping mechanism. Comparison of the accurate continuous-time signal, the
transmitted (tx) and received (rx) signals.
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Figure 3.14: Simulation example for the closed NCS: Simulation with the Simulink
Variable Integer Delay block. Comparison of the accurate continuous-time signal, the
transmitted (tx) and received (rx) signal as well as the states corresponding to (3.4).
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Chapter 4

Robust Control of Buffered
Networked Systems

This chapter introduces a control approach for multivariable networked plants exploit-
ing buffering mechanisms and is adopted from [LSH19] that rests on [LRSH19, LSH+18].

Integral sliding mode techniques allow to design robust controllers that are insensitive
with respect to matched perturbations, i.e. external perturbations that act in the in-
put channels. The proposed approach makes it possible to implement m controllers
for the distributed plant with m inputs in a spatially distributed way without any
communications between the corresponding controllers. This yields simpler communi-
cation architectures and offers the possibility to, e.g., utilize different task classes for
the individual control loops resulting in different induced time-varying network delays.

plant with buffering

discretized plant

τ b1,j

...

τ bm,j

τ cam,j

...

τ ca1,j

τ cm,j

...

τ c1,j

controller m

...

controller 1

τscm,j

...

τsc1,j

(f1,k)

(fm,k)

(xk)

Figure 4.1: Feedback loop for the buffered networked plant that is subject to external
perturbations (fi,k) in each input channel i ∈ {1, 2, . . . ,m}.

Figure 4.1 depicts the underlying structure of the feedback loop, which is a generaliza-
tion of Figure 2.1 from Chapter 2. It is assumed that the external perturbations (fi,k)
with i ∈ {1, 2, . . . ,m} act in all input channels of the discretized plant (2.1), which

49



fulfills the basic Assumption 2.1 about the controllability.

All m controllers are linked via network connections to the buffered plant as shown in
Figure 4.1. The ith control loop is associated with time-varying computational delays
τ ci,j , sensor-to-controller delays τ sci,j and controller-to-actuator delays τ cai,j . Parameter j
represents the index that is attached to each packet at the sensor side. In addition,
buffers with the corresponding time delays τ bi,j are needed in the input channels to
ensure constant round trip delays as explained subsequently in detail.

Buffering techniques are also used by the author in [LSR+17, LSH+18] and recently
in [SSLH21] in combination with switching, non-switching and predictive discrete-time
sliding mode approaches. See also [Lud20] for more details. However, the defined
sliding variables exhibit relative degrees larger than one and, thus, make the controller
design task more challenging. In contrast, the methods presented in this chapter are
based on discrete-time integral sliding modes and facilitate a straight forward design of
a nominal controller in combination with an additional robustification designated for
relative degree one systems. It also allows to spatially distribute the controllers, which
is not possible in the other buffered approaches mentioned above.

4.1 Buffered Networked System

The basis for the subsequent controller design is the mathematical description of the
networked plant (that is subject to external perturbations) together with the buffering
mechanisms.

Assumption 4.1 (Perturbations). The perturbations act on the m inputs of the
discretized plant and are bounded in their change rate such that

sup

∣∣∣∣
fi,k+1 − fi,k

h

∣∣∣∣ = Li <∞ (4.1)

for all i ∈ {1, 2, . . . ,m}, with h being the sampling interval and Li the Lipschitz
constant of perturbation (fi,k) in the ith input channel.

Furthermore, the assumptions on the delays presented in Chapter 2 are generalized to
account for the structure in Figure 4.1.

Assumption 4.2 (Network and computational delays).

(a) The samples of sequence (xk) are time-stamped at the sensor and transmitted
in separate packets j that experience individual bounded packet delays τNi,j
such that

0 ≤ τNi ≤ τNi,j ≤ τ̄Ni (4.2)

for i ∈ {1, 2, . . . ,m} with τNi , τ
N
i,j , τ̄

N
i ∈ R+ for the sensor-to-controller and

controller-to-actuator delays, i.e. N ∈ {sc, ca}.

(b) The time for the evaluation of the control laws in the controllers are bounded
such that

0 ≤ τ ci ≤ τ ci,j ≤ τ̄ ci (4.3)

50



for i ∈ {1, 2, . . . ,m} with τ ci , τ
c
i,j , τ̄

c
i ∈ R+.

It is possible to lump the individual delays in the ith channel at the actuator side if
either the change rate of the sensor-to-controller delay is restricted or a static control
law is used as explained in Section 2.2. The focus of this work is on the design feedback
laws respecting the overall round trip delays τi,j for the simplified network structure
shown in Figure 4.2.

plant with buffering

discretized plant

τ b1,j

...

τ bm,j

τm,j

...

τ1,j

controller m

...

controller 1

(f1,k)

(fm,k)

(xk)

Figure 4.2: Simplified structure of the spatially distributed networked feedback loop
with m inputs.

Assumption 4.3 (Combined delays).

(a) The round trip delays τi,j = τ sci,j + τ ci,j + τ cai,j of each individual packet j in all
channels i ∈ {1, 2, . . . ,m} are bounded by

0 ≤ τ i ≤ τi,j ≤ τ̄i (4.4)

with τ i, τi,j , τ̄i ∈ R+.

(b) The sensor-to-controller delays fulfill τ sci,j ≥ τ sci,j−1 − h to allow lumping the
delays at the actuator side.

The key elements in the feedback loop as shown in Figure 4.2 are the buffers that
introduce additional time delays τ bi,j to keep the round trip delay constant in each
channel i. This is possible, since a time stamp is attached to each transmitted packet
(see Assumption 4.2(a)) at the sensor side, which render compensations of the time-
varying delays possible. This packet, containing xk, is used in the ith controller to
calculate the corresponding control signal for actuator i, which is forwarded to the
plant. The original time stamp that is attached at the sensor side is not changed in the
controller block. Hence, the actual packet delay τi,j can be determined at the receiver
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side of the plant, because the actual time is known at the buffer. The i buffers induce
additional packet delays

τ bi,j = δih− τi,j (4.5)

for i ∈ {1, 2, . . . ,m}, where

δi =

⌈
τ̄i
h

⌉
(4.6)

represents the largest integer multiple of the sampling interval that is needed to domi-
nate the maximum delay stated in Assumption 4.3. Consequently, all arriving packets
are stored in the buffers and forwarded to the plant after a time equal to δih, i.e. after
a constant round trip delay time.

This buffering mechanism is quite common in classical communication technologies like
IP telephony and packetized audio applications as, e.g., shown in [AL06, NKMP05,
RKTS94]. It has also found applications in the control community as, for example,
in [QN11, ABL08] and [Lib06]. It allows to convert the time-varying packet delays
into a known constant round trip delay in the present work. The buffers make it also
possible to introduce a packet reordering mechanism to correct out-of-order arrivals at
the receiver side. It is important to note that a time synchronization between sensors
and the actuators is vital and can, e.g., be done by the flooding time synchronization
protocol introduced in [MKSL04].

To sum up, the established buffers shown in Figure 4.2 at the actuator sides of the
plant introduce additional delays (4.5) to ensure that control signal (u1,k) is delayed by
δ1 time steps, (u2,k) is delayed by δ2 time steps, and so on. Thus, the vector of control
signals

uk =
[
u1,k u2,k · · · um,k

]T ∈ Rm (4.7)

arrives in a delayed fashion

uδk =
[
u1,k−δ1 u2,k−δ2 · · · um,k−δm

]T
(4.8)

at the discretized plant. The discrete-time formulation of the networked plant including
the buffering mechanisms for the m channels is then given by

xk+1 = Axk +B
(
uδk + fk

)
, (4.9)

where xk =
[
x1,k x2,k . . . xn,k

]T ∈ Rn and

fk =
[
f1,k f1,k · · · fm,k

]T ∈ Rm (4.10)

represent external perturbations acting on the plant as shown in Figure 4.2. The
dynamic matrix A and input matrix B follow from the discretization of the continuous-
time plant (2.1) such that

A = eÃh and B =

∫ h

0
eÃηB̃ dη =

[
b1 b2 · · · bm

]
(4.11)

with bi ∈ Rn.

Similar to (2.22) in Section 2.3, one can now introduce an extended (lifted) state vector
for the buffered plant as

ξk =
[
xT
k u1,k−1 u1,k−2 · · · u1,k−δ1 u2,k−1 u2,k−2 · · · u2,k−δ2 · · ·

· · · um,k−1 um,k−2 · · · um,k−δm
]T
. (4.12)
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Please note that the number of delayed ui,k depends on the corresponding buffer lengths
δi. In contrast to (2.22), where for example u1,k−1, u2,k−1, . . . , um,k−1 are used con-
secutively, relation (4.12) groups the delayed versions of one control input as, e.g.,
u1,k−1, u1,k−2, . . . , um,k−δ1 in one block. This is necessary to facilitate the design of
spatially distributed controllers as explained below.

The final structure of the lifted state space model with states ξk (4.12) is an alternative
description of (4.9), where uδk (4.8) is replaced by uk (4.7), i.e. the buffers are explicitly
included in the mathematical description. This yields

ξk+1 = Aξk + Buk + Bffk (4.13)

with system matrix

A =




A 0n×δ1−1 b1 0n×δ2−1 b2 · · · 0n×δm−1 bm
01×n 0 0 0 0 · · · 0 0

0δ1−1×n Iδ1−1 0δ1−1×1 0 0 · · · 0 0

01×n 0 0 0 0 · · · 0 0

0δ2−1×n 0 0 Iδ2−1 0δ2−1×1 · · · 0 0

...
...

...
...

...
. . .

...
...

01×n 0 0 0 0 · · · 0 0

0δm−1×n 0 0 0 0 · · · Iδm−1 0δm−1×1




(4.14a)
and input matrices

B =




0n×1 0n×1 · · · 0n×1

1 0 · · · 0
0δ1−1×1 0 · · · 0

0 1 · · · 0
0δ2−1×1 0 · · · 0

...
...

. . .
...

0 0 · · · 1
0δm−1×1 0 · · · 0




and Bf =




B

0
0δ1−1×1

0
0δ2−1×1

...

0
0δm−1×1




(4.14b)

related to uk and the disturbance vector fk, respectively, in which the dimensions of the
zero matrices are only mentioned where necessary. The segmentation of the matrices
is in accordance with (4.12) to also emphasize the effects of the individual buffers
modeled by the blue parts in (4.14). All actuating signals uk enter via matrix B and
pass through the buffers of different lengths δi as indicated in matrix A before they
affect the plant states xk via the input vectors bi. The dimensions of A ∈ R(n+∆)×(n+∆)

and B,Bf ∈ R(n+∆)×m depend on the sum over all buffer lengths

∆ =
m∑

i=1

δi (4.15)

and the number of plant states n. The same is true for ξk ∈ Rn+∆.

Please note that fk is not matched as defined, e.g., in [Utk92] for the lifted model (4.13)
with states ξk because

rank
[
B Bf

]
6= rankB . (4.16)
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However, the perturbation is matched with respect to the original plant states xk as
can be seen in (4.9). As a result, it is possible to robustly stabilize the plant only, which
meets the goals of the present approach.

Also note that a perturbation f(t) is assumed to act on the continuous-time plant in
[LSH19] such that

dx

dt
= Ãx(t) + B̃

(
u(t) + f(t)

)
. (4.17)

This leads to the additional assumption in [LSH19] that the perturbation is piece-wise
constant over one sampling interval. Otherwise, additional unmatched perturbations
would be present that cannot be rejected in principle by using the actuators and thus
would also affect the states.

4.2 Integral Sliding Mode Control

This section summarizes the basic idea of integral sliding mode control that can be
found, e.g., in [US96] and [SEFL15] and is available for continuous-time as well as for
discrete-time systems. It will be utilized in the subsequent sections for the considered
buffered networked system.

Figure 4.3 depicts the general structure consisting of an outer control loop and an inner
control loop. A nominal controller, which is designed for the ideal, disturbance free
plant model, is employed in the outer loop to provide the nominal actuating signal (ūk).
The additional inner loop serves as a robustification of the nominal behavior against
external perturbations (fk). One possibility is to use an MPC as nominal controller

nominal
controller

plant

sliding mode
controller

(ūk) (uk)

(fk)

(uSk )

(xk)

Figure 4.3: Basic structure for integral sliding mode techniques with an outer (nominal)
and inner (robustifying) loop.

in that context as proposed by [RRFM11] and [RRJ+15]. This idea was extended by
the author of this work in [SCHF20] to the case of robust output regulation based on
output integral sliding mode techniques [FPB14]. In this work, the nominal controller
is designed using LMI conditions.

Control signal (uk) that is actually applied to the plant is the sum of (ūk) and the
signal (uSk ) provided by the sliding mode controller, i.e.

uk = ūk + uSk . (4.18)

The principle idea is now briefly explained for a discrete-time system with one input
only, which is given by

xk+1 = Axk + b (uk + fk) (4.19)
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with xk ∈ Rn, uk ∈ R , fk ∈ R and system data A, b with appropriate dimensions. For
the unperturbed plant, which follows from (4.19) for fk = 0 for all k ∈ N, one gets

xk+1 = Axk + būk , (4.20)

if only the nominal control signal ūk is used. A discrete-time sliding variable σk is
defined as

σk = mT
(
xk︸︷︷︸
(i)

− (Axk−1 + būk−1)︸ ︷︷ ︸
(ii)

)
, (4.21)

with a constant parameter vector m ∈ Rn. Part (i) stands for the solution of the
perturbed system with input uk = ūk + uSk , whereas part (ii) models the effect of the
nominal control signal uSk on the unperturbed plant as in (4.20). In continuous-time
integral sliding mode versions, part (ii) is given by the solution of the nominal response
using a convolution integral, see [SEFL15].

Relation (4.21) is equivalent to

σk = mTxk + wk (4.22a)

wk+1 = −mT (Axk + būk)wk , (4.22b)

which, together with (4.18) to (4.20), yields

σk+1 = mT
(
Axk + b (uk + fk)−Axk + būk

)

= mT
(
b
(
uSk + fk

) )
(4.23)

In ideal sliding motion, i.e. σk = 0 and thus also σk+1 = 0 for all k ≥ k? with some
k? ∈ N, one obtains from (4.21) that the control signal uSk provided by the sliding mode
controller exactly compensates for the perturbation fk so that

uSk = −fk . (4.24)

However, only a specific band around σk = 0 (quasi sliding mode band) is achieved
in reality due to the discrete-time sliding mode algorithms, see, e.g., [Lud20, LRSH19,
LSH+18, Bar98] and references therein for details. This will also be evident in the
simulation example at the end of this chapter.

4.3 Networked Control via Integral Sliding Modes

This sections extends the basic integral sliding mode approach to networked buffered
systems shown in Figure 4.2. First, a nominal controller is designed using LMI con-
ditions. Then, a properly defined sliding variable allows to decouple the sliding mode
controller design for the individual channels i = 1, 2, . . . ,m.

4.3.1 Nominal Control

The nominal controller design should render a spatially distribution of the individual
controllers possible. This implies that each controller should only access the measured
and transmitted states as well as its own previous control signals. For example, con-
troller 1 is only allowed to use xk, u1,k−1, u1,k−2 and so on but not u2,k−1. This avoids
mutual transmissions between the corresponding controllers.
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The starting point is the nominal lifted model, i.e. model (4.13) evaluated for fk = 0
for all k ∈ N and uk = ūk. The inner control loop is deactivated such that uSk = 0 for
all k. This yields the mathematical description of the nominal buffered plant such that

ξ̄k+1 = Aξ̄k + Būk (4.25)

with the nominal lifted state vector

ξ̄k =
[
xT
k ū1,k−1 ū1,k−2 · · · ū1,k−δ1 ū2,k−1 ū2,k−2 · · · ū2,k−δ2 · · ·

· · · ūm,k−1 ūm,k−2 · · · ūm,k−δm
]T

∈ Rn+∆ . (4.26)

The following theorem rests on LMI-based design techniques as, e.g., presented in
[CHvdW+10] and [HvdW10] for the case with bounded time-varying delays. In the
present work, the delay variation is made uniform and known due to the buffers in-
volved. However, the LMI approach allows to also specify the structure of the developed
controllers, which is important for the proposed approach.

Theorem 4.4 (Nominal, spatially distributed controller design [LSH19]). Con-
sider the buffered networked feedback loop in Figure 4.2 with i = 1, 2, . . . ,m con-
trollers and the buffered plant described by (4.25) with state vector (4.26) and
matrices A and B as defined in (4.14). Buffers (4.5) ensure that the round trip
delays equal δih, where h is the sampling interval and δi the length of buffer i. Let
Assumptions 2.1 and 4.3 hold.

The combination of the individual nominal controllers is given by

ūk = K̄ξ̄k =
[
Kx Ku

]
ξ̄k ∈ Rm (4.27)

with Kx ∈ Rm×n and

Ku =




kT1 0 · · · 0 0

0 kT2
. . . 0 0

...
. . .

. . .
. . .

...

0 0
. . . kTm−1 0

0 0 · · · 0 kTm



, where kTi ∈ R1×δi . (4.28)

Let there exist a symmetric positive definite matrix Y ∈ R(n+∆)×(n+∆) with ∆ as
in (4.15), matrix Z =

[
Zx Zu

]
with Zx ∈ Rm×n,

Zu =




zT1 0 · · · 0 0

0 zT2
. . . 0 0

...
. . .

. . .
. . .

...

0 0
. . . zTm−1 0

0 0 · · · 0 zTm



, (4.29)

56



where zTi ∈ R1×δi, and matrix

X =

[
X1 0
X2 X3

]
(4.30)

with X1 ∈ Rn×n, X2 ∈ R∆×n,

X3 =




X̄3,1 0 · · · 0 0

0 X̄3,2
. . . 0 0

...
. . .

. . .
. . .

...
0 0 · · · X̄3,m−1 0
0 0 · · · 0 X̄3,m



, (4.31)

with X̄3,i ∈ Rδi×δi and a scalar γ bounded by 0 ≤ γ < 1 that satisfy

[
X +XT − Y XTAT − ZTBT
AX − BZ (1− γ)Y

]
> 0 . (4.32)

Then, the nominal closed loop system is globally asymptotically stable and the
control gains (4.27) are given by

Ku = ZuX
−1
3 and Kx = (Zx −KuX2)X−1

1 . (4.33)

In addition, only local information, i.e. delayed values of the own control signals
ui,k, is used in the ith controller together with xk.

Proof. The control gain matrix K̄ (4.27) multiplied by (4.30) while considering (4.33)
yields

K̄X =
[
KxX1 +KuX2 KuX3

]

=
[
(Zx −KuX2)X−1

1 X1 +KuX2 KuX3

]
(4.34)

=
[(
Zx − ZuX−1

3 X2

)
+ ZuX

−1
3 X2 ZuX

−1
3 X3

]

and thus
K̄X =

[
Zx Zu

]
= Z . (4.35)

Inserting (4.34) and its transpose ZT = XTK̄T into (4.32) results in
[
X +XT − Y XT

(
A− BK̄

)T
(
A− BK̄

)
X (1− γ)Y

]
> 0 , (4.36)

which is the same form as in Theorem 3 of [DB01] for N = 1, G1 = X, S1 = Y and
A1 = A − BK̄. Consequently, following [DB01], the considered feedback system is
globally asymptotically stable.

In addition, the ith controller only used local information and xk as can be seen by
combining (4.27), (4.28) and (4.26) such that

ui,k = kT
x,ixk + kT

i




ūi,k−1

ūi,k−2

...
ūi,k−δm


 (4.37)
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where kT
i ∈ R1×δi . Vector kT

x,i ∈ R1×n symbolizes the ith row of matrix Kx, which
completes the proof. �

Assumption 4.3(b) on the change rates of the sensor-to-controller delays might be lim-
iting in some situations. Thus the following corollary can be utilized to get rid of this
assumption.

Corollary 4.5 (Nominal, spatially distributed controller design without restric-
tions of the change rate of the sensor-to-controller delays). Consider the setup as
stated in Theorem 4.4 where Assumption 4.3(b) on the sensor-to-controller delays
is removed. Let matrix (4.29) be zero, i.e. Zu = 0 ∈ Rm×∆, and X3 ∈ R∆×∆ a
fully occupied matrix.

Then, the nominal closed loop system is globally asymptotically stable and the gain
matrix K̄ ∈ Rm×(n+∆) in (4.27) is given by

K̄ =
[
Kx 0m×∆

]
(4.38)

and the i controllers are static, i.e. they use the plant states xk only but no
actuating signals from previous time steps or other controllers ν 6= i for i, ν ∈
{1, 2, . . . ,m}.

Proof. The proof is a direct consequence of the proof of Theorem 4.4 because the
choice of Zu = 0 removes the dependency of ui,k on ui,k−1, ui,k−2 up to ui,k−δi . Thus,
the mathematical model (4.13) remains valid also for arbitrary time delays within the
intervals specified in Assumption 4.3(b) as explained in detail in Section 2.2 because
the controllers are static. �

Please note that matrix X3 might be a fully occupied matrix in Corollary 4.5, since the
specific structure in (4.31) was only specified to decouple controller i from the other
controllers. This in now done by Zu = 0, which, however, yields more restrictive results
compared to Theorem 4.4.

4.3.2 Sliding Mode Control

In the next step, a sliding mode controller is designed to render the nominal closed
loop system insensitive to external perturbations (fk) following the steps presented in
Section 4.2 for the buffered networked plant model. In addition, a specific definition of
the sliding surface allows to decouple the individual control loops shown in Figure 4.2.

Theorem 4.6 (Robustifying, spatially distributed controller design [LSH19]).
Consider the buffered networked feedback loop in Figure 4.2 with i = 1, 2, . . . ,m
controllers and the buffered plant described by (4.13) with state vector (4.12) and
matrices A and B as defined in (4.14). Buffers (4.5) ensure that the round trip
delays equal δih, where h is the sampling interval and δi the length of buffer i. Let
Assumptions 2.1, 4.1 and 4.3 hold.

The overall control signal is given by

uk = ūk + uSk ∈ Rm (4.39)

where ūk stems from a nominal controller design for fk = 0 ∀k ∈ N and the ith
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component of uSk =
[
uS1,k uS2,k . . . uSm,k

]T
is

uSi,k = σi,k − hαi
√
|σi,k| signσi,k + hzi,k (4.40a)

zi,k+1 = zi,k − hβi signσi,k (4.40b)

where

αi = 1.5
√

Λi , βi = 1.1Λi , and Λi ≥
Li
h

(4.41)

with change rates Li as in Assumption 4.1. The discrete-time integral sliding
variable is specified depending on the lifted state ξk (4.12) such that

σk =
[
σ1,k σ2,k . . . σm,k

]T
= Mξk + wk (4.42a)

wk+1 =
[
w1,k w2,k . . . wm,k

]T
= −M (Aξk + Būk) (4.42b)

with

M =




pT1 1 01×δ1−1 0 01×δ2−1 · · · 0 01×δm−1

pT2 0 01×δ1−1 1 01×δ2−1 · · · 0 01×δm−1

...
...

...
...

...
. . .

...
...

pTm 0 01×δ1−1 0 01×δ2−1 · · · 1 01×δm−1




(4.43)

where the left inverse of input matrix B is used to find pi ∈ Rn as

[
p1 p2 · · · pm

]T
= B+ =

(
BTB

)−1
B ∈ Rm×n . (4.44)

Then, the plant states xk are ultimately bounded and (uSk ) compensates for (fk).
In addition, only local information, i.e. delayed values of the own control signals
ui,k, is used in the ith controller together with xk.

Proof. The ultimate boundedness of the plant states is shown first in the proof. Hence,
the forward increment of the sliding variable (4.42a) is considered in combination with
(4.13), (4.39) and (4.42b) yielding

σk+1 = M (Aξk + Buk + Bffk) + wk+1

= MAξk +MB
(
ūk + uSk

)
+MBffk −M (Aξk + Būk) (4.45)

= MBuSk +MBffk
The left inverse (4.44) of B exists because the controllability of the plant is not lost
through sampling and B has full column rank due to Assumption 2.1. Consequently,
one get

MB =




pT
1 1 0 0 0 · · · 0 0

pT
2 0 0 1 0 · · · 0 0
...

...
...

...
...

. . .
...

...

pT
m 0 0 0 0 · · · 1 0







0 0 · · · 0

1 0 · · · 0
0 0 · · · 0

0 1 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 1
0 0 · · · 0




= Im (4.46)
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and

MBf =




pT
1 1 0 0 0 · · · 0 0

pT
2 0 0 1 0 · · · 0 0
...

...
...

...
...

. . .
...

...

pT
m 0 0 0 0 · · · 1 0







B

0
0

0
0
...

0
0




= B+B = Im (4.47)

which simplifies (4.45) to

σi,k+1 = uSi,k + fi,k (4.48)

This means that the ith sliding variable σi,k+1 solely depends on entities from channel
i. Consequently, individual sliding mode controllers can be designed for each channel,
which are discretized super-twisting controllers in the present work. Therefore, consider
a continuous-time integrator with input ui(t), i.e.

dσi
dt

= ui(t) + φi(t) (4.49)

with perturbation φi(t) that has a bounded time-derivative of

sup

(∣∣∣∣
dφi(t)

dt

∣∣∣∣
)

= Lφi <∞ . (4.50)

The application of the super-twisting algorithm introduced in [Lev93] as

ui(t) = −αi
√
σi(t) signσi(t) + zi(t) (4.51a)

dzi
dt

= −βi signσi(t) (4.51b)

to (4.49) yields the finite-time stable feedback loop

dσi
dt

= −αi
√
σi(t) signσi(t) + zi(t) + φi(t) (4.52a)

dzi
dt

= −βi signσi(t) (4.52b)

if the parameters αi and βi properly tuned [Lev93]. One classical tuning rule is

αi = 1.5
√

Φi and βi = 1.1Φi with Φi ≥ Lφi (4.53)

to ensure stability as proven in [SH17]. Applying transformation νi(t) = zi(t) + φi(t)
to relation (4.52) yields

dσi
dt

= −αi
√
σi(t) signσi(t) + νi(t) (4.54a)

dνi
dt

=
dzi
dt

+
dφi
dt

= −βi signσi(t) +
dφi
dt

(4.54b)

as the continuous-time representation of the closed loop system.
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Relations (4.40) in Theorem 4.6 represent the Euler forward discretized equations (4.51)
of the super-twisting algorithm. Inserting (4.40) into (4.48) results in

σi,k+1 = uSi,k + fi,k = σi,k − hαi
√
|σi,k| signσi,k + hzi,k + fi,k

= σi,k − hαi
√
|σi,k| signσi,k + h

(
zi,k +

fi,k
h

)
(4.55a)

zi,k+1 = zi,k − hβi signσi,k (4.55b)

and thus, using the additional variable νi,k = zi,k +
fi,k
h ,

σi,k+1 = σi,k − hαi
√
|σi,k| signσi,k + hνi,k (4.56a)

νi,k+1 = zi,k+1 +
fi,k+1

h
= zi,k − hβi signσi,k +

fi,k+1

h

= νi,k −
fi,k
h
− hβi signσi,k +

fi,k+1

h

= νi,k − hβi signσi,k +
fi,k+1 − fi,k

h
. (4.56b)

Relation (4.56b) is equivalent to

νi,k+1 − νi,k
h

= −βi signσi,k +
fi,k+1 − fi,k

h2
, (4.57)

which is the Euler forward discretized form of (4.56b). Thus, conditions (4.41) follow
from (4.53) and

Lφi = sup

(∣∣∣∣
fi,k+1 − fi,k

h2

∣∣∣∣
)

=
1

h
sup

(∣∣∣∣
fi,k+1 − fi,k

h

∣∣∣∣
)

=
Li
h

(4.58)

with Li as in Assumption 4.1. Due to this equivalence, the ultimate boundedness of
the sliding variables σi,k and states xk is ensured, see [LL14].

In the second part of the proof it is necessary to show that the i controllers use local
information only. The sliding variable σk and the additional variable wk are given by
(4.42) as

σk =
[
σ1,k σ2,k · · · σm,k

]T
= Mξk + wk (4.59a)

wk+1 =
[
w1,k w2,k · · · wm,k

]T
= −MAξk −MBūk , (4.59b)

where Mξk and MAξk can be simplified by means of the structures of the involves
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matrices, cf. (4.14), (4.43) such that

MA =




pT
1 1 0 0 0 · · · 0 0

pT
2 0 0 1 0 · · · 0 0
...

...
...

...
...

. . .
...

...

pT
m 0 0 0 0 · · · 1 0







xk
u1,k−1

u1,k−2

...
u1,k−δ1
u2,k−1

u2,k−2

...
u2,k−δ2

...

um,k−1

um,k−2

...
um,k−δm




=




pT
1 xk + u1,k−1

pT
2 xk + u2,k−1

...

pT
mxk + um,k−1




(4.60)
and

MAξk =

=




pT
1 1 0 0 0 · · · 0 0

pT
2 0 0 1 0 · · · 0 0
...

...
...

...
...

. . .
...

...

pT
m 0 0 0 0 · · · 1 0







A 0 b1 0 b2 · · · 0 bm
0 0 0 0 0 · · · 0 0

0 I 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

0 0 0 I 0 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · 0 0

0 0 0 0 0 · · · I 0




ξk

=




pT
1 A 01×δ1−1 pT

1 b1 01×δ2−1 pT
1 b2 · · · 01×δm−1 pT

1 bm

pT
2 A 0 pT

2 b1 0 pT
2 b2 · · · 0 pT

2 bm
...

...
...

...
...

. . .
...

...

pT
mA 0 pT

mb1 0 pT
mb2 · · · 0 pT

mbm



ξk (4.61)

=




pT
1

pT
2

· · ·
pT
m


Axk +




pT
1

pT
2

· · ·
pT
m



[
b1 b2 · · · bm

]



u1,k−δ1
u2,k−δ2
· · ·

um,k−δm


 = B+Aξk +B+B︸ ︷︷ ︸

Im




u1,k−δ1
u2,k−δ2
· · ·

um,k−δm




Combining (4.59) with (4.46), (4.60) and (4.61) results in the equations evaluated by
the ith controller as

σi,k = pT
i xk + ui,k−1 + wi,k (4.62a)

wi,k+1 = −pT
i Axk − ui,k−δi − ūi,k . (4.62b)

This shows that controller i only uses local information and the states xk but no delayed
control signals of other channels. This completes the proof. �

62



Please note that the main contribution of Theorem 4.6 is the robustification of the
nominal control together with the decoupling of the sliding mode controllers in the in-
dividual channels i. It offers the possibility to use any sliding mode control algorithm for
relative degree one systems to get uSk . In the current work, a Euler forward discretized
version of the super-twisting algorithm was used as an example. However, many other
discrete-time algorithms or discretized versions of continuous-time algorithms can be
utilized. For example, a super-twisting algorithm that is discretized via the matching
approach [KR19] is employed in [Lud20].

4.4 Simulation Example

The properties of the approach that is proposed in this chapter are highlighted using
a simulation example [LSH19] for an unstable continuous-time plant with four states
and three inputs. Dynamic matrix Ã and input matrix B̃ are given by

Ã =




−3 −3 −2 1
2 −3 −2 2
1 2 −3 1
−3 −3 3 0


 and B̃ =




−1 −3 0
1 3 1
−3 3 −1
−2 −3 2


 , (4.63)

respectively. A sampling interval of h = 0.1 s is chosen and the maximal round trip
delays equal δih with δ1 = 3, δ2 = 7 and δ3 = 6 provided by the buffers of channels
i = 1, 2, 3, see Figure 4.2. The actual time-varying transmission delays are important
to a lesser extent, as long as they comply with Assumption 4.3, since the buffers make
the round trip delays uniform.

The matched perturbation consists of two sinusoidal functions with offset specified as

fk =




1
2
3


 sin






0.1
0.2
0.3


 kh


+




3
2
1


 sin






0.1
0.2
0.3


πkh


+




1
2
3


 (4.64)

in the simulation as shown in Figure 4.4. Please note that the frequencies of the two
sinusoidal functions are not integer multiples (they are multiplied by π in the present
case) of each other to avoid periodic disturbances.

In a first step, Theorem 4.4 is evaluated. A choice of parameter γ = 0.98 yields the
solution of the LMI conditions (4.32) such that the nominal control signal ūk depends
on the states and the previous actuating signals as can be seen in (4.27). Matrix

Kx =




0.25000 −0.02240 −0.48700 −0.50900
−0.00241 0.00110 0.00261 0.00405
−0.00449 0.00172 0.00553 0.00655


 ∈ Rm×n (4.65)

weights the states in ūk =
[
ū1,k ū2,k ū3,k

]T
. Matrix Ku ∈ Rm×∆ with m = 3 and

∆ = δ1 + δ2 + δ3 = 17 is composed of vectors

kT
1 =

[
0.461 0.365 0.213

]
∈ R1×δ1

kT
2 =

[
80.50 57.90 32.00 16.50 9.08 4.68 2.19

]
· 10−3 ∈ R1×δ2 (4.66)

kT
3 =

[
47.30 33.00 20.90 12.60 6.77 2.88

]
· 10−3 ∈ R1×δ3

that are arranged as in (4.28).
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Figure 4.4: Simulation example: perturbations fi,k with i ∈ {1, 2, 3}.

In a second step, the sliding mode part is designed as stated in Theorem 4.6. Hence,
the maximal change rates (4.1) of perturbations (4.64) are calculated as

L =
[
L1 L2 L3

]T
=
[
1.04 1.66 1.84

]T
(4.67)

to find the parameter settings (4.41) for the three individual sliding mode controllers
for channels 1, 2 and 3, see Table 4.1. The integral sliding surface is designed as in

Table 4.1: Simulation example: parameters for the m = 3 sliding mode controllers

i Λi αi βi

1 10.6 4.88 11.66

2 16.8 6.15 18.48

3 18.6 6.47 20.46

(4.42), which together with (4.11), yields

B+ =



pT

1

pT
2

pT
3


 =



−0.384 0.661 −2.240 −1.310
−1.380 1.140 1.070 −0.302
−1.280 3.550 −1.260 3.050


 (4.68)
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and so three independent sliding variables

σ1,k = pT
1 xk + u1,k−1 + w1,k (4.69)

w1,k+1 =
[
0.0121 −0.5220 2.0900 1.4300

]
xk − u1,k−3 − ū1,k ,

σ2,k = pT
2 xk + u2,k−1 + w2,k (4.70)

w2,k+1 =
[
0.6840 −1.3000 −0.6970 0.0633

]
xk − u1,k−7 − ū2,k

and

σ3,k = pT
3 xk + u3,k−1 + w3,k (4.71)

w3,k+1 =
[
1.4000 −2.0000 0.3300 −3.3800

]
xk − u1,k−6 − ū3,k .

The first terms on the right hand sides of wi,k+1 in (4.69), (4.70) and (4.71) are equal
to −pT

i Axk for i ∈ {1, 2, 3} as stated in (4.62).

Figures 4.5 to 4.7 present the simulation results obtained for an initial state vector of

x0 =
[
− 7 7 3 − 3

]T
. A convergence to the quasi-sliding mode band is reached

after approximately 4 s as visible in Figure 4.5 in all channels.
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Figure 4.5: Simulation example: sliding variables σk for the channels 1, 2 and 3.
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The effect of the additional inner integral sliding mode controllers in Figure 4.2 is
evident in the plots for the states xk and the corresponding control signals uk in Fig-
ures 4.6 and 4.7 respectively. The blue signals equal the results for the nominal case,
i.e. uk = ūk. In contrast, the use of the additional robustification, i.e. uk = ūk + uSk ,
allows to drastically attenuate the effects caused by the external perturbations. This
is possible since in ideal discrete-time sliding motion, i.e. for σi,k = 0 for all k ≥ k?

with some k? ∈ N, the actuating signal compensates for the perturbations such that
uSi,k = −fi,k as also shown in (4.24) and visible in (4.48). The discretized super-twisting
algorithm forces the sliding variables to quasi-sliding mode bands only (and not exactly
to zero) as depicted in Figure 4.5. Hence, the compensation is not exact as presented
in Figure 4.7, where the green plots stand for the perturbations multiplied by minus
one.

The simulation example underpins that the proposed integral sliding mode based control
approach makes it possible to robustly control networked plants, which are connected
via transmissions networks to i separate and possibly spatially distributed controllers
for the i actuators. The introduced buffering mechanisms convert the time-varying
packet delays in the network connections into constant and known round trip delays in
the individual channels i = {1, 2, . . . ,m}.
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Figure 4.6: Simulation example: states xk for the case with nominal part only (blue)
and for the case with the nominal and sliding mode part (red).
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Figure 4.7: Simulation example: control signals uk for the case with nominal part ūk
only (blue) and for the case with the nominal and sliding mode part ūk + uSk (red).
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Chapter 5

Adaptive Control of Networked
Systems

This chapter is adopted from [SHF19], [SHF21] and presents adaptive control ap-
proaches for multivariable networked systems in state space form. The transmission
channels are characterized by uncertain time delays.

First, the considered plant description and assumptions on the network are introduced.
Adaptive laws are proposed in the following on the basis of the fundamental idea of
model reference adaptive control. The key element is the definition of a virtual output
variable, which can be, from a sliding mode perspective, regarded as a sliding variable.
As a result, the dynamics of the closed loop system can be split into a part related
to the virtual output, which is forced to zero, and a remaining part. It is shown in
this chapter, how to design the adaptive laws and prove the stability of the system
consisting of the adaptive controller, the multivariable plant and the communication
network. This allows to control the plant via the transmission network that exhibits
unknown time delays in the communication links.

In contrast to classical adaptive approaches, it features computationally cheap imple-
mentations since the controller operates in a reduced dimension. Two different ap-
proaches are presented to either track desired references for the virtual outputs or to
stabilize the virtual outputs at zero. It is also shown, how the two introduced meth-
ods can be extended to further improve the control performance. Finally, simulation
examples facilitate comparisons between the presented adaptive techniques as well as
to a non-adaptive approach.

The starting point is a continuous-time linear time-invariant multivariable plant as in
(2.1), i.e.

dx(t)

dt
= Ãx(t) + B̃u(t) (5.1)

with states x(t) ∈ Rn and input vector u(t) ∈ Rm at time t.

Assumption 5.1 (Plant). The constant matrices Ã ∈ Rn×n and B̃ ∈ Rn×m
in (5.1) might be known, completely unknown or partially unknown due to some
uncertain parameters. The pair (Ã, B̃) is controllable and the sampling is carried
out with a non-pathological sampling interval h in the sense of [KHN63] to preserve
the full rank of the discretized input matrix.
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The controller is connected to the plant via a network connection between sensor and
controller as well as between controller and actuator, as shown in Figure 2.1.

Assumption 5.2 (Round trip delay). The round trip delay τ = τ sc+τ c+τ ca ∈ R
is constant for all packets j, i.e. τj = τ ∀j but unknown. It is bounded such that

h ≤ τ ≤ τ ≤ τ̄ (5.2)

and τ , τ, τ̄ ∈ R+ .

Assumption 5.2 is reasonable because of the existence of a minimum time for transmis-
sion of data packets in real networks due to physical constraints and the used protocols.
Unstable plants should be controlled over reliable networks, e.g., using WirelessHART
[SXLC15] that ensures constant delays for a specific task class. The delay only changes
in situations, where, e.g., additional tasks with higher priority are started or stopped.

Since the round trip delay is constant, one can lump all delays to a combined delay
between controller and actuator as depicted in Figure 2.2. It is also not necessary to
either assume a bounded changes rate for the sensor-to-controller delays or to use a
static controller only as in Assumption 2.4, which is explained in detail in Section 2.2.

The main goals in this chapter are to design control algorithms that

(a) allow the plant states xk to track given reference values x̂k under the presence of
unknown but constant time delays induced by the network and unknown system
matrices Ã and B̃,

(b) minimizes the computational complexity and the corresponding number of adap-
tation laws to a minimum by splitting the dynamics into two parts and

(c) ensures the stability of the closed loop system for the networked plant for all
times.

The basic ideas are explained in the next section, which forms the basis for the exten-
sions presented in Sections 5.2 and 5.4.

5.1 Adaptive Tracking

A control algorithm based on the idea of model reference adaptive control [NL80, GS84,
NA12] for multivariable networked systems described by the lifted model (2.23) with
matrices A and B (2.24) is considered first. This classical approach [NL80] uses a
reference model

ξM,k+1 = AMξM,k + BMrk , (5.3)

with desired matrices AM and BM , state vector ξM,k ∈ Rn+md̄ and a given reference
signal rk ∈ Rm. The goal is to design a linear time-varying state controller

uk = θ1,kξk + θ2,krk (5.4)

to enforce the convergence of the error ek = ξk − ξM,k between the consider system
states and the reference system states to zero such that ek → 0 for k → ∞. Hence, a
nominal controller uk = θ̄1ξk + θ̄2rk with constant matrices θ̄1 and θ̄2 is designed in a
first step. The closed loop system

ξk+1 =
(
A+ B θ̄1

)
ξk + B θ̄2 rk , (5.5)
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is requested to be equal to the reference dynamics (5.3) for ek → 0, i.e. ξk → ξM,k.
This results in conditions

A+ B θ̄1 = AM and B θ̄2 = BM (5.6)

for the nominal parameters θ̄1 and θ̄2. A second step is necessary to stabilize the closed
loop system with the help of a law for adapting θ1,k and θ2,k in (5.4), because A and B
are constant but unknown because Ã and B̃ are unknown according to Assumption 5.1.
Details of the classical adaptation law design can be found, e.g., in [NL80]. However,
conditions (5.6) cannot always be fulfilled. In addition, the dimension of the state space
for ξM,k ∈ Rn+md̄ depends on d̄ (2.10) and, as a consequence, on the upper bound on
the delay τ̄ as stated in Assumption 5.2. Consequently, the resulting adaptive law has
a large dimension that leads to an increased computational effort.

Adaptive discrete-time sliding mode control approaches based on ideas of [BFU95] are
proposed in the following to overcome the mentioned limitations. Hence, the extended
(lifted) state vector defined in (2.22) is rearranged such that

zk =
[
zT

1,k zT
2,k

]T ∈ Rn+md̄ (5.7a)

with

z1,k =
[
xT
k uT

k−d̄ uT
k−d̄+1

· · · uT
k−3 uT

k−2

]T
∈ Rn+m(d̄−1), (5.7b)

z2,k = uk−1 ∈ Rm . (5.7c)

This yields the mathematical description

zk+1 = Azzk + Bzuk (5.8)

with matrices

Az =




eÃh M0(τ) M1(τ) M2(τ) · · · Md̄−2(τ) Md̄−1(τ)

0 0 Im 0
. . . 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0 0
. . . 0 0

0 0 0 0
. . . Im 0

0 0 0 0 · · · 0 Im
0 0 0 0 · · · 0 0




, Bz =




Md̄(τ)

0
...

0

0

0

Im




(5.9)

and sub-matrices Mi(τ) ∈ Rn×m with i = 0, 1, . . . , d̄ that depend on the uncertain
time delay τ as defined in (2.20). Matrix Md̄ in (5.9) is identical to zero because of
Assumption 5.2 and yields, as a consequence, a perfectly known input matrix Bz in
(5.9) although B̃ is not known. Based on that, one can write (5.8) with (5.7) and (5.9)
as [

z1,k+1

z2,k+1

]
=

[
A11 A12

A21 A22

] [
z1,k

z2,k

]
+

[
B1

B2

]
uk (5.10)

where B1 = 0(n+m(d̄−1))×m due to Assumption 5.2. This assumption will be relaxed
for single-input plants as shown below. Matrices A11, A12, A21 and A22 represent sub-
matrices of Az in accordance with the dimensions of (5.7).
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A virtual output variable

σk = C1z1,k + Imz2,k =
[
C1 Im

] [z1,k

z1,k

]
= Czk ∈ Rm (5.11)

is designed by specifying matrix C ∈ Rm×(n+md̄) such that CBz has full rank. The
resulting dynamics is given by

σk+1 = A1z1,k +A2σk + CBz uk (5.12)

with matrices

A1 = A21 −A22C1 + C1A11 − C1A12C1 , (5.13a)

A2 = A22 + C1A12 . (5.13b)

In accordance with (5.12), one can specify the reference dynamics

σM,k+1 = AM1z1,k +AMσM,k +BMrk (5.14)

with respect to z1,k and σM,k. A reference rk ∈ Rm for σM,k is included via a non-
singular input matrix BM and the error between actual and desired output is defined
as

ek = σk − σM,k ∈ Rm . (5.15)

From a sliding mode perspective, a so-called discrete-time quasi sliding motion is
achieved for AM1 = 0, AM = 0 and BM = Im as, e.g., in [CB16] for the single-input
case. This can be regarded as a non-switching discrete-time reaching law that forces
the virtual output to zero in a finite number of steps. As shown in [LSH+18], non-
switching reaching laws may have some advantages for networked sliding mode control.
Especially, the achievable size of the resulting quasi sliding mode band is reduced for
the non-switching approach in [LSH+18], whereas the considered switching reaching
law yields a larger band.

5.1.1 Nominal control

Following the idea of discrete-time model reference adaptive control as, e.g., in [NA12],
a nominal controller is designed first for the dynamics related to the virtual output.
Combining (5.8), (5.11), (5.14) and (5.15) yields the error dynamics

ek+1 = AMek + (A1 −AM1) z1,k + (A2 −AM )σk −BMrk + CBzuk . (5.16)

that should not explicitly depend on the states and references. A nominal control law

ūk = θ̄1z1,k + θ̄2σk + θ̄3rk ∈ Rm (5.17)

with matrices

θ̄1 = − (CBz)−1 (A1 −AM1) ∈ Rm×(n+m(d̄−1)) , (5.18a)

θ̄2 = − (CBz)−1 (A2 −AM ) ∈ Rm×m , (5.18b)

θ̄3 = (CBz)−1BM ∈ Rm×m (5.18c)

is designed to achieve that goal. Relation (5.17) can be written as

uk = θ̄ωk + θ̄3 rk , (5.19)
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with

θ̄ =
[
θ̄1 θ̄2

]
∈ Rm×(n+md̄) and ωk =

[
z1,k

σk

]
∈ Rn+md̄ (5.20)

where matrix θ̄ depends on the actual values of A1, A2 that are unknown because Az is
unknown. Parameter θ̄3 is independent of the unknown delay as can be seen from (5.9)
and (5.11) since B1 = 0 due to Assumption 5.2. Vector ωk consists of known entities
only.

An implementable version of control law (5.19) is

uk = θkωk + θ̄3 rk ∈ Rm , (5.21)

where θk can be seen as the sum of θ̄, which is unknown due to the unknown network
delay τ , and an additional part

φk =
[
φ1,k φ2,k

]
(5.22)

such that
θk =

[
θ1,k θ2,k

]
= θ̄ + φk ∈ Rm×(n+md̄) . (5.23)

The implementable control law can be chosen slightly different for the case with one
input only, which is detailed below.

The use of (5.21) and (5.23) instead of the nominal control law (5.19) results in the
error dynamics

ek+1 = AMek + CBz φkωk , (5.24)

which is written as
ek = WM

[
B−1
M CBzφkωk

]
(5.25)

using a (m×m) transfer matrix

WM (z) = (zIm −AM )−1BM . (5.26)

Notation WM [·] in (5.25) symbolize the calculation of error ek via a linear time-invariant
discrete-time system with system matrix AM , input matrix BM and m input signals
B−1
M CBzφkωk. Hence, (5.25) is the equivalent representation of (5.24) using transfer

matrix (5.26).

Assumption 5.3 (Properties of WM ). Transfer matrix WM (z) is stable and di-
agonal with identical entries, i.e.

AM = aMIm and BM = bMIm (5.27)

with 0 ≤ aM < 1 and bM = 1− aM .

Due to Assumption 5.3, matrix WM (z) features a dc-gain equal to one in each of the
m channels from input B−1

M CBzφkωk to output ek. In addition, the structure in (5.27)
is given in the form of decoupled individual channels i = 1, 2, . . . ,m.
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5.1.2 Adaptive Law

In a second step, an adaptive law for the parameters in θk is designed to guarantee
that ek converges to zero asymptotically. The following proposition is needed as a
fundamental requirement for that purpose.

Proposition 5.4 (Controllability of (A11, A12) [SHF21]). Let Assumptions 5.1
and 5.2 hold. Then, the pair (A11, A12) is controllable for any value of the bounded
but unknown round trip delay τ .

Proof. Sub-matrices A11 ∈ R(n+m(d̄−1))×(n+m(d̄−1)) and A12 ∈ R(n+m(d̄−1))×m are parts
of (5.8), (5.9) as defined in (5.10) such that

A11 =




eÃh M0(τ) M1(τ) M2(τ) · · · Md̄−2(τ)

0 0 Im 0
. . . 0

...
...

. . .
. . .

. . .
...

0 0 0 0
. . . 0

0 0 0 0
. . . Im

0 0 0 0 · · · 0




, A12 =




Md̄−1(τ)

0
...

0

0

Im




. (5.28)

The controllability matrix S ∈ R(n+m(d̄−1))×(n+m(d̄−1))m for the pair (A11, A12) is given
by

S =
[
A12 A11A12 A2

11A12 · · · A
(n+m(d̄−1))−1
11 A12

]
. (5.29)

Exploiting the specific structure of (5.28) yields

A11A12 =
[
KT

1 0 · · · 0 0 Im 0
]T
, K1 = eÃhMd̄−1(τ) +Md̄−2(τ) , (5.30a)

A2
11A12 =

[
KT

2 0 · · · 0 Im 0 0
]T
, K2 = eÃhK1 +Md̄−3(τ) (5.30b)

and so on, up to

Ad̄−1
11 A12 =

[
KT
d̄−1

0 · · · 0 0 0 0
]T
, Kd̄−1 = eÃhKd̄−2 +M0(τ) . (5.30c)

Consequently, matrices Kj depend on matrices M`, where ` ∈ {0, 1, . . . , d̄ − 1} in the
form of

Kj =

j∑

i=0

eiÃhMd̄−1−j+i(τ) (5.31)

as can be seen by combining (5.30a) to (5.30c). Hence, matrix S exhibits a special
structure such that

S =




Md̄−1 K1 · · · Kd̄−3 Kd̄−2 Kd̄−1 K̃
0 0 · · · 0 Im 0 0

0 0 . .
.

Im 0 0 0
... . .

.
. .
.

. .
. ...

...
...

0 Im 0 0 0 0 0

Im 0 0 0 0 0 0




(5.32)
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with a matrix K̃ considered later. Matrices B̃, eÃh and, thus also, matricesM` (2.20) are
either zero or full rank, due to Assumption 5.1. Matrix Kd̄−1 consists of the summation

of different Kj multiplied by integer powers of eÃh, yielding, for example,

K4 = M0 + eÃhM1 + e2ÃhM2 + e3ÃhM3 + e4ÃhM4 . (5.33)

for d̄ = 5. Since τ is constant, either (i) one M` or (ii) two matrices M` and M`−1 can

be different from zero. In case of (i), e.g., eÃhM1 with eÃh ∈ Rn×n and M1 ∈ Rn×m,

which are full rank. Hence, eÃhM1 has also rank m because of the rank properties of a
matrix product [Ber09], i.e.

rank eÃh + rankM1 − n ≤ rank
(
eÃhM1

)
(5.34)

≤ min
{

rank eÃh, rankM1

}
.

This holds for all ` in (i) because rank eÃheÃh = rank eÃh and at least one M` 6= 0
whenever τ > 0, which is fulfilled in Assumption 5.2. The reader is referred to Chapter 2
for more details about the matrices M` and their dependency on the considered network
delay τ .

In case (ii) two matrices M` and M`−1 are different from zero as, for example, M0 +

eÃhM1. Then, M0 can be subtracted of the first n rows in matrix S (5.32), which again
leads to case (i). As a result, Kd̄−1 has full rank, independent of the unknown τ .

All remaining columns of (5.32) follow from multiplications of Kd̄−1 by integer powers

of eÃh such that
[
Kd̄−1 K̃

]
=
[
In eÃh · · · e(((n+m(d̄−1))−d̄)Ãh

]
Kd̄−1. (5.35)

The exponent of the exponential function on the right of (5.35) includes the number
(n+m(d̄−1))−d̄. This is because matrix S has a dimension of (n+m(d̄−1))×(n+m(d̄−
1))m and the sub-matrix from the left of S to Kd̄−1 has dimension (n+m(d̄−1)×md̄),

see (5.32). Thus, the remaining number of columns in K̃ is (n + m(d̄ − 1))m −md̄ =
(n + m(d̄ − 1) − d̄)m. Since matrices Kd̄−1 (with m columns) and K̃ are formed by

multiplications of eÃh, one gets (5.35). Consequently, matrix S has full rank for any
value of τ because h 6= 0 and A 6= 0 due to Assumption 5.1. This shows that the pair
(A11, A12) is controllable and completes the proof. �

Proposition 5.4 serves as a basis for the following theorem for adaptive tracking.

Theorem 5.5 (Adaptive tracking [SHF21]). Let Assumptions 5.1 and 5.2 hold for
the networked control system with m inputs represented by (5.8) and (5.9). The
desired transfer matrices WM (z) with dimension m×m and WN (z) with dimension
(n+md̄)× (n+md̄) are specified as in Assumption 5.3.

(a) A virtual output (5.11) is designed by selecting matrix C = [C1 Im] such that
(A11 −A12C1) is Schur for all delays τ corresponding to Assumption 5.2.

(b) Adaptation laws

θk+1 = θk − εkξTk Γ1 ∈ Rm×(n+md̄), (5.36a)

Υk+1 = Υk +B−1
M CBzεkηTk Γ2 ∈ Rm×m (5.36b)
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with

ξk = WN (z) [ωk] ∈ Rn+md̄, (5.37a)

ηk = WM (z) [θkωk]− θkWN (z) [ωk] ∈ Rm, (5.37b)

εk =
ek −Υkηk

1 + αξ̃Tk Γξ̃k
∈ Rm, (5.37c)

ξ̃k = [ξTk ηTk ]T ∈ Rn+md̄+m, (5.37d)

Γ =

[
Γ1 0
0 Γ2

]
, Γ1 = ΓT

1 > 0 , Γ2 = ΓT
2 > 0 (5.37e)

are considered with Γ1 ∈ R(n+md̄)×(n+md̄) and Γ2 ∈ Rm×m. The positive
constant α is tuned such that

2αIm > B−1
M CBz (5.38)

is fulfilled.

Then, the closed loop system consisting of the networked plant (5.8) and controller
(5.21) is stable despite unknown system data Az. The tracking error ek (5.15) tends
to zero asymptotically under the presence of an unknown network delay τ ≤ τ ≤ τ̄ .
The parameter matrices θk and Υk tend to constant values.

Figure 5.1 visualizes the principle structure of the proposed adaptive scheme. The
specified reference sequence (rk) is incorporated in the reference model as well as in
the adaptive laws and the controller. The difference between the virtual output σk of

reference model
(5.14)

plant
(5.10) (5.11)

controller
(5.21)

adaptive laws
(5.26)

(rk) (σM,k)

−

(ek)

(uk)
(σk)

(z1,k)

controller
(5.21)

adaptive laws
(5.36)

Figure 5.1: Structure of the control loop including reference model, plant, controller
and the adaptation laws for the case of tracking the virtual outputs σk.

the plant and the virtual output σM,k provided by the reference dynamics establishes
the basic error signal utilized in the adaptive controller. The plant can be seen in its
rearranged form as in (5.10), (5.11) or, as an alternative, in its original form (2.23),
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(2.24) in combination with a transformation accounting for the reordering of the state
variables (5.7).

Proof. The proof is given in three parts where in (i) the error dynamics is modified, in
(ii) it is shown that the error ek tends to zero asymptotically, and in (iii) the properties of
the remaining dynamics as well as concluding manipulations are presented. It follows
the main ideas as in [LN80] that has been extended in [SHF19] but takes care of
additional aspects that arise due to the considered networked multi-input system.

Part (i): An auxiliary signal σA,k is defined such that

σA,k = Υkηk + ϕk ∈ Rm (5.39)

with time-varying matrix Υk ∈ Rm×m, ηk as in (5.37b) and vector ϕk ∈ Rm to be
defined later. It is used to stabilize error dynamics (5.24) utilizing an auxiliary error
signal

εk = ek − σA,k ∈ Rm . (5.40)

Combining (5.25), (5.39) and (5.40) results in

εk = WM

[
B−1
M CBzφkωk

]
−Υkηk − ϕk . (5.41)

Next, the first term on the right hand side in (5.41) is reformulated, which is equivalent
to (5.24). Multiplying both sides of difference equation (5.24) with (CBz)−1BM yields

(CBz)−1BMek+1︸ ︷︷ ︸
ẽk+1

= (CBz)−1BMAMek + (CBz)−1BMCBz φkωk

= AM (CBz)−1BMek︸ ︷︷ ︸
ẽk

+BM φkωk (5.42)

where a new error variable ẽk such that

ẽk = WM [φkωk] (5.43)

is introduced. Rearranging the order of the matrices in (5.42) is possible because
CBz = Im for the case with more inputs, i.e. m > 1, due to the requirement of a
minimal delay of τ ≥ h as stated in Assumption 5.2. Nevertheless, the product CBz
is still kept in the proof to allow to state slightly different conditions for the case with
only one input, i.e. m = 1, as shown below.

From the definition of ẽk in (5.42) and the fact that matrix (CBz)−1BM is constant
and invertible, one gets

ek = CBzB−1
M ẽk = B−1

M CBzWM [φkωk] (5.44)

and (5.41) changes into

εk = B−1
M CBz

{
WM [φkωk]− (CBz)−1BMΥkηk

}
− ϕk . (5.45)

Combining a new variable

ψk = Im − (CBz)−1BMΥk (5.46)
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with (5.23), (5.37b) and (5.45) yields

εk = B−1
M CBz

{
WM [φkωk]−WM (z) [θkωk] + θkWN (z) [ωk] + ψkηk

}
− ϕk

= B−1
M CBz

{
WM [φkωk]−WM (z)

[
θ̄ωk

]
−WM (z) [φkωk] + θ̄WN (z) [ωk]

+ φkWN (z) [ωk] + ψkηk

}
− ϕk

= B−1
M CBz

{
−WM (z)

[
θ̄ωk

]
+ θ̄WN (z) [ωk] + φkWN (z) [ωk] + ψkηk

}
− ϕk . (5.47)

Due to the fact that θ̄ ∈ Rm×(n+md̄) is constant and Assumption 5.3 is introduced,
relation

WM (z)
[
θ̄ωk

]
= θ̄WN (z) [ωk] (5.48)

holds. This can be seen by using (5.24) in (5.48) such that

(zIm −AM )−1BM θ̄Z{ωk} = θ̄ (zIn −AN )−1 B̃NZ{ωk} , (5.49)

where Z{ωk} symbolizes the z-transformation applied component by component to
vector ωk. Because relation (5.49) has to hold for all Z{ωk},




W1 0 · · · 0 0

0 W2
. . . 0 0

...
. . .

. . .
. . .

...

0 0
. . . Wm−1 0

0 0 · · · 0 Wm




θ̄ = θ̄




W1 0 · · · · · · 0 0

0 W2
. . .

. . . 0 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

0 0
. . .

. . . Wn+md̄−1 0
0 0 · · · · · · 0 Wn+md̄




(5.50)
has hold for all non-square matrices θ̄ ∈ Rm×(n+md̄) and Wi = bM

1−aM for i = 1, 2, . . . , n+

md̄. According to Assumption 5.3, the diagonal elements of WM and WN are equal
and the left diagonal matrix in (5.50) multiplies the rows of θ̄ and the right diagonal
matrix multiplies the columns of θ̄. Hence, (5.50) is fulfilled and (5.47) turns into

εk = B−1
M CBz

{
φkWN (z) [ωk] + ψkηk

}
− ϕk

= B−1
M CBzφ̃kξ̃k − α ξ̃T

k Γ̃ξ̃k εk (5.51)

with

ϕk = α ξ̃T
k Γξ̃k εk and φ̃k =

[
φk ψk

]
∈ Rm×(n+md̄+m) . (5.52)

Vector ξ̃k is stated in (5.37d) and matrix Γ is defined in (5.37e).

Part (ii): An adaptation law depending on the auxiliary error εk and ξ̃k is defined as

∆φ̃k = φ̃k+1 − φ̃k = −εkξ̃T
k Γ ∈ Rm×(n+md̄+m) . (5.53)

To show stability, the Frobenius norm || · ||F is used, which is defined for a matrix
K ∈ Rn×m as the sum over the squared absolute values of the elements kij for all rows

i and columns j, i.e.
∣∣∣∣K

∣∣∣∣
F

=
√∑n

i=1

∑m
j=1 |kij |2 =

√
trace (KTK) =

√
trace (KKT).
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In the present case, one uses the squared Frobenius norm of the weighed parameter
matrix φ̃k as a Lyapunov function candidate, i.e.

Vk =
∥∥φ̃kL

∥∥2

F
= trace

(
φ̃kLL

Tφ̃T
k

)
, (5.54)

with Γ−1 = LLT > 0. Such a separation of Γ−1 is always possible because Γ is assumed
to be positive definite. The forward difference of Vk taking into account (5.53) and
symmetry properties of the trace operator is given by

∆V = Vk+1 − Vk = trace
(
φ̃k+1Γ−1φ̃T

k+1 − φ̃kΓ−1φ̃T
k

)

= trace
(

2∆φ̃kΓ
−1φ̃T

k + ∆φ̃kΓ
−1∆φ̃T

k

)

= trace
(
−2εkξ̃

T
k φ̃

T
k + εkξ̃

T
k Γξ̃kε

T
k

)
. (5.55)

This results in

∆V = trace


−2

B−1
M CBzφ̃kξ̃k

(
φ̃kξ̃k

)T

1 + α ξ̃T
k Γξ̃k

+
B−1
M CBzφ̃kξ̃kξ̃T

k Γξ̃k

(
φ̃kξ̃k

)T (
B−1
M CBz

)T
(

1 + α ξ̃T
k Γξ̃k

)2


 ,

(5.56)
where (5.51) is used in the calculations. Definitions

Pk = B−1
M CBzφ̃kξ̃k

(
φ̃kξ̃k

)T
and N = 2αIm −B−1

M CBz (5.57)

allow further simplifications resulting in

∆V =
1

(
1 + α ξ̃T

k Γξ̃k

)2 trace

(
Pk

{
− 2Im − ξ̃T

k Γξ̃k

(
2αIm −

(
B−1
M CBz

)T)}
)

=− 2
(

1 + α ξ̃T
k Γξ̃k

)2 trace (Pk)−
ξ̃T
k Γξ̃k(

1 + α ξ̃T
k Γξ̃k

)2 trace
(
PkN

T
)
. (5.58)

Due to condition (5.38) in Theorem 5.5 and the required lower bound of the round trip
delay τ as in Assumption 5.2, matrix N is positive definite and symmetric because CBz
is positive definite and symmetric. This makes it possible to split matrix B−1

M CBz into

B−1
M CBz = XTX > 0 . (5.59)

Exploiting the properties of the trace operator [Ber09] yields

trace (Pk) = trace
(
Xφ̃kξ̃kξ̃

T
k φ̃

T
kX

T
)
≥ 0 (5.60)

and for the second term on the right hand side of equation (5.58)

trace (PkN) = trace

(
NB−1

M CBφ̃kξ̃k

(
φ̃kξ̃k

)T
)

= trace
(
Y TY φ̃kξ̃kξ̃

T
k φ̃

T
k

)
= trace

(
Y φ̃kξ̃kξ̃

T
k φ̃

T
k Y

T
)
≥ 0 . (5.61)

Hence, (5.58) in combination with (5.61) yields

∆V ≤ − 2
(

1 + α ξ̃T
k Γξ̃k

)2 trace (Pk) ≤ 0 (5.62)
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so that φ̃k is bounded for any bounded initial value φ̃0.

Vk is non-increasing and bounded below and has, therefore, a limit V∞ as k →∞, i.e.

lim
k→∞

∥∥φ̃kL
∥∥2

F
= V∞ <∞ , (5.63)

and so, the squared Frobenius norm of scaled matrix φ̃k converges to a limit. The
difference between initial value V0 and this limit is

lim
k→∞

k∑

i=1

|∆Vi| = V0 − V∞ <∞ , (5.64)

causing that ∆Vi has to tend to zero. Implied by this, Pk has to approach zero as can
be seen in the first line of (5.58). According to the definition of Pk in (5.57) and the
fact that B−1

M CBz is non-singular, it follows that this is only possible if φ̃kξ̃k tends to

zero. Then εk is zero for k → ∞ as can be seen from (5.51), ∆φ̃k → 0. Parameter
matrix φ̃k tends to a constant value.

Part (iii): As a result of (ii), parameter matrix θ̃k tends to a constant value θc. Com-
bining (5.39), (5.40) and (5.52) results in

εk = ek −Υkηk − α ξ̃T
k Γξ̃k εk , (5.65)

see (5.37c) in Theorem 5.5. In addition,

ηk = WM (z) [θkωk]− θkWN (z) [ωk]→ 0 as θk → θc (5.66)

and εk → 0. This means that the error ek → 0 for k → ∞ and σk → σM,k. The
remaining dynamics reads as

z1,k+1 = (A11 −A12C1)z1,k +A12σM,k +B1uk (5.67)

where (5.10) and (5.11) are used. Input matrix B1 is zero due to Assumption 5.2.
Matrix (A11 −A12C1) in (5.67) has to be Schur for all delays to assure bounded-input
bounded-state stability, which is assured by the assumptions made in Theorem 5.5.
Combining (5.37d), (5.37e), (5.52) and (5.53) yields

φ̃k+1 − φ̃k = −εk
[
ξT
k ηT

k

] [Γ1 0
0 Γ2

]
, (5.68)

and so
φk+1 − φk = −εkξT

k Γ1 , (5.69)

as in (5.36a) and
ψk+1 − ψk = −εkηT

k Γ2 (5.70)

that is converted into (5.36b) using (5.46) so that

Υk+1 −Υk =B−1
M CBz εkηT

k Γ2 . (5.71)

This completes the proof. �

Remark 5.6. Please note that CBz = Im holds due to the structure of (5.9), the def-
inition of σk (5.11), and Assumption 5.2. As a consequence, a strict positive real
requirement as in [BFU95] is not needed.
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The adaptive laws are inspired by [NL80] and extended to multivariable systems with
additional uncertain network delays under consideration of a suitably constructed vir-
tual output σk.

Relations (5.36a) and (5.36b) are of lower dimension than classical ones, cf. [Tao14],
because only the dynamics related to the virtual output is stabilized in this approach.
For σk = 0, which is reached for the first time at k?, the remaining dynamics for
k ≥ k? is fixed by the choice of matrix C = [C1 Im]. Matrix C1 is designed such that
(A11 −A12C1) is Schur for all round trip delays τ and, e.g., the corresponding spectral
radius is minimized. This is also shown for simulation examples in the next section.

5.1.3 Single-input case

The restriction of Theorem 5.5 to the single-input case, i.e. m = 1, leads to a similar
algorithm that comes along with a relaxation of Assumption 5.2 such that the lower
bound is allowed to be smaller than the sampling interval h.

Assumption 5.7 (Round trip delay, single-input case). The round trip delay
τ = τ sc + τ c + τ ca ∈ R is constant for all packets j, i.e. τj = τ ∀j but unknown.
It is bounded such that

0 < τ ≤ τ ≤ τ̄ (5.72)

and τ , τ, τ̄ ∈ R+ .

As a consequence of Assumption 5.7, Matrix Md̄ in (5.9) is unknown and, thus, vector
Bz is an unknown as well. This makes it necessary to modify control law (5.21) such
that

uk = θkωk (5.73)

using parameter vector

θk =
[
θ1,k θ2,k θ3,k

]
∈ R1×(n+d̄+1) (5.74)

with a nominal vector θ̄ =
[
θ̄1 θ̄2 θ̄3

]
and an additional parameter vector φk =[

φ1,k φ2,k φ3,k

]
such that

θk = θ̄ + φk (5.75)

and column vector

ωk =



z1,k

σk
rk


 ∈ Rn+d̄+1 (5.76)

is built only from known entities.

Assumption 5.8 (Condition on CBz, single-input case). The sign condition

sign(CBz) = signBM (5.77)

holds for all round trip delays τ in Assumption 5.7.

This assumption is necessary to also allow small delays, i.e. τ < h. It is still less
restrictive than the strictly positive real condition as in [BFU95].
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Corollary 5.9 (Adaptive tracking, single-input case). Let Assumptions 5.1, 5.7
and 5.8 hold for the single input networked control system represented by (5.8) and
(5.9). The desired transfer function WM (z) for a system with one input and one
output comply with Assumption 5.3 for m = 1.

(a) A virtual output variable (5.11) is designed such that (A11−A12C1) is Schur
for all delays τ corresponding to Assumptions 5.7.

(b) Adaptation laws

θk+1 = θk − εkξTk Γ1 ∈ R1×(n+d̄), (5.78a)

Υk+1 = Υk + εkηkΓ2 ∈ R (5.78b)

with

ξk = WN (z) [ωk] ∈ Rn+d̄, (5.79a)

ηk = WM (z) [θkωk]− θkWM (z) [ωk] ∈ R, (5.79b)

εk =
ek −Υkηk

1 + αξ̃Tk Γξ̃k
∈ R, (5.79c)

ξ̃k = [ξTk ηk]
T ∈ Rn+d̄+1, (5.79d)

Γ =

[
Γ1 0
0 Γ2

]
, Γ1 = ΓT

1 > 0 , Γ2 > 0 , (5.79e)

are considered with Γ1 ∈ R(n+d̄)×(n+d̄) and Γ2 ∈ R. The positive constant α
is tuned such that

α >
1

2
B−1
M CBz (5.80)

is fulfilled.

Then, the closed loop system consisting of augmented plant (5.8), (5.9) and con-
troller (5.73) is stable despite unknown system data Az, Bz and the tracking error
ek (5.15) tends to zero asymptotically under the presence of an unknown network
delay 0 < τ ≤ τ̄ . Parameter vectors θk and Υk tend to constant values.

Please note the main differences between Theorem 5.5 and Corollary 5.9:

(a) A minimum delay of τ > 0 is allowed that might be smaller than the sampling
interval, i.e. τ < h.

(b) Matrix B−1
M CBz in (5.78b) can be skipped in the adaptation law as can be seen

in the proof.

(c) Condition (5.80) has to hold for all admissible delays corresponding to Assump-
tion 5.7, which is different when compared to Theorem 5.5, where (5.38) is inde-
pendent of the round trip delay τ .

Proof. The proof follows the same line as in the multi-input case as shown the previ-
ous subsection for Theorem 5.5. The differences are that Md̄(τ) may not be zero and
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B−1
M CBz is now scalar. Assumption 5.8 ensures that B−1

M CBz is positive for all con-
sidered τ and can be pulled out in relation (5.56) resulting in an adaptive law (5.78b)
that is independent of BM , C and Bz. �

5.2 Adaptive Stabilization

In the previous section, adaptive tracking of a virtual output related to model (5.8),
(5.9) is considered. An alternative approach is to define the virtual output with respect
to a desired reference vector for the states ẑk of the networked plant, i.e.

σk = C (zk − ẑk) =
[
C1 Im

]
(zk − ẑk) ∈ Rm , (5.81)

and aim for stabilizing σk = 0. Signals ẑk are chosen such that they are consistent for
(5.8) as shown, e.g., in [SCHF20] and exemplified in the next section. Subsequently,
the same line of calculations as in the tracking case is followed to get dynamics

σk+1 = A1z1,k +A2σk + CBz uk − Cẑk+1 (5.82)

and the dynamics of error (5.15) as

ek+1 = AMek + (A1 −AM1) z1,k + (A2 −AM )σk −BMrk + CBzuk − Cẑk+1 , (5.83)

with matrices A1, A2 according to (5.13) and the reference dynamics specified in (5.14).
The nominal control is then given by

ūk = θ̄1z1,k + θ̄2σk + θ̄3ẑk+1 + θ̄4rk (5.84)

where

θ̄1 = − (CBz)−1 (A1 −AM1) ∈ Rm×(n+m(d̄−1)) , (5.85a)

θ̄2 = − (CBz)−1 (A2 −AM ) ∈ Rm×m , (5.85b)

θ̄3 = (CBz)−1C ∈ Rm×(n+md̄) , (5.85c)

θ̄4 = (CBz)−1BM ∈ Rm×m . (5.85d)

Using control law
uk = θkωk + θ̄4 rk ∈ Rm (5.86)

with

θk = θ̄ + φk , and ωk =



z1,k

σk
ẑk+1


 ∈ R2(n+md̄) , (5.87)

where

θk =
[
θ1,k θ2,k θ3,k

]
, (5.88a)

θ̄ =
[
θ̄1 θ̄2 θ̄3

]
, (5.88b)

φk =
[
φ1,k φ2,k φ3,k

]
, (5.88c)

yields the same structure of error dynamics as in relation (5.24) but with different
dimensions of the matrices involved. This is stated in the following corollary that is a
direct consequence of Theorem 5.5.
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Corollary 5.10 (Adaptive stabilization [SHF21]). Consider Theorem 5.5 where
the control law is replaced by (5.81), controller (5.86), θk ∈ Rm×2((n+md̄)+md̄)

and ωk ∈ R2(n+md̄) as in (5.87), ξ̃k ∈ R2n+m, Γ ∈ R(2(n+md̄)+m)×(2(n+md̄)+m), and
transfer matrix WN (z) of dimension (2(n+md̄)×2(n+md̄)). Let condition (5.38)
hold.

Then, the closed networked control system consisting of augmented plant (5.8),
(5.9) and controller (5.86) is stable despite unknown system data Az. The tracking
error ek (5.15) tends to zero asymptotically under the presence of an unknown
network delay τ ≤ τ ≤ τ̄ . Parameter matrices θk and Υk tend to constant values.

Proof. The proof directly follows by the same considerations as for Theorem 5.5, which
are adopted to the use of (5.81) and the different matrix dimensions involved. As the
remaining dynamics for σk → σM,k is

z1,k+1 = (A11 −A12C1) z1,k +A12σM,k +B1uk +A12Cẑk+1 (5.89)

with B1 = 0, the same considerations have to be taken into account as in Theorem 5.5
to achieve stability. The reference ẑk+1 for the states acts as a bounded input signal. �

Note that one have to deal with a larger matrix θ ∈ Rm×2(n+md̄) in (5.36a) instead of
θ ∈ Rm×(n+md̄) in Theorem 5.5 and the desired reference for the states in the next time
instant ẑk+1 has to be specified.

In the single-input case, one can utilize control law

uk = θkωk (5.90)

with

θk =
[
θ1,k θ2,k θ3,k θ4,k

]
∈ R1×(n+d̄+1) (5.91a)

and

ωk =




z1,k

σk
ẑk+1

rk


 ∈ R2(n+d̄)+1 . (5.91b)

Corollary 5.11 (Adaptive stabilization, single-input case). Consider Corollary 5.10
where the control law is replaced by (5.81) and (5.90), θk ∈ R1×2(n+d̄) and ωk ∈
R2(n+d̄) as in (5.91), ξ̃k ∈ R2(n+d̄)+1 and Γ ∈ R(2(n+d̄)+1)×(2n+1). Let condition
(5.38) hold.

Then, the closed loop system consisting of augmented plant (5.8), (5.9) and (5.90)
is stable despite unknown system data Az, Bz and the tracking error ek (5.15) tends
to zero asymptotically under the presence of an unknown network delay 0 < τ ≤ τ̄ .
Parameter vectors θk and Υk tend to constant values.

Proof. The proof is a direct consequence of the proof of Corollary 5.10 adopted to the
use of (5.81) and the changed matrix dimensions. �
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5.3 Simulation Examples

In this section, two examples are used to show the differences between the adaptive
tracking and adaptive stabilization approach presented for NCS in Sections 5.1 and
5.2, respectively.

5.3.1 Example with fast Plant Dynamics

First, a continuous-time plant with fast dynamics specified by matrices

Ã =




1.2 −0.5 0.5
−1.0 −0.4 −1.2

0.2 −0.8 −1.0


 , B̃ =




0.3 1.5
−1.2 −1.7

0.4 0.4


 (5.92)

and a sampling interval of h = 0.1 s is considered. The eigenvalues of the continuous-
time plant are s1 = 1.6562, s2 = −0.1362 and s3 = −1.7200. The nominal values
of θ̄ and Ῡ are calculated for τ = h since the real values of the round trip delay is
unknown but they are needed for the initialization of the adaptive laws (5.36a) and
(5.36b). Matrix θ̄ follows from (5.20) and (5.18); matrix Ῡ is selected such that the
new variable φk as stated in (5.46) is equal to zero.

Desired values for the first two plant states (x1,k) and (x2,k) of the discretized plant
(5.1) are converted into references (rk) for (σk) as described in [SCHF20]. This means
that in the present case only two states can be specified to get consistent results for the
remaining states, which can be checked by Proposition 3 in [SCHF20] that depends on
the number of inputs m. The resulting plant states (xk) and corresponding reference
signals (rk) are depicted in Figures 5.5 and 5.2, respectively.

Parameter aM = 0 and gain α is chosen as α+ 1, where α corresponds to the minimal
value of α given by condition (5.5).

Matrix C1 is designed such that (A11 −A12C1) is Schur for all network delays τ . This
is achieved by solving an optimization problem in which the corresponding spectral
radius, i.e. the largest absolute value of the eigenvalues of (A11−A12C1), is minimized
to accomplish a fast convergence of the remaining dynamics for all considered τ . In
addition to that, the largest imaginary part is penalized in the optimization to avoid
strong oscillations during parameter adaptation. This yields

C1 =

[
−1.1874 −1.2464 1.6324 −0.1117 0.0917 0.3373 0.1862

2.2515 −0.1870 −0.0927 0.0077 0.0050 0.1552 0.4451

]
(5.93)

for the design of the virtual output (5.11).

Figures 5.2 to 5.5 show the sequences of artificial output variable (σk), the control
signal (uk) as well as error (ek) and the plant states (xk) for the considered simulation
example when the adaptive tracking approach is utilized. The tracking of the desired
reference for the virtual output (see black signals in Figure 5.2) enables one to track
desired reference signals for the plant states as shown in Figure 5.5 for all considered
network delays τ ∈ {0.10, 0.15, 0.20, 0.25, 0.30} s. The relative change of the adapted
parameters θ1,k, θ2,k, Υk to their nominal values are shown in Figure 5.6 for the case
τ = 0.15 s. Stability is achieved for all considered delays, (σk) converges to its desired
reference and the adaptation parameters converge to constant values as ensured by
Theorem 5.5.
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Figure 5.2: Example with fast dynamics (tracking of rk): Tracking of virtual outputs
σk for different network delays τ .

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

u
1
,k

0 2 4 6 8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

t

u
2
,k

0.10 s 0.15 s 0.20 s 0.25 s 0.30 s

Figure 5.3: Example with fast dynamics (tracking of rk): Control signals uk for different
network delays τ .
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88



0 2 4 6 8 10 12 14 16 18 20

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Θ
1
,k
−

Θ̄
1

Θ1,11 Θ1,12 Θ1,13 Θ1,14 Θ1,15 Θ1,16 Θ1,17

0 2 4 6 8 10 12 14 16 18 20

−0.2

−0.15

−0.1

−0.05

0

0.05

Θ
1
,k
−

Θ̄
1

Θ1,21 Θ1,22 Θ1,23 Θ1,24 Θ1,25 Θ1,26 Θ1,27

0 2 4 6 8 10 12 14 16 18 20

0

0.02

0.04

0.06

0.08

0.1

Θ
2
,k
−

Θ̄
2

Θ2,11 Θ2,21 Θ2,12 Θ2,22

0 2 4 6 8 10 12 14 16 18 20

−0.02

−0.015

−0.01

−0.005

0

t

Υ
k
−

Ῡ
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In addition, Figures 5.7 to 5.12 present the corresponding results for the case, when the
second approach is used that stabilizes σk = 0 as stated in Corollary 5.10.
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Figure 5.7: Example with fast dynamics (stabilization of σk = 0): Tracking of virtual
outputs σk for different network delays τ .
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Figure 5.8: Example with fast dynamics (stabilization of σk = 0): Control signals uk
for different network delays τ .
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Figure 5.10: Example with fast dynamics (stabilization of σk = 0): States xk for
different network delays τ .
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Figure 5.11: Example with fast dynamics (stabilization of σk = 0): Relative changes in
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a network delay of τ = 0.15 s (part 1).
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the adaptation parameters, i.e. Θi,rc, i ∈ {1, 2}, and Υrc where r and c are the numbers
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a network delay of τ = 0.15 s (part 2).
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A comparison of the proposed approaches to a non-adaptive approach is presented in
Figure 5.13. This non-adaptive controller

uk = −Czk (5.94)

is designed similar to C1 for the remaining dynamics as detailed above to minimize
the spectral radius of (Az − CBz), where Az and Bz represent the system data of the
networked system in the transformed version (5.8) and (5.9). For the actual example,
one gets a gain controller gain matrix C as

C =
[
C1 C2

]
with (5.95a)

C1 =

[
−0.4182 −0.1019 0.1413 0.0265 0.0025 −0.2342 −0.0413

0.9119 −0.6272 0.6983 −0.2356 −0.0395 −0.2535 −0.2207

]
, (5.95b)

C2 =

[
−0.4097 −0.0877

1.4873 0.6780

]
. (5.95c)
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Figure 5.13: Example with fast dynamics: Comparison of the tracking approach (red)
and stabilization approach (green) with a non-adaptive approach (blue).

As can be seen in Figure 5.13, the adaptive tracking approaches improve the per-
formance when compared to the basic, non-adaptive controller, which is conservative
because it has to stabilize the loop for all considered round trip delays τ . Using the
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stabilization approach allows to further speed up the response time of the closed loop
system but results in a larger overshoot. The differences become clearly visible by
inspecting the resulting error between desired x̂k and actual plant states xk, using
measure

√∑
(xk − x̂k)2 as well as the related control energy as shown in Table 5.1.

Table 5.1: Example with fast dynamics: Results for the non-adaptive controller (non-
ad) in comparison to adaptive tracking (track) and adaptive stabilization (stab) in
terms of tracking error and control energy.

approach non-ad track stab non-ad track stab√∑
(xk − x̂k)2 32.55 26.91 24.43 100.0 % 82.6 % 75.0 %√∑

u2
k 54.24 59.59 60.66 100.0 % 109.8 % 111.8 %

Please note that the maximal admissible overshoot of the step responses is not taken
into account in the design of C1. Hence, various alternative methods to design the
remaining dynamics may lead to an improved performance.

5.3.2 Example with slow Plant Dynamics

In contrast to the previous example, a plant with slower dynamics is considered next.
It is given by a dynamic matrix Ã and an input matrix B̃ as

Ã =



−0.5 −1.0 1.1
−0.7 −0.8 −1.9

0.5 0.1 1.8


 and B̃ =



−0.9 1.3

0.6 −0.5
1.0 0.0


 (5.96)

with corresponding eigenvalues of the continuous-time plant as s1 = 2.0903, s2 =
−1.3501 and s3 = −0.2402. The very same references as before are used to evaluate
the proposed algorithms for the actual plant model. Matrices C1 and C follow in this
case as

C1 =

[
0.7421 0.5091 4.5167 0.1126 0.1105 0.5165 −0.0267
0.6677 −1.4529 1.3999 −0.3724 −0.3453 −0.2667 0.3712

]
(5.97)

and

C =
[
C1 C2

]
with (5.98a)

C1 =

[
0.4712 −0.0585 2.2877 0.1350 0.0515 −0.4450 0.1242
0.1582 −0.0520 0.7915 −0.0836 −0.2484 −0.0432 −0.7940

]
, (5.98b)

C2 =

[
0.2467 0.0724
0.1016 0.3033

]
. (5.98c)

The plots for (σk) and (uk) in Figures 5.14 to 5.17 underline the outcomes of the pro-
posed approaches for the plant with slow dynamics. Especially Figure 5.18 emphasizes
the fact that the presented adaptive approaches allow to significantly improve the closed
loop performance when compare to a non-adaptive algorithm that has to be designed
for the worst case scenario. This also becomes evident in Table 5.2 by a considerable
improvement in the tracking error that is traded for an enlarged control energy.
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Figure 5.14: Example with slow dynamics (tracking of rk): Tracking of virtual outputs
σk for different network delays τ .
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Figure 5.15: Example with slow dynamics (tracking of rk): Control signals uk for
different network delays τ .
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Figure 5.16: Example with slow dynamics (stabilization of σk = 0): Tracking of virtual
outputs σk for different network delays τ .
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Figure 5.17: Example with slow dynamics (stabilization of σk = 0): Control signals uk
for different network delays τ .

97



0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

x
1
,k

0 2 4 6 8 10 12 14 16 18 20

−1

−0.75

−0.5

−0.25

0

x
2
,k

0 2 4 6 8 10 12 14 16 18 20

−0.6

−0.4

−0.2

0

t

x
3
,k

Figure 5.18: Example with slow dynamics: Comparison of the tracking approach (red)
and stabilization approach (green) with a non-adaptive approach (blue).

Table 5.2: Example with slow dynamics: Results for the non-adaptive controller (non-
ad) in comparison to adaptive tracking (track) and adaptive stabilization (stab) in
terms of tracking error and control energy.

approach non-ad track stab non-ad track stab√∑
(xk − x̂k)2 42.13 2.303 19.83 100.0 % 54.6 % 47.0 %√∑

u2
k 7.618 22.43 25.39 100.0 % 294.3 % 333.2 %
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5.4 Extended Formulation

Several extensions of the approaches presented in the sections above are possible. One
example is to, e.g., include the plant states xk into z2,k and define z1,k (5.7) in a different
way such that

z1,k =
[
uT
k−2 uT

k−3 · · · uT
k−d̄+1

uT
k−d̄

]T
∈ Rm(d̄−1), (5.99a)

z2,k =
[
xT
k uT

k−1

]T ∈ Rn+m. (5.99b)

This results in a new partitioning of the system description (5.10) with the partitioning
of matrix Az as

A11 =




0 0 · · · 0 0 0
Im 0 · · · 0 0 0

0 Im
. . .

...
...

...

0
. . .

. . . 0 0 0

0
. . .

. . . Im 0 0
0 · · · · · · 0 Im 0




, A12 =




0 Im

0 0
...

...

0 0

0 0

0 0




, (5.100a)

A21 =

[
Md̄−2(τ) Md̄−3(τ) · · · M1(τ) M0(τ)

0 0 · · · 0 0

]
, A22 =

[
eÃh Md̄−1(τ)
0 0

]
,

(5.100b)

and the sub-matrices of Bz in the form of

B1 = 0 and B2 =

[
Md̄(τ)

0

]
(5.101)

with appropriate dimensions. This implies that the uncertain matrices M`(τ) do not
directly influence the states z1,k.

Relying on this new representation, a modified virtual output

σk = Czk =
[
C1 C2

] [z1,k

z2,k

]
= C1z1,k + C2z2,k ∈ Rm (5.102)

with C1 ∈ Rm×(m(d̄−1)) and C2 ∈ Rm×(n+m) is designed allowing to further improve
the performance at the price of a more sophisticated design problem for C1 and C2.
One can, in principle, follow the same steps described in Section 5.1 for the design of
the adaptive laws and the stability analysis. However, some aspects require special
attention due to the changed dimensions of C1 and C2.

To see this, one defines a new variable sk for the rightmost part in (5.102) such that

sk = C2z2,k ∈ Rm , (5.103)

where C2 ∈ Rm×(n+m) is assumed to be full rank, i.e. rankC2 = m. Since, the
dimension of z2,k ∈ Rn+m is larger than the dimension of sk, the complementary part
of sk is given by

s⊥k = C⊥2 z2,k ∈ Rn (5.104)
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with a matrix C⊥2 ∈ Rn×(n+m) that is constructed in a way to form a regular transfor-
mation stated as [

s⊥k
sk

]
=

[
C⊥2
C2

]
z2,k , (5.105)

where the transformation matrix
[
C⊥T

2 CT
2

]T
has dimension ((n + m) × (n + m)).

Matrix C⊥2 can be constructed as

C⊥2 = R (C2)T , (5.106)

in which R(C2) stands for the right nullspace of matrix C2 ∈ Rm×(n+m) such that
C2R (C2) = 0 with R (C2) ∈ R(n+m)×(n+m−rank(C2)). The right inverse of matrix C2,
i.e.

C+
2 = CT

2

(
C2C

T
2

)−1 ∈ R(n+m)×m , (5.107)

exists such that C2C
+
2 = Im because it is assumed to be full rank. Since also C⊥2 has

full row rank due its particular construction, on gets the corresponding right inverse

C⊥+
2 = C⊥T

2

(
C⊥2 C

⊥T
2

)−1
∈ R(n+m)×n (5.108)

such that C⊥2 C
⊥+
2 = In is fulfilled. Hence,

z2,k =
[
C⊥+

2 C+
2

] [s⊥k
sk

]
(5.109)

is constructed based on the new variable sk and its complementary part s⊥k . This
becomes evident by combining (5.105) and (5.109) yielding

[
s⊥k
sk

]
=

[
C⊥2
C2

] [
C⊥+

2 C+
2

] [s⊥k
sk

]
= In+m

[
s⊥k
sk

]
(5.110)

and, as a consequence,

z2,k = C⊥+
2 s⊥k + C+

2 sk = C⊥+
2 C⊥2 z2,k + C+

2 C
⊥
2 z2,k (5.111)

with
C⊥+

2 C⊥2 + C+
2 C
⊥
2 = In+m . (5.112)

Thus, the virtual output variable σk can be written as

σk = C1z1,k + C2z2,k = C1z1,k + sk , (5.113)

in which definition (5.103) is incorporated. The mathematical description of the rear-
ranged system equation for the networked plant model (5.10) with states zk is trans-
formed to an alternative representation, which uses the constructed virtual output σk
and s⊥k , i.e.

zk =

[
z1,k

z2,k

]
⇒



z1,k

s⊥k
σk


 ∈ Rm(d̄−1)+n+m . (5.114)

Based on (5.10) and (5.100), one can derive a difference equation for z1,k+1 such that

z1,k+1 = A11z1,k +A12z2,k

=
(
A11 −A12C

+
2 C1

)
z1,k +A12C

⊥+
2 s⊥k +A12C

+
2 σk , (5.115)
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as well es for the complementary part of sk as

s⊥k+1 = C⊥2 z2,k+1 (5.116)

=
(
C⊥2 A21 − C⊥2 A22C

+
2 C1

)
z1,k + C⊥2 A22C

⊥T
2 s⊥k + C⊥2 A22C

+
2 σk + C⊥2 B2uk

and for the virtual output σk in the form of

σk+1 = C1z1,k+1 + C2z2,k+1

= C1A11z1,k + C1A12z2,k + C2A21z1,k + C2A22z2,k + C2B2uk

= A1z1,k +A2s
⊥
k +A3σk + CBzuk (5.117)

with

A1 = C1A11 − C1A12C
+
2 C1 + C2A21 − C2A22C

+
2 C1 (5.118a)

A2 = C1A12C
⊥+
2 + C2A22C

⊥+
2 (5.118b)

A3 = C1A12C
+
2 + C2A22C

+
2 . (5.118c)

Following again the main idea of model reference adaptive control for a virtual output
σk, a reference model

σM,k+1 = AM1z1,k +AM2s
⊥
k +AMσk +BMrk ∈ Rm (5.119)

is defined in accordance with the actual dynamics (5.117). Consequently, the dynamics
of error

ek = σk − σM,k ∈ Rm (5.120)

is given by

ek+1 = AMek + (A1 −AM1) z1,k + (A2 −AM2) s⊥k
+ (A3 −AM )σk −BMrk + CBzuk . (5.121)

The reference dynamics (5.119) is identical to the actual dynamics (5.117), if the a
nominal controller

ūk = θ̄1z1,k + θ̄2s
⊥
k + θ̄3σk + θ̄4rk

= θ̄ωk + θ̄4rk (5.122)

with

θ̄ =
[
θ̄1 θ̄2 θ̄3

]
∈ Rm×(n+md̄) , ωk =



z1,k

s⊥k
σk


 ∈ Rn+md̄ (5.123)

and

θ̄1 = − (CBu)−1 (A1 −AM1) ∈ Rm×(m(d̄−1)) (5.124a)

θ̄2 = − (CBu)−1 (A2 −AM2) ∈ Rm×n (5.124b)

θ̄3 = − (CBu)−1 (A3 −AM ) ∈ Rm×m (5.124c)

θ̄4 = (CBu)−1BM ∈ Rm×m (5.124d)
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is utilized. Hence, adaptive laws can be constructed and the stability of the closed loop
networked system can be shown by following the same ideas as in Section 5.1, where
parameter matrix

θk = θ̄ + φk (5.125)

appears because the nominal values for θ̄ are unknown. The corresponding dimensions
of the involved variables are as follows:

θk ∈ Rm×(n+md̄) εk ∈ Rm

Υk ∈ Rm×m ξ̃k ∈ Rn+md̄+m

ωk ∈ R(n+md̄) Γ1 ∈ R(n+md̄)×(n+md̄) (5.126)

ξk ∈ R(n+md̄) Γ2 ∈ Rm×m

ηk ∈ Rm

The transfer matrices WN [·] and WM [·] needed for the adaptive laws in Theorem 5.5
comply with Assumption 5.3 and have (n + md̄) and m inputs (and outputs), respec-
tively.

The remaining dynamics, i.e. the dynamics for σk = 0 for all k ≥ k?, follows for the
extended formulation as

[
z1,k+1

s⊥k+1

]
=

[
A11 −A12C

+
2 C1 A12C

⊥T
2

C⊥2 A21 − C⊥2 A22C
+
2 C1 C⊥2 A22C

⊥T
2

] [
z1,k

s⊥k

]

+

[
A12C

+
2

C⊥2 A22C
+
2

]
σM,k +

[
0

C⊥2 B2

]
uk . (5.127)

It is beneficial for the design of matrix C2 to split it into two parts as

C2 =
[
Cx Cu

]
, (5.128)

where matrix Cx that weights the plant states xk in (5.99) and Cu the actuation signals
uk−1 from the previous sampling step. A possible choice for the design of C2 is to fix
Cu = Im.

It is also possible in a straight forward way to state the corresponding versions of
Corollaries 5.9, 5.10 and 5.11 for the presented extended formulation.

5.5 Simulation Example for the extended Formulation

A continuous-time plant characterized by matrices

Ã =




0.7 0.9 0.7
0 0.4 0.3
0 0 0.5


 , B̃ =




0.8 0.8
0.3 1.0
0.1 0.6


 (5.129)

is considered to compare the proposed approaches for adaptive tracking of (rk) and the
stabilization of (σk) for the original as well as for their extended formulations introduced
in the previous section. The sampling interval h and the reference signals are the same
as in Section 5.3. Matrix

C1 =

[
0.8068 0.3654 0.7866 −0.5883 0.8022 0.1834 −0.3658
0.1180 −0.3008 1.0316 0.1115 −0.1572 −0.0564 −0.4567

]
(5.130)
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is used for the original approaches, while

C =
[
C1 C2

]
with (5.131a)

C1 =

[
0.3783 0.3130 0.5234 0.0036 0.2826 −0.4114 0.3323
0.4684 −0.2055 1.7776 0.0484 −0.3248 0.2499 −0.5093

]
, (5.131b)

C2 =

[
−0.2183 −0.1658

0.0340 0.7120

]
, (5.131c)

is the gain matrix of the non-adaptive controller. For the extended formulations, one
gets

C =
[
C1 C2

]
with (5.132a)

C1 =

[
0.1952 0.5920 −0.2475 0.0619
0.3751 −0.1439 −0.1181 −0.0657

]
, (5.132b)

C2 =

[
1.5259 −0.0297 1.7081 1.0000 0
0.6553 −1.0143 3.2051 0 1.0000

]
. (5.132c)

following the same design approach that minimizes the spectral radius of the respective
remaining closed loop dynamics.

Figure 5.19 and Table 5.3 summarize the results for the different approaches. It is
clearly visible that the proposed methods allow to achieve faster convergence of the
states when compared to the non-adaptive controller. The extended formulations of the
adaptive algorithms (red and green curves) as presented in Section 5.4 yield even faster
responses compared to the original formulation from Sections 5.1 and 5.2. However,
the improved tracking performance results a more sophisticated design of the virtual
output variable, which can be done by using an offline optimization problem.

Table 5.3: Example for the extended Formulation: Results for the non-adaptive con-
troller (non-ad) in comparison to adaptive tracking (track), adaptive stabilization
(stab), extended tracking (ext track) and extended stabilization (ext stab) in terms
of tracking error and control energy.

approach non-ad track stab ext track ext stab√∑
(xk − x̂k)2 61.44 49.32 48.25 39.35 36.76√∑

u2
k 21.47 38.33 37.88 47.88 47.39

√∑
(xk − x̂k)2 100.0 % 80.2 % 78.5 % 64.0 % 59.8 %√∑

u2
k 100.0 % 178.5 % 176.4 % 223.0 % 220.7 %

It is also visible in Figure 5.19 and especially in Table 5.3 that the stabilization ap-
proaches (green and cyan) result in slightly faster responses as the approaches to track
a desired reference rk for the virtual output σk (red and orange), see the root mean

square errors
√∑

(xk − x̂k)2 in the table.

The shape of the corresponding virtual output variables and actuating signals are de-
picted in Figures 5.20 and 5.21 for the tracking approaches; and in Figures 5.22 and
5.23 for the stabilization approaches.
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Figure 5.19: Example for the extended Formulation: Comparison of the states xk for
the tracking approach (red) and stabilization approach (green) as well as the extended
tracking approach (orange) and extended stabilization approach (cyan) with a non-
adaptive approach (blue).
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Figure 5.20: Example for the extended Formulation (tracking of rk): Virtual output
σk for different network delays τ for the tracking (red) and extended tracking approach
(orange).
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Figure 5.21: Example for the extended Formulation (tracking of rk): Control signals
uk for different network delays τ for the tracking (red) and extended tracking approach
(orange).

105



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
−1.5

−1

−0.5

0

0.5

1
σ
1
,k

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

−0.1

0

0.1

0.2

0.3

0.4

t

σ
2
,k

Figure 5.22: Example for the extended Formulation (stabilization of σk = 0): Virtual
output σk for different network delays τ for the tracking (green) and extended tracking
approach (cyan).
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Figure 5.23: Example for the extended Formulation (stabilization of σk = 0): Control
signals uk for different network delays τ for the tracking (green) and extended tracking
approach (cyan).
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Chapter 6

Stability of packetized Networked
Control Systems

In contrast to the previous chapters, no buffering mechanism as in Chapter 4 or adapta-
tion algorithms as in Chapter 5 are considered now. Actually, basic control loops are in
focus, where the time-varying packet delays in the transmission network are bounded,
but are not restricted in other ways. This implies that the chosen network protocols
introduced in Chapter 2, i.e. the active packet skipping and hold mechanisms, play a
vital role in the analysis. The present chapter is adopted from [SH20], [SH21a] and
[SH21b].

First, the problem setup together with the assumptions on the controller, the plant
and the network connection are described. An example of a filtered Smith predictor
is introduced and used throughout this and the two subsequent chapters to show the
properties of LMI-based as well as of the proposed stability criteria, presented in Chap-
ters 7 and 8. Then, it is illustrated that the packetized nature of the transmissions has
to be taken into account in the analysis. The accurate simulation of networked systems
subject to packet-based transmissions as introduced in Chapter 3 allows to check the
stability criteria.

At the end of this chapter, basic definitions and different versions of the small gain
theorem (SGT) [Sas99, Vid02] are recalled and compared. They form the foundation
for the SGT-based stability criteria introduced in Chapters 7 and 8.

6.1 Problem setup

The considered feedback loop consists of a spatially distributed plant, a network subject
to packetized transmissions and a linear controller as depicted in Figure 6.1. The plant
with input sequence (uk) and output sequence (yk) is given as

P (z) = P̂ (z)z−d̂ , (6.1)

where P̂ (z) is a delay-free nominal discrete-time transfer function and d̂ ∈ N represents
a nominal constant plant delay.

The measured output samples yk are sent over a, possibly wireless and multi-hop,
network to the controller.
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linear
controller

P (z)

plant

τj

network

(rk) (uk) (yk)

(ζk)

Figure 6.1: Feedback loop that is closed by means of a communication network with
time-varying delays τj for the transmitted packets j.

Assumption 6.1 (Discrete network delays). The samples of sequence (yk) are
transmitted in separate packets j experiencing an individual bounded packet delay
τNj h that is an integer multiple of the sampling interval h such that

0 ≤ τN ≤ τNj ≤ τ̄N (6.2)

with τN , τNj , τ̄
N ∈ N.

Overtaking of subsequently packets may occur since no additional restrictions on the
variable time delays such as, e.g., a bounded change rate, are assumed. More detailed
explanations of such effects can be found in Chapter 2. For the subsequent analysis,
the overall time delay present in the feedback loop is split into two parts. Transfer
function

D̂(z) = z−d̂−τ
N

= z−τ̂ with τ̂ = d̂− τN (6.3)

combines the constant plant delay d̂ (6.1) and the lower bound of the network delay
τN stated in Assumption 6.1. Please note that the delay τ̂ is a known constant.

The remaining time-varying delay τj follows from (6.2) such that

0 ≤ τNj − τN︸ ︷︷ ︸
τj

≤ τ̄N − τN = τ̄ . (6.4)

Consequently, one can state the following assumption about the involved variable time
delays that will be vital in the remaining part of this work.

Assumption 6.2 (Variable time delays). The time-varying delays in the net-
worked feedback loop in Figure 6.1 are bounded by the maximal time delay τ̄ such
that

0 ≤ τj ≤ τ̄ (6.5)

with τj , τ̄ ∈ N. Each delay τj is associated with a corresponding packet j, which is
transmitted over the communication channel.

Any linear controller in the form of

ũ(z) = −R(z)ζ̃(z) +RV (z)r̃(z) (6.6)

can be utilized in the feedback loop shown in Figure 6.1. It combines a given refer-
ence sequence (rk) and the transmitted, and thus also delayed, output sequence (yk)
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controller

P (z)

plant

τj

network
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−

(ζk)

Figure 6.2: Unity feedback loop with delayed output (yk) that is sent via a transmission
network subject to bounded time-varying packet delays τj .

symbolized by sequence (ζk) by using transfer functions RV (z) and R(z). One example
of a special case of the structure in Figure 6.1 is the unity feedback loop depicted in
Figure 6.2, where

ũ(z) = C(z)
(
r̃(z)− ζ̃(z)

)
= −C(z)ζ̃(z) + C(z)r̃(z) , (6.7)

and thus, R(z) = C(z) and RV (z) = C(z) hold.

Example: Feedback loop with filtered Smith predictor

Another example that fits into the structure of Figure 6.1 is the filtered Smith predictor,
which was already considered as an introductory example in Chapter 1. Figure 6.3
shows the underlying configuration with the corresponding controller described by

controller

V (z) C(z) P (z)

plant
H(z)

F (z) τj

network

(rk) (uk) (yk)

−

(ζk)

Figure 6.3: Networked feedback loop with filtered Smith predictor (gray), plant (green)
and packetized transmission network (blue).

ũ(z) = − C(z)F (z)

1 + C(z)H(z)︸ ︷︷ ︸
R(z)

ζ̃(z) +
C(z)V (z)

1 + C(z)H(z)︸ ︷︷ ︸
RV (z)

r̃(z) , (6.8)

where C(z) is the nominal controller designed for the delay-free feedback loop. Transfer
functions

F (z) =
µF (z)

νF (z)
(6.9)

and

H(z) = P̂ (z)
(

1− z−d̂F (z)
)

=
µ̂(z)

(
zd̂νF (z)− µF (z)

)

zd̂ν̂(z)νF (z)
(6.10)

109



are designed for the first-order unstable plant (1.2) with a nominal plant delay of d̂ = 5
while respecting condition

zd̂νF (z)− µF (z) = 0 , ∀z
∣∣ ν̂(z) = 0 ∧ |z| ≥ 1 . (6.11)

Details about the nominal controller design as well as the design of the transfer functions
F (z) and H(z) can be found in Sections 1.1 and in Appendix A. This example is used
in this chapter to show results for a LMI-based analysis and in Chapters 7 and 8 for
the proposed SGT-based approaches.

6.2 LMI-based Stability Analysis

The literature is very rich in terms of LMI-based stability concepts for time delay
systems as mentioned in Section 1.2. In this section, only one specific approach proposed
by [LG11] is utilized as a basis for the stability analysis of the feedback loop with filtered
Smith predictor presented in the previous section.

6.2.1 LMI-based Stability Criterion

The stability criterion presented in [LG11] is extended to the NCS in Figure 6.3. For
that purpose, all related transfer functions, i.e. P (z), H(z), F (z) and C(z) are written
as minimal state-space realizations such that

P (z)

{
xk+1 = Axk + buk

yk = cTxk−d̂
(6.12a)

H(z)

{
xH,k+1 = AHxH,k + bHuk

yH,k = cT
HxH,k

(6.12b)

F (z)

{
xF,k+1 = AFxF,k + bF yk−τNk
yF,k = cT

FxF,k + dF yk−τNk
(6.12c)

and

C(z)

{
xC,k+1 = ACxC,k − bC (yH,k + yF,k)

yC,k = cT
CxC,k − dC (yH,k + yF,k)

(6.12d)

with state vectors xk ∈ Rn, xH,k ∈ RnH , xF,k ∈ RnF , xC,k ∈ RnC . Dynamic matrices,
input vectors, output vectors and direct feedthroughs are denoted by Ai, bi, c

T
i and di

with i ∈ {H,F,C} respectively. No indices are used for the plant data in (6.12a).

Please note that the nominal, constant plant delay d̂ is modeled at the output of the
plant (6.12a). The time-varying network delay τNk is bounded by

1 ≤ τN ≤ τNk ≤ τ̄N (6.13)

as commonly done in LMI-based approaches. It is important to note the difference in
(6.2) and (6.13) in terms of the indices j (packet index) and k (iteration index). Usually,
the variable time delay τNk is used in LMI approaches, i.e. the packed-based nature of
network transmissions is not directly considered. This is also the case in (6.12c), which
is chosen to be able to follow the analysis in [LG11].
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The combination of all sub-models (6.12) as visualized in Figure 6.3 yields the descrip-
tion of the closed loop system as

ξk+1 = Ãξk + Ãdξk−d̂−τNk
(6.14)

with state vector
ξT
k =

[
xT
k xT

H,k xT
F,k xT

C,k

]
∈ Rnξ (6.15)

where nξ = n+ nH + nF + nC , system matrix

Ã =




A −b dC cT
H −b dC cT

F b cT
C

0 AH − bH dC cT
H −bH dC cT

F bH c
T
C

0 0 AF 0
0 −bC cT

H −bC cT
F AC


 , (6.16a)

and matrix

Ãd =




−b dC dF cT 0 0 0
−bH dC dF cT 0 0 0

bF c
T 0 0 0

−bC dF cT 0 0 0


 (6.16b)

that weights the delayed state vector (6.15) in (6.14). Consequently, one can state the
following stability criterion based on [LG11] and the model description (6.14) to (6.16).

Theorem 6.3 (LMI stability criterion [SH20]). Consider the networked filtered
Smith predictor as shown in Figure 6.3, where transfer functions V (z) and C(z)
are designed to stabilize the nominal, delay-free plant P̂ (z). The nominal constant
time delay is given by τ̂ = d̂ + τN > 0 as in (6.3). Transfer functions F (z) and
H(z) are selected corresponding to (6.9), and (6.10), (6.11), respectively. Matrices
Ã and Ãd are given by (6.16).

Then, the closed loop system is asymptotically stable for all bounded time-varying
network delays τNk (6.13) if one of the following conditions holds for a scalar con-
stant 0 < γ < 1:

(i) There exist positive definite symmetric matrices P ∈ R(d̂+τ̄N+1)nξ×(d̂+τ̄N+1)nξ

and S ∈ Rnξ×nξ so that
GTΘ1G−Θ2 ≺ 0 (6.17)

with matrices Θ1 = diag (P, S), Θ2 = diag (P, γ2S) and

G =




Ψ1
1
2Ãd

τ̄N−τN
2 Ãd

I(d̂+τ̄N)nξ (0)3 (0)3

Ψ2
1
2Ãd

τ̄N−τN
2 Ãd


 (6.18)

where

Ψ1 =
[
Ã (0)1

1
2Ãd (0)2

]
, (6.19a)

Ψ2 =
[
Ã− Inξ (0)1

1
2Ãd (0)2

]
, (6.19b)

(0)1 = 0nξ×(d̂+τN−1)nξ , (6.19c)

(0)2 = 0nξ×(τ̄N−τN−1)nξ
, (6.19d)

(0)3 = 0(d̂+τ̄N)nξ×nξ . (6.19e)
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(ii) There exist positive definite matrices P,Q1, Q2, R1, R2 and S ∈ Rnξ×nξ such
that [

Φ1 Ψ

∗ diag (−P,−R1,−R2,−S)

]
≺ 0 (6.20)

where

Φ1 =


Φ11

[
R1 R2 0nξ

]

∗ diag
(
Φ12,Φ13,−γ2S

)


 , (6.21a)

Φ11 = −P +Q1 +Q2 −R1 −R2 , (6.21b)

Φ12 = −Q1 −R1 , (6.21c)

Φ13 = −Q2 −R2 , (6.21d)

Ψ =
[
ΦT

2 P
(
d̂+ τN

)
ΦT

3 R1

(
d̂+ τ̄N

)
ΦT

3 R2 ΦT
3 S
]
, (6.21e)

Φ2 =
[
Ã 1

2Ãd
1
2Ãd

τ̄N−τN
2 Ãd

]
, (6.21f)

Φ3 =
[
Ã− Inξ 1

2Ãd
1
2Ãd

τ̄N−τN
2 Ãd

]
. (6.21g)

Proof. The proof is a direct consequence of Corollary 1 in [LG11] evaluated for (6.14),
(6.16), h1 = τ̂ = d̂+ τN , h2 = d̂+ τ̄N , and h12 = τ̄N − τN . �

Note that Theorem 6.3 differs from the stability criterion presented in [NRGG12] in
several ways. The main difference is that the time-varying delay is modeled in the
input channel of the plant in [NRGG12]. It is not equivalent the situation presented
in Figure 6.3, where the output sequence is transmitted via a time-varying network
channel in separate packets. In addition, a different Lyapunov-Krasovskii functional is
employed in the proof to get the LMI conditions.

6.2.2 Simulation Example

Theorem 6.3 is evaluated for the filtered Smith predictor example from the beginning
of this chapter. Hence, it is necessary to convert the involved LMIs such that they can
be solved in a numerically reliable way. Hence, e.g., relation (6.17) is converted into

GTΘ1G−Θ2 � νI (6.22)

with ν < 0 to avoid strict LMIs as, for example, explained in [Ber09]. The goal is to
find the maximal admissible network delay bound τ̄N such that the closed loop system
is asymptotically stable. The minimal value of τNj is zero, i.e. τN = 0, in the simulation
example.

Theorem 6.3 is evaluated for different scalars γ and maximal admissible variable time
delays. The solution is influenced by a proper selection of parameter ν (6.22) that
allows to account for numerical errors in the solution finding of the related LMIs. In
the present case, MOSEK [MOS] is utilized as solver and is accessed via YALMIP [YAL]
with the setting ν = 10−8.

Figure 6.4 shows the results of the evaluation of conditions (i) and (ii) in Theorem 6.3.
Situations in which no feasible solution can be found are depicted using red circles
and crosses for Theorem 6.3(i) and 6.3(ii), respectively. It can be clearly seen that
conditions (ii) yield a significantly smaller maximal admissible variable time delay τ̄N =
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Figure 6.4: Example: Comparison of the maximal admissible delay τ̄N and correspond-
ing maximal values for parameter γ resulting from the evaluation of Theorem 6.3.

1 compared to conditions (i) that result in a maximal value of τ̄N = 5. The blue point
and green curve in Figure 6.4 represent the maximal parameter γ, where a solution
can be found. This parameter has to be less than one, as indicated in Theorem 6.3,
and the difference between γ and 1 can be interpreted as a stability margin. Hence, a
decreasing margin can be observed for conditions (ii) when τ̄N is increased.

The number of unknowns in the conditions of Theorem 6.3 depend on the dimension
of the state vector (6.15) and the maximal overall time delay d̂ + τ̄N . For conditions
(i) one gets

(
d̂+ τ̄N + 1

)2
n2
ξ +

(
d̂+ τ̄N + 1

)
nξ

2︸ ︷︷ ︸
for P

+
n2
ξ + nξ

2︸ ︷︷ ︸
for S

=

1

2

[(
d̂+ τ̄N

)2
+ 2

(
d̂+ τ̄N

)
+ 2

]
n2
ξ +

1

2

(
d̂+ τ̄N + 2

)
nξ (6.23)

unknowns and for Theorem 6.3(ii)

n2
ξ + nξ

2
(2nξ + 2) = n3

ξ + 2n2
ξ + nξ (6.24)

unknowns because (2nξ + 2) matrices P,Q1, Q2, . . . , Qnξ , R1, R2, . . . , Rnξ and S come
into play. The dimension of state vector (6.15) in the present example is nξ = 9 and the

nominal plant delay is given by d̂ = 5. Consequently, 900 and 8046 unknowns follow
for conditions (i) and (ii), respectively. Please note that (6.23) depends on the actual
τ̄N to be checked, i.e. at maximum τ̄N = 8 in Figure 6.4. On the contrary, (6.24) does
not involve any bound of the time-varying delays.

A simulation of the closed loop system is performed using individual packet delays such
that 0 ≤ τj ≤ 5, i.e. respecting the maximum of τ̄N = 5 provided by Theorem 6.3. The
network delays τNj , depicted in Figure 6.5, are chosen as random values. Figure 6.6
shows the corresponding actuation signal (top plot) and output sequence (bottom plot)
for protocol P1, when the simulation framework presented in Chapter 3 is used. Al-
though, the packet delays change within the given bounds in a random way, reference
signal (rk) (bottom plot, black) can be tracked successfully. This is in line with the
statements from Theorem 6.3.

However, Figures 6.7 and 6.8 exemplify a different setting, where a repeating pattern
of packet delays is present with a maximal delay of 4. The reference signal (bottom
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Figure 6.5: Example 1: random packet delays τNj .
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Figure 6.6: Example 1: input sequence (uk) and output sequence (yk) for protocol P1

and random delays as shown in Figure 6.5.
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Figure 6.7: Example 2: repeating pattern of packet delays τNj .

plot, black) and the resulting output sequences are visible in Figure 6.8 for the three
different protocols P1, P2 and P3 (2.38) introduced in Chapter 2. It can be clearly seen
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Figure 6.8: Example 2: control signals (uk) and output signals (yk) for different proto-
cols (2.38) and packet delays as shown in Figure 6.7. The orange curves represent the
worst case scenario.

that the control performance significantly depends on the employed protocol. Protocols
P1 and P2 yield similar results for the actual simulation experiment. On the contrary,
protocol P3 leads to an oscillating output sequence for the case where a random packet
is selected, whenever more packets are available at the same time instant. This is
possible due to the characteristics of this third protocol (2.38c) that avoids any form
of synchronization or numbering in the networked connection.

If the oldest packet is selected whenever more packets are available at the same time
instant, the use of protocol P3 results in an unstable feedback loop for the networked
plant with filtered Smith predictor. This setting constitutes the worst case scenario if
a packet numbering mechanism is absent as shown in Chapter 7.

Please note that Figures 6.7 and 6.8 illustrate a situation in which the closed feedback
loop is unstable although Theorem 6.3 is fulfilled for τ̄N = 5, see Figure 6.4. This main
issue arises because the actual network protocol is not included in the stability analysis,
which is, to the best of the authors knowledge, common in LMI-based approaches in
literature and is not a specific feature of the presented theorem.

Consequently, an alternative way to show the stability of feedback loops with time-
varying packet delays is necessary. Hence, new stability criteria are introduced in
Chapter 7 to explicitly integrate the applied protocol in the analysis. Chapter 8 extends
the criteria to render them less conservative.
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6.3 Basic definitions and Small Gain Theorems

Some basic definitions are recalled since they provide the basis for the theory devel-
oped in the next chapters. They can be found, e.g., in [Sas99] and [Vid02] and are only
explicitly mentioned in the definitions below, if there are significant differences. Espe-
cially important is the formulation of the small gain theorem (SGT) that is differently
introduced in [Sas99] and [Vid02]. This difference is essential for the case with acausal
subsystems as presented in Chapter 8.

Definition 6.4 (Truncation of a sequence). The truncation of sequence (fk) :
[a,∞)→ R at a finite time T is defined as

(
fk
)
T

=





0 ∀k ≥ α, if T < a

fk a ≤ k ≤ T
0 k > T ≥ a

(6.25)

with a ∈ R.

Please note that the interval [a,∞) is considered here as, e.g., in [UI08], because also
acausal sequences will be part of the investigations in Chapter 8.

Definition 6.5 (Extended `p space). A sequence (fk) belongs to the `p[a,∞) space
if condition

∞∑

k=a

∣∣fk
∣∣p <∞ (6.26)

holds for p ∈ [1,∞). It belongs to the `pe[a,∞) space, if its truncation belongs to
`p[a,∞), i.e. (

fk
)
T
∈ `p[a,∞) for all T (6.27)

is fulfilled.

Definition 6.6 (Causality). A mapping (yk) = M{(uk)} : `pe[a,∞) 7→ `pe[a,∞)
is causal if (

yk
)
T

=
(
M
{

(uk)
})

T
=
(
M
{

(uk)T
})

T
(6.28)

for all finite T > 0 and (uk) ∈ `pe[a,∞).

Definition 6.7 (Finite gain `p stability [Sas99]). A causal mapping (yk) =M{(uk)} :
`pe[a,∞) 7→ `pe[a,∞) is called finite gain `p stable if

(a) for a given (uk) ∈ `p[a,∞), it follows that (yk) ∈ `p[a,∞) and

(b) for a given (uk) ∈ `pe[a,∞), it implies that there exist constants α > 0 and
β > 0 such that the norm of output sequence (yk) is bounded as

∣∣∣∣(yk
)
T

∣∣∣∣
p
≤ α

∣∣∣∣(uk
)
T

∣∣∣∣
p

+ β , (6.29)
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for all T > 0, where ||(·)T ||p denotes the p-norm of a truncated sequence (·)T .
Constant α is referred to as finite `p gain.

The second condition in Definition 6.7 means that there exists an affine bound on
the norm of the (possibly unbounded) output sequence (yk), which is uniform for all
truncations T .

Please note that Definition 6.7 incorporates causal mappings only, which is different to
the alternative definition below that does not require causality and does not comprise
truncations of sequences.

Definition 6.8 (Finite gain `p stability [Vid02]). A mapping (yk) = M{(uk)} :
`2e[a,∞) 7→ `2e[a,∞) is called finite gain `p stable if there exist constants α > 0
and β > 0 such that the norm of output sequence (yk) is bounded as

∣∣∣∣(yk
)∣∣∣∣

p
≤ α

∣∣∣∣(uk
)∣∣∣∣

p
+ β (6.30)

for (uk) ∈ `p[a,∞) and (yk) ∈ `p[a,∞). The constant α is referred to as the finite
`p gain.

An additional difference is that the space for (uk) and (yk) is `pe[a,∞) in Definition 6.7
and `p[a,∞) in Definition 6.8.

Based on both definitions of finite gain `p stability, one can define different versions
of the small gain theorem for the interconnection of two subsystems as depicted in
Figure 6.9 with two inputs (u1,k) and (u2,k). Each subsystem i = {1, 2} is characterized

Σ1 Σ2

(e2,k)

(u2,k)

(y1,k)

(y2,k)

−

(u1,k)

(e1,k)

M2M1

Figure 6.9: Interconnection of two subsystems considered in the SGT.

by a mapping Mi from input (ei,k) to output (yi,k).

Theorem 6.9 (Small gain theorem [Sas99]). Consider the feedback loop in Fig-
ure 6.9 with inputs (u1,k), (u2,k), outputs (y1,k), (y2,k) and signals (e1,k), (e2,k).
The systems Σ1, Σ2 described by mappings (y1,k) = M1{(e1,k)} : `pe[a,∞) 7→
`pe[a,∞), (y2,k) = M2{(e2,k)} : `pe[a,∞) 7→ `pe[a,∞) are causal and finite gain
`p stable corresponding to Definition 6.7, i.e. there exist constants α1, α2, β1, β2

such that

∣∣∣∣(y1,k

)
T

∣∣∣∣
p
≤ α1

∣∣∣∣(e1,k

)
T

∣∣∣∣
p

+ β1 (6.31a)
∣∣∣∣(y2,k

)
T

∣∣∣∣
p
≤ α2

∣∣∣∣(e2,k

)
T

∣∣∣∣
p

+ β2 (6.31b)
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for (u1,k), (u2,k) ∈ `pe[a,∞) and (y1,k), (y2,k) ∈ `pe[a,∞). The loop is assumed to
be well posed such that (e1,k), (e2,k) ∈ `pe are unique. Let condition

α1α2 < 1 (6.32)

hold.

Then, the closed loop system is finite gain `p stable from (u1,k), (u2,k) to (y1,k),
(y2,k).

There is also a different version of the SGT in [Sas99] that makes use of the so-
called incremental finite gain stability, which is similar to a Lipschitz condition in the
continuous-time setting and does not require to assume the well-posed-ness, see [Sas99]
for details.

Theorem 6.10 (Small gain theorem [Vid02]). Consider the feedback loop in Fig-
ure 6.9 with inputs (u1,k), (u2,k), outputs (y1,k), (y2,k) and signals (e1,k), (e2,k).
The systems Σ1, Σ2 described by mappings (y1,k) = M1{(e1,k)} : `pe[a,∞) 7→
`pe[a,∞), (y2,k) = M2{(e2,k)} : `pe[a,∞) 7→ `pe[a,∞) are causal and finite gain
`p stable corresponding to Definition 6.8, i.e. there exist constants α1, α2, β1, β2

such that

∣∣∣∣(y1,k

)∣∣∣∣
p
≤ α1

∣∣∣∣(e1,k

)∣∣∣∣
p

+ β1 (6.33a)
∣∣∣∣(y2,k

)∣∣∣∣
p
≤ α2

∣∣∣∣(e2,k

)∣∣∣∣
p

+ β2 (6.33b)

for (u1,k), (u2,k) ∈ `p[a,∞) and (y1,k), (y2,k) ∈ `p[a,∞). Let condition

α1α2 < 1 (6.34)

hold.

Then, the closed loop system is finite gain `p stable from (u1,k), (u2,k) to (y1,k),
(y2,k).

Please note that the uniqueness is not directly claimed in Theorem 6.10 but indirectly
assumed because all involved mappings are assumed to be binary relations of a specific
form as stated in [Vid02].

Causality is the missing link between conditions (6.31) and (6.33) that correspond to
Definition 6.7 for (uk) ∈ `p and Definition 6.8 for (uk) ∈ `pe, respectively. An evaluation
of (6.30), i.e. ∣∣∣∣(yk)

∣∣∣∣
p

=
∣∣∣∣M

{
(uk)

}∣∣∣∣
p
≤ α

∣∣∣∣(uk
)∣∣∣∣

p
+ β , (6.35)

for (uk)T ∈ `p yields ∣∣∣∣M
{

(uk)T
}∣∣∣∣

p
≤ α

∣∣∣∣(uk
)
T

∣∣∣∣
p

+ β . (6.36)

The use of Definition 6.6 for causality
(
M
{

(uk)T
})

T
=
(
M
{

(uk)
})

T
=
(
yk
)
T

(6.37)

allows to state ∣∣∣∣(M
{

(uk)T
})

T

∣∣∣∣
p
≤
∣∣∣∣M

{
(uk)T

}∣∣∣∣
p

(6.38)

and, as a consequence, ∣∣∣∣(yk
)
T

∣∣∣∣
p
≤ α

∣∣∣∣(uk
)
T

∣∣∣∣
p

+ β , (6.39)
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where relations (6.36) and (6.37) are taken into account. This shows, that the Defini-
tion 6.7 is equal to (6.33) if causality is assumed. In Chapter 8, the small gain theorem
in a modified form of Theorem 6.10 is utilized since not all subsystems in Figure 6.9
are assumed to be causal in that setting.

The definitions and theorems presented here for p ∈ [1,∞) are evaluated for the specific
choice p = 2 in the following chapters.
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Chapter 7

SGT-based Stability Analysis

This chapter introduces novel stability criteria, which allow to explicitly incorporate
the fact that the data is sent in separate packets over transmission networks. It is
adopted from [SH20] and [SH21b].

Different criteria for the robust stability of the networked feedback loops are proposed
that allow to explicitly consider the three protocols introduced in Chapter 2 and time-
varying packet delays for the case where a packet numbering mechanism is used as
well as for the (worst) case without packet numbering nor synchronization between
sender and receiver. The criteria are based on the small gain theorem [Sas99, Vid02] as
presented in Chapter 6 and make it possible to check the stability in a computationally
inexpensive way without involving any optimization algorithms. They are proposed on
the basis of the work in [KL04], which is considerably extended in the following.

A basic version of the new stability criteria for packetized networked systems is in-
troduced first for feedback loops with linear controllers and known linear plants. The
effects due to different packet skipping and hold mechanisms are included in the deriva-
tion of the criterion that, in the end, provides a maximal admissible bound on the
time-varying packet delays.

Finally, an extension to networked loops with uncertain plant models is proposed and
exemplified for the filtered Smith predictor. It underlines the easy-to-use character of
the introduced approaches.

7.1 SGT-based Stability Criterion

To formulate the basic version of the stability criterion, the networked feedback loop
depicted in Figure 6.1 is considered. It consists of a linear controller (6.6), a plant repre-
sented by its discrete-time transfer function (6.1) and a packetized network connection
for the transmission of output sequence (yk). Following the idea of [KL04], Figure 6.1 is
rearranged to get the structure in Figure 7.1, where the input sequence (rk) is assumed
to be identically to zero for all k. The known constant time delay τ̂ (6.3) is included in
the nominal part (gray) via transfer function D̂(z), whereas the remaining time-varying
delay τj (6.5) stated in Assumption 6.2 is associated with the uncertainty, see blue part
in Figure 7.1. The artificially introduced discrete-time integrator and differentiator are
utilized to reduce the conservatism of the stability criterion as explained below.

In [KL04], the small gain theorem [Sas99] is employed to state a sufficient stability
condition for systems with time-varying delays. It is based on the assumption that the
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R(z) P̂ (z) D̂(z) z−1
z

−

uncertainty

z
z−1

τj

(vk) (ak)

(ck)(wk) −

Figure 7.1: Rearranged networked feedback loop with two subsystems representing the
nominal control loop (gray) and the uncertainty (blue) representing the effects of the
time-varying delays.

uncertainty block with input (vk) and output (wk) (see blue block in Figure 7.1) can
be represented by

wk =

k−τk∑

i=0

vi −
k∑

i=0

vi = −
k∑

i=k−τk+1

vi , (7.1)

where the sums follow due to the discrete-time integrator. The first sum in (7.1) stands
for the effect of the variable time delay between signal (vk) and (wk) via the integrator
and the delay block. The second sum follows due to the negative bypass of the delay
block. Relation (7.1) is then used to prove the stability criterion in [KL04]. Please note
that τk and not τj is used in (7.1) since the considered time delays are not linked to
individual packets in [KL04].

Exactly this missing link between the packets and the corresponding delays is prob-
lematic in some cases, as shown in the following figures. Figures 7.2 and 7.3 present
the results for a first example, where protocol P2 is employed. This means that old
packets are not skipped and the most recent packet is selected whenever more packets
are available.

−1 0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

j

τ j

Figure 7.2: Packet delays for the example with protocol P2.

The packet delay pattern τj from Figure 7.2 together with the input sequence (vk)
from Figure 7.3 yields the red curve in the bottom plot in Figure 7.3 if relation (7.1)
is applied. However, the use of an accurate simulation framework as presented in
Chapter 3 results in the blue curve for (wk). The visible deviation between the two
results underline that relation (7.1) does not allow to correctly reproduce the behavior
of transmission channels subject to time-varying packet delays.
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Figure 7.3: Input sequence (vk) of the uncertainty (top) and output signals (wk) for a
simulation as well as using relation (7.1) for an example with protocol P2.

This discrepancy can also be observed for other examples and protocols as, e.g., plotted
in Figures 7.4 and 7.5, where protocol P1 is in place, i.e. old packets are skipped if

−1 0 1 2 3 4 5 6 7 8

0

1

2

3

j

τ j

Figure 7.4: Packet delays for the example with protocol P1.

newer information is available and the most recent packet is selected if more packets
are available at the same time instant. Deviations between the accurate simulation
(including packet skipping and hold mechanisms) result from the calculated results are
apparent also for this second example. It underpins the fact, that packet delays have
to be linked to their corresponding packet index j.

Consequently, larger values of the finite `2 gain of the uncertainty in Figure 7.1 are
possible for the analyzed feedback structure. This implies that the stability criterion
in [KL04] has to be extended to take into account the packetized character of the
considered networked feedback loop. Thus, the specific packet skipping, packet selection
and hold mechanisms of the considered protocols introduced in Section 2.4 have to be
taken into account for the calculation of the finite `2 gain linked to the uncertainty
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Figure 7.5: Input sequence (vk) of the uncertainty (top) and output signals (wk) for a
simulation as well as using relation (7.1) for an example with protocol P1.

shown in Figure 7.1.

The uncertainty block is shown in Figure 7.6 in more detail. It consists of a discrete-

z
z−1

network

delay selector
(vk) (ak) (bk) (ck) (wk)

−

Figure 7.6: Structure of the uncertainty to be analyzed consisting of a discrete-time
integrator and a network block (blue) modeling all (delayed) packets on the way as well
as a packet selector.

time integrator with input (vk) and output (ak), and a (blue) block representing the
bounded time-varying packet delays 0 ≤ τj ≤ τ̄ . For example, an input sequence
depicted in Figure 7.7 is given as

vk =

{
1 0 ≤ k ≤ 9

0 otherwise
, (7.2)

which yields a signal (ak) such that

ak =





0 k < 0

k + 1 0 ≤ k ≤ 9

10 otherwise

(7.3)

as also visible in Figure 7.8. Individual packets containing ak are sent at time instances
k over the transmission channel subject to time delays 0 ≤ τj ≤ 3. Each packet might
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Figure 7.7: Input sequence (vk) of the uncertainty block as defined in (7.2).

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b
(0)
k = ak 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10

b
(1)
k

0 1 2 3 4 5 6 7 8 9 10 11 10 10 10 10

b
(2)
k

0 0 1 2 3 4 5 6 7 8 9 10 10 10 10 10

b
(3)
k

0 0 0 1 2 3 4 5 6 7 8 9 10 10 10 10

Figure 7.8: Possible packets on the way that contain ak for the case 0 ≤ τj ≤ 3 and
input sequence (7.2). Darker colors stand for more recent data.

be delayed by 0, 1, 2 or 3 time steps in the present example, which is is symbolized by

b
(0)
k , b

(1)
k , b

(2)
k and b

(3)
k , respectively. Hence, the table in Figure 7.8 visualizes all packets

on the way together with all possible arrival times.

The selector in Figure 7.6 implements the protocol dependent packet skipping, selection
and hold mechanism to provide sequence (ck), see Section 2.4 for details. Due to the
specific structure of the uncertainty block, the output sequence (wk) follows from

wk = ck − ak . (7.4)

The following theorem states a sufficient stability criterion that explicitly takes into
account the considered protocol by providing protocol-dependent `2 gains α.

Theorem 7.1 (Stability criterion, nominal plant [SH20, SH21b]). Consider the
networked control system in Figure 6.1 consisting of a controller (6.6) represented
by transfer function R(z), a plant P (z) (6.1) and a transmission network with
bounded time-varying packet delays as in Assumption 6.2. Let condition

∣∣∣
∣∣∣M(z)

∣∣∣
∣∣∣
∞
α =

∣∣∣∣∣

∣∣∣∣∣
R(z)P̂ (z)

1 +R(z)P̂ (z)D̂(z)

(z − 1)

z

∣∣∣∣∣

∣∣∣∣∣
∞
α < 1 (7.5)

hold for all ω ∈ [0, π/h) where α is the finite `2 gain of the uncertainty and h
represents the sampling interval. Parameter α is given depending on the network
protocol (2.38) such that

(a) for protocol P1 (skip old packets, take newest):

α = τ̄ , (7.6a)
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(b) for protocol P2 (do not skip old packets, take newest)

α = max

{√
τ̄ (14τ̄2 − 9τ̄ + 1)

6(τ̄ + 1)
, 1

}
, (7.6b)

(c) for protocol P3 (no numbering nor synchronization)

α =

√
τ̄

6
(14τ̄ + 1) . (7.6c)

Then, the networked feedback loop is finite gain `2 stable for all time-varying
bounded packet delays 0 ≤ τN ≤ τNj ≤ τ̄N and τ̄N > τN .

Proof. The proof is presented separately in Section 7.2, since it involves extensive cal-
culations for the individual protocols. �

Remark 7.2. In Theorem 7.1, the term “skip old packets” means that arriving packets
are skipped, whenever more recently sent packets are available at the receiver side. The
phrase “take newest” means that the most recent packet is selected whenever more
packets are available at the receiver side at the same time instant. Case (c) constitutes
the worst case scenario when no numbering nor synchronization is available. According
to the definition of protocol P3, any packet might be selected as stated in condition
(2.38c). Hence, gain α has to cover the worst case, which is present if the oldest available
packet is selected. This is shown in detail in the proof of Theorem 7.1 in Section 7.2.

Please note that only known information is used in (7.5) to obtain the infinity norm
of M(z). Condition (7.5) can be checked easily, e.g., using Bode magnitude plots for a
given bound τ̄ of the variable time delays. Bound τ̄ can then be increased step-by-step
to find its maximal admissible value. The application of the theorem is presented for
a feedback loop with filtered Smith predictor in simulation (Section 7.3) and using a
laboratory setup in Section 7.4.

The protocol dependent `2 gains given by Theorem 7.1 are visualized in Figure 7.9 to
point out the relation between the respective `2 gains α.

1 2 3 4 5 6 7 8 9 10
0
2
4
6
8

10
12
14
16

τ̄

α

P1

P2

P3

Figure 7.9: Comparison of the finite `2 gains as a function of the maximal admissible
time-varying delay τ̄ for the three protocols.

It is also possible to formulate Theorem 7.1 such that the discrete-time differentiator
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and the integrator shown in Figure 7.1 are removed. This yields condition

∣∣∣∣∣

∣∣∣∣∣
R(z)P̂ (z)

1 +R(z)P̂ (z)D̂(z)

∣∣∣∣∣

∣∣∣∣∣
∞
α̃ < 1 (7.7)

and, as a consequence, a different finite `2 gain α̃. However, this is limiting for the cases
where R(z) is designed such that the closed delay-free feedback loop has a dc-gain equal
to one.

The proof in Section 7.2 allows the construction of the worst case packet delay patterns,
i.e. the sequence of packet delays that lead to the largest 2-norm of the output (wk) of
the uncertainty. Figures 7.10, 7.11 and 7.12 show such sequences for the three protocols,
where the input sequence (vk) depicted in Figure 7.7 is applied to the uncertainty block
in Figure 7.1.
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Figure 7.10: Worst case packet delay pattern (top) and output sequence (wk) of the
uncertainty (bottom) for input sequence (vk) (7.2) and protocol P1.
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Figure 7.11: Worst case packet delay pattern (top) and output sequence (wk) of the
uncertainty (bottom) for input sequence (vk) (7.2) and protocol P2.
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Figure 7.12: Worst case packet delay pattern (top) and output sequence (wk) of the
uncertainty (bottom) for input sequence (vk) (7.2) and protocol P3.
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7.2 Proof of Theorem 7.1

The proof is based on the small gain theorem [KL04, Sas99], where the feedback loop
is split into a nominal part and the remaining uncertainty shown in gray and blue in
Figure 7.1, respectively.

The nominal (gray) part in Figure 7.1 with input (wk) and output (vk) can be described
by transfer function

T (z) =
Z
{

(vk)
}

Z
{

(wk)
} = − R(z)P̂ (z)D̂(z)

1 +R(z)P̂ (z)D̂(z)

z − 1

z
. (7.8)

Applying the SGT [Sas99] to the structure in Figure 7.1 yields condition (7.5), where
||D(z)||∞ = 1 was taken into account.

The `2 gains α of the uncertainty depend on the actually used protocols stated in
Definition 2.8. This is shown for all protocols P1, P2 and P3 in the subsequent sections,
where the 2-norm of output wk = ck − ak (7.4) has to be maximized for the worst
case input sequence (vk) with bounded magnitude. For that purpose, the fact that the
considered uncertainty is linear but time-varying is exploited. These properties hold for
the uncertainty in Figure 7.6 because it consists of a discrete-time integrator, a delay
block and a selector only. To find the gain α, one defines an input sequence

(vk) =
(
v0, v1, v2, . . .

)
=
(
v̄, v̄, v̄, . . .

)
(7.9)

for time instants k ∈ N and a truncation point T such that

(
vk
)
T

=
(
v0, v1, v2, . . . , vT , 0, . . .

)
(7.10)

=
(
v̄, v̄, v̄, . . . , v̄, 0, 0, . . .

)
.

Because of the discrete-time integrator in Figure 7.6, it follows that

(
ak
)
T

=
(
a0, a1, a2, . . . , aT , aT+1, . . .

)
(7.11)

=
(
v̄, 2v̄, 3v̄, . . . , (T + 1)v̄, (T + 1)v̄, . . .

)

that is directly fed to output wk (and multiplied by −1) as shown in Figure 7.6. In addi-
tion, sequence (ak) passes the blue block in Figure 7.6, which represents the transmission
network that is subject to time-varying packet delays. It comprises a transmitter as well
as a packet selection and a hold mechanism as specified in (2.38). Thus, each packet ak

might be delayed between 0 and τ̄ time steps as indicated by b
(0)
k , b

(1)
k , . . . , b

(τ̄)
k , respec-

tively. This situation with several packets “on the way” is exemplified in Figure 7.8 for
τ̄ = 3 and T = 10.

The selector in Figure 7.6 picks specific packets depending on the used protocol to
allow the computation of the output (wk), which has to be maximized with respect to
its absolute value to find the finite `2 gains stated in Theorem 7.1, i.e.

α = max
T>0

αT (7.12)

with

αT =

√√√√
∣∣∣∣(wk

)
T

∣∣∣∣2
2∣∣∣∣(vk

)
T

∣∣∣∣2
2

(7.13)
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is evaluated for all truncation points T in the following for the different protocols.

Since the goal is to maximize (wk) for a given input (vk), the number of samples
to consider has to include all samples of (wk) that are different from zero. The input
signal tends to a constant value of (T+1)v̄, i.e. after some time, only packets containing
(T + 1)v̄ can arrive at the receiver side. This implies that wk = ck − ak = 0 due to the
structure of the uncertainty in Figure 7.6.

For protocol P1, the number of samples sP1 to be considered for the calculation of the
gain is

sP1 = T + 1 + τ̄ . (7.14)

Figure 7.13a shows the corresponding packet pattern for v̄ = 1. The cells enclosed by
the gray parts represent the packets containing increasing values from 1 to T that might
be delayed between 0 and τ̄ steps. The first packet, which contains the maximal value
of T + 1 is transmitted at time instant k = T and reaches the receiver at the latest at
instant T + τ̄ . Consequently, the reception of this (blue) packet marks the end of the
interesting time interval since no overtaking of packets is allowed in protocol P1. This
yields the number of samples to be considered as stated in (7.14).

Overtaking packets are feasible for protocols P2 and P3. Hence, the packet selection
mechanism is of importance to determine the number of samples that should be used for
the analysis. The largest number of samples follows for P2 if (i) the packet containing
T is received at its latest possible time instant T + τ̄ − 1, (ii) no other, previously sent
packet arrives at the same time instant or afterwards and (iii) the (red) packet sent at
instant T + τ̄−1 reaches the receiver with the maximal admissible delay at time instant
T + 2τ̄ − 1. This implied that the number of samples to be considered for protocol P2

is given by
sP2 = T + 2τ̄ . (7.15)

See Figure 7.13b for a visualization of this scenario. Condition (ii) is necessary because
the most recent packet (containing T +1) would be selected whenever more packets are
available at one sampling instant due to the definition of protocol P2.

On the contrary, any packet might be selected for protocol P3 that does not use any
numbering of the packets. Thus, also the oldest packet (containing T ) at time instant
T + τ̄ − 1 might be selected at the receiver side although a more recently packet (con-
taining T+1) might be available. A (green) packet related to a value of T+1 is received
for sure at the latest at instant T + 2τ̄ , as depicted in Figure 7.13c. As a result

sP3 = T + 2τ̄ + 1 (7.16)

samples have to be taken into account to derive the finite `2 gain for protocol P3.
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(b) Protocol P2
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(c) Protocol P3

Figure 7.13: Length of the sequences to be considered for the derivation of the finite `2
gains for the different protocols.
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7.2.1 Protocol P1

The maximization of the absolute value of wk is done element-wise starting at k = 0.

For each time instant one has check if a certain packet “on the way” b
(j)
k should arrive

or if no packet should arrive, i.e. the hold mechanism is active such that ck = ck−1,
to maximize wk. This means that for time instant k = 0 one possibility is that packet

ak = 1 arrives without time delay, i.e. wk = b
(0)
k − ak = 0. A second possibility is

that no packet arrives, i.e. wk = ck−1 − ak = −1, as indicated in Figure 7.14. As

k −1 0 1 2 3 4 5 6 7 8 9 10 11 12

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��10 ��10 10

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��10 10

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 10

b
(3)
k �0 �0 �0 �0 1 2 3 4 5 6 7 8 9 10

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0

b
(2)
k − ak 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0

b
(3)
k − ak 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0

packet arr. yes no no no yes yes yes yes yes yes yes yes yes yes
ck 0 0 0 0 1 2 3 4 5 6 7 8 9 10

wk 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0

block A A B B B B B B B B C C 0
τj 3 3 3 3 3 3 3 3 3 3 ≥ 2 ≥ 1 ≥ 0

Figure 7.14: Protocol P1: arriving packets (represented using different colors) that lead
to the worst case gain for τ̄ = 3 and T = 9. Additionally, it shows all inner signals of
the structure in Figure 7.6 and the corresponding packet delays τj .

a consequence, the second possibility maximizes the absolute value of wk. Variable
ck−1 = 0 for k = 0 due to the assumption of vanishing initial conditions.

This approach is also applied for the remaining time instants. In addition, no overtaking
of packets is allowed for this protocol and each packet has to arrive at the latest after
τ̄ time steps due to Assumption 6.2. This leads to the worst case pattern of time
delays and a specific pattern for the arriving packets at the receiver side as illustrated
in Figure 7.14. In addition, it lists all inner signals of the uncertainty corresponding to
Figure 7.6. The time evolution of wk for the worst case τj is also shown in Figure 7.10.

The packet delays τ10, τ11 and τ12 are not uniquely defined because it does not make
any difference for the gain calculation whether this packets arrive at k = 12 or later.
Choosing different values for T result in the same worst case patterns for different
maximal delays τ̄ and truncation times T as shown in Figures 7.15, 7.16, and for more
cases in Appendix B.1.

k −1 0 1 2 3 4 5 6 7 8

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �6 �6 6

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �6 6

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 6

b
(3)
k �0 �0 �0 �0 1 2 3 4 5 6

wk 0 −1 −2 −3 −3 −3 −3 −2 −1 0
τj 3 3 3 3 3 3 ≥ 2 ≥ 1 ≥ 0

Figure 7.15: Protocol P1: packet receiving pattern for τ̄ = 3 and T = 5.
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k −1 0 1 2 3 4 5 6 7

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �6 6

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 6

b
(2)
k �0 �0 �0 1 2 3 4 5 6

wk 0 −1 −2 −2 −2 −2 −2 −1 0
τj 2 2 2 2 2 2 ≥ 1 ≥ 0

k −1 0 1 2 3 4 5 6 7 8 9 10 11

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��10 10

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 10

b
(2)
k �0 �0 �0 1 2 3 4 5 6 7 8 9 10

wk 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0
τj 2 2 2 2 2 2 2 2 2 2 ≥ 1 ≥ 0

Figure 7.16: Protocol P1: packet receiving pattern for τ̄ = 2 and T = 5 (top) and
T = 9 (bottom).

As a result, (wk) consists of three blocks marked by colors green, orange and red such
that

(wk) =
(
−v̄,−2v̄, . . . ,−(τ̄ − 1)v̄,︸ ︷︷ ︸

block A

(7.17)

−τ̄ v̄,−τ̄ v̄, . . . ,−τ̄ v̄,︸ ︷︷ ︸
block B

−(τ̄ − 1)v̄, . . . ,−2v̄,−v̄,︸ ︷︷ ︸
block C

0, 0, . . .
)
,

see also Figure 7.14. Blocks A and C consist of τ̄ − 1 samples each, block B of (T + 1 +
τ̄)− 2(τ̄ − 1) = T − τ̄ + 2 samples because the overall number of considered samples is
given by (7.14). Hence, the squared 2-norm of the output computes as

∣∣∣∣(wk
)
T

∣∣∣∣2
2

= 2
τ̄−1∑

i=1

(
i2v̄2

)
+ (T − τ̄ + 2)τ̄2v̄2

=

[
(τ̄ − 1)τ̄(2τ̄ − 1)

3
+ (T − τ̄ + 2)τ̄2

]
v̄2 (7.18)

=
τ̄

3

(
−τ̄2 + 3τ̄ + 3τ̄T + 1

)
v̄2

for (T − τ̄ + 2) ≥ 0, i.e. T ≥ τ̄ − 2. In the first line of (7.18), the first term relates
to blocks A and C; the second term to block B. The gain αT (7.13) for this worst case
setting is calculated using the squared 2-norm of the input sequence

∣∣∣∣(vk
)
T

∣∣∣∣2
2

= (1 + T )v̄2 . (7.19)

Figure 7.17 presents the calculated gains (crosses) according to (7.13) for different
maximal variable delays τ̄ and truncation times T (with T ≥ τ̄ − 2), and compares
them to actual worst case gains. Those actual values are computed by evaluating all
possible combinations of time delays τj for the considered τ̄ and T while respecting the
skipping and hold mechanisms as specified in (2.38). It can be seen that (7.17), (7.19)
and (7.12) reproduce the worst case values perfectly.

With relations (7.18) and (7.19), the finite `2 gain α follows as the upper bound of (7.12)
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Figure 7.17: Protocol P1: Comparison of actual (circles) and calculated (crosses) gains
αT for different τ̄ and T .

for T →∞ such that

α =

√
lim
T→∞

τ̄
3 (−τ̄2 + 3τ̄ + 3τ̄T + 1)

(1 + T )
(7.20)

=

√
lim
T→∞

τ̄

3

[
3τ̄ +

1− τ̄2

1 + T

]
= τ̄

as stated in (7.6a) in Theorem 7.1. In Figure 7.18, the gains αT are plotted for different
τ̄ and T (crosses) together with the finite `2 gain α (dotted lines).

100 101 102 103
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3
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T

α

τ̄ = 1

τ̄ = 2

τ̄ = 3

τ̄ = 4

τ̄ = 5

τ̄ = 6

Figure 7.18: Protocol P1: gains αT for different τ̄ and T (crosses). The associated
maximal `2 gains α are shown using dotted lines.
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7.2.2 Protocol P2

The strategy to maximize each element of (wk) automatically yields non-overtaking
packet patterns as shown in the previous subsection. It will be shown next that the
finite `2 gain is larger for the case where old packets are not skipped and overtaking of
packets is possible as defined for protocol P2 defined in (2.38b).

This means that older packets (with smaller signal values in Figure 7.8) have to be
used whenever possible to maximize wk, which is the difference between ck and ak. In
addition, the effect of newer packets (with larger signal values) should only be used
when absolutely necessary, e.g., because the maximal delay has already been reached.

k −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

b
(0)
k = ak 0 �1 �2 3 �4 �5 �6 7 �8 �9 ��10 ��10 ��10 ��10 ��10 10

b
(1)
k �0 �0 �1 2 �3 �4 �5 6 �7 �8 �9 ��10 ��10 ��10 ��10 10

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��10 ��10 10

b
(3)
k �0 �0 �0 �0 1 �2 �3 4 5 �6 �7 8 9 10 10 10

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0

b
(2)
k − ak 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0 0

b
(3)
k − ak 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0 0 0

packet arr. yes no no yes yes no no yes yes no no yes yes yes yes yes
ck 0 0 0 3 1 1 1 7 5 5 5 8 9 10 10 10

wk 0 −1 −2 0 −3 −4 −5 0 −3 −4 −5 −2 −1 0 0 0

block A A B1 B1 B1 B1 B2 B2 B2 B2 C C C C C
τj 3 1 0 3 3 1 0 3 3 3 ≥ 2 ≥ 1 ≥ 0 ≥ 0 ≥ 0

Figure 7.19: Protocol P2: arriving packets (represented using different colors) that lead
to the worst case gain for τ̄ = 3 and T = 9. Additionally, it shows all inner signals of
the structure in Figure 7.6 and the corresponding packet delays τj .

Figure 7.19 shows an example for 0 ≤ τj ≤ 3, T = 9 and v̄ = 1. Packet ak = 0 = ck
has been already received due to the assumption about the initial conditions. This
value ck = 0 has to be kept as long as possible to create the largest distance ck − ak.
Consequently, no packets should arrive in the next time steps. However, packet ak = 1
has to arrive at k = 3 at the latest which results in ck = 1. This second smallest possible
value should be kept constant as long as possible. This follows if packets ak = 2 and
ak = 3 already arrive at time instant k = 2 as shown in Figure 7.19. The most recent
packet, i.e. ak = 3, is selected as requested for protocol P2.

By continuing this approach for all subsequent time instants, a repeating pattern (see,
e.g., columns k = 4 to k = 7 in Figure 7.19) for the order of arriving packets can be
constructed. The delays for the last τ̄ time instants are only lower bounded because of
the same reason as in the case where old packets are skipped in protocol P1. Packets
ak = 2, ak = 4, and ak = 6 are never selected at (ck). The resulting worst case packet
delays τj and the corresponding output sequence (wk) are depicted in Figure 7.11.

Figures 7.20 and 7.21 illustrate examples for resulting packet patterns for different
values of T and τ̄ = 3 as well as for τ̄ = 2. More examples of packet patterns for this
protocol can be found in Appendix B.2.

Based on that, the worst case output sequence consists of at most four parts A, B, C
and D, which are marked in the colors green, orange, blue and red in Figures 7.19 to
7.21 and Figures B.5 to B.8 in Appendix B.2. Please note that part C (blue) is not
present for all combinations of τ̄ and T . The number of samples to be considered in
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k −1 0 1 2 3 4 5 6 7 8 9 10

b
(0)
k = ak 0 �1 �2 3 �4 �5 �6 �6 �6 6 6 6

b
(1)
k �0 �0 �1 2 �3 �4 �5 �6 �6 6 6 6

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 6 6 6

b
(3)
k �0 �0 �0 �0 1 �2 �3 4 5 6 6 6

wk 0 −1 −2 0 −3 −4 −5 −2 −1 0 0 0
τj 3 1 0 3 3 3 ≥ 2 ≥ 1 ≥ 0 ≥ 0 ≥ 0

Figure 7.20: Protocol P2: packet receiving pattern for τ̄ = 3 and T = 5.

k −1 0 1 2 3 4 5 6 7 8

b
(0)
k = ak 0 �1 2 �3 �4 �5 �6 �6 6 6

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 6 6

b
(2)
k �0 �0 �0 1 �2 3 4 5 6 6

wk 0 −1 0 −2 −3 −2 −2 −1 0 0
τj 2 0 2 2 2 2 ≥ 1 ≥ 0 ≥ 0

k −1 0 1 2 3 4 5 6 7 8 9 10 11 12

b
(0)
k = ak 0 �1 2 �3 �4 5 �6 �7 8 �9 ��10 ��10 10 10

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 10 10

b
(2)
k �0 �0 �0 1 �2 3 4 �5 6 7 �8 9 10 10

wk 0 −1 0 −2 −3 0 −2 −3 0 −2 −3 −1 0 0
τj 2 0 2 2 0 2 2 0 2 2 ≥ 1 ≥ 0 ≥ 0

Figure 7.21: Protocol P2: packet receiving pattern for τ̄ = 2 and T = 5 (top) and
T = 9 (bottom).

the analysis is T + 2τ̄ as stated in (7.15). Block A (green) consists of τ̄ − 1 samples.
The remaining (T + 2τ̄)− (τ̄ − 1) = T + τ̄ + 1 samples are split into k1 (orange) blocks
B with length τ̄ + 1, k3 (blue) blocks C and one (red) block D at the end.

Parameter k1 is obtained by subtracting τ̄ + 1 from T + τ̄ + 1 until the remainder has
a length ≤ 3τ̄ . This yields a remaining part with length k2 = T + τ̄ + 1 − k1(τ̄ + 1).
Parameter k3 follows by subtracting τ̄ +1 from k2 as long as k2 ≥ 6. The resulting part
D has length k2 − k3(τ̄ + 1). Consequently, the squared 2-norm of (wk) is given by

∣∣∣∣(wk
)
T

∣∣∣∣2
2

=

τ̄−1∑

i=1

i2v̄2

︸ ︷︷ ︸
A

+

k1−1∑

j=0

{
2τ̄−1+j(τ̄+1)∑

i=τ̄+j(τ̄+1)

(
ai − aj(τ̄+1)

)2
}

︸ ︷︷ ︸
B

+ (7.21)

k1+k3−1∑

j=k1

{
2τ̄−1+j(τ̄+1)∑

i=τ̄+j(τ̄+1)

(
ai − aj(τ̄+1)

)2
}

︸ ︷︷ ︸
C

+

T+2τ̄−1∑

i=τ̄−1+(k1+k3)(τ̄+1)

(ai − ai−τ̄ )2

︸ ︷︷ ︸
D

where the contribution of the individual blocks is indicated. The corresponding se-
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quence of worst case packet delays is

(τj) =
(
τ̄ , τ̄ − 2, τ̄ − 3, . . . , 1,︸ ︷︷ ︸

τ̄−1 elements

0, τ̄ , τ̄ , τ̄ − 2, τ̄ − 3, . . . , 1,︸ ︷︷ ︸
τ̄+1 elements

. . .

︸ ︷︷ ︸
k1−1 blocks

, 0, τ̄ , τ̄ , . . .
)

(7.22)

for the case without block C present, i.e. k3 = 0 , and

(τj) =
(
τ̄ , τ̄ − 2, τ̄ − 3, . . . , 1,︸ ︷︷ ︸

τ̄−1 elements

0, τ̄ , τ̄ , τ̄ − 2, τ̄ − 3, . . . , 1,︸ ︷︷ ︸
τ̄+1 elements

. . .

︸ ︷︷ ︸
k1 blocks

, 0, τ̄ , τ̄ , . . .
)

(7.23)

with block C as, e.g., in Figure B.6 for T = 8 and τ̄ = 3. Please note that k1−1 and k1

repeating blocks are used after the introductory part A with τ̄ − 1 elements in (7.22)
and (7.23), respectively.

Subsequently, relations (7.21), (7.19) and (7.13) are employed to get gain αT that is
plotted using plus signs in Figure 7.22 for different τ̄ and T (with T ≥ 3). It clearly

2 4 6 8 10 12 14 16 18 20

2

3

4

5

T

α
T

τ̄ = 2 τ̄ = 3 τ̄ = 4 τ̄ = 5

Figure 7.22: Protocol P2: Comparison of actual (circles) and calculated (plus signs)
gains αT for different τ̄ and T .

points out that the derived relations (plus signs) for αT correctly reproduce the actual
gain values (circles), which are again found through direct calculations for all possible
combinations of individual packet delays. Please note that the case τ̄ = 1 is not
considered here because overtaking of packets cannot occur for this maximal variable
time delay and P1 already yields the worst case gain. Also note that αT as a function
of T is not monotonically increasing as for protocol P1.

The finite `2 gain α is found for T →∞ or equivalently k1 →∞ such that

α =

√
lim
T→∞

A+B + C +D

(1 + T )v̄2
, (7.24)

where A, B, C and D correspond to the individual contributions of the blocks to the
squared 2-norm of (wk). The element-wise squared sequences of the k1 = T+1

τ̄+1 blocks
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B are given by (
τ̄2v̄2, (τ̄ + 1)2v̄2, (τ̄ + 2)2v̄2, . . . , (2τ̄ − 1)2v̄2

)
, (7.25)

with a corresponding 2-norm of one B block such that

d =
τ̄∑

i=1

(
(τ̄ − 1) + i

)2
v̄2 =

τ̄

6

(
14τ̄2 − 9τ̄ + 1

)
v̄2 . (7.26)

The contribution of blocks A, C and D to (7.24) only depend on τ̄ , whereas the contri-
bution of block B = k1d also depends on T . As direct consequence, it follows that

α =

√

lim
T→∞

A+ T+1
τ̄+1 d+ C +D

(1 + T )
=

√
d

τ̄ + 1
(7.27)

with d as in (7.26), and thus condition (7.6b) stated in Theorem 7.1. Figure 7.23

100 101 102 103
1

2

3

4

5

6

T

α

τ̄ = 2

τ̄ = 3

τ̄ = 4

τ̄ = 5

Figure 7.23: Protocol P2: gains αT for different τ̄ and T (plus signs). The associated
maximal `2 gains α are shown using dotted lines.

presents the derived gains αT (plus signs) together with the corresponding `2 gains (7.6b)
(dotted lines) for a larger range of truncation times T and maximal time-varying delays
τ̄ ∈ {2, 3, 4, 5}. Please note that the first element in Figure 7.23 is calculated using the
conditions above, which are actually defined for T ≥ 3. It differs from the first element
in Figure 7.22, which follows from the direct iteration of all possible combinations of
packet delays. This emphasizes the fact that the conditions derived in this section re-
produce gain αT for T ≥ 3 (see Figure 7.22). For smaller values of T , the delay pattern
from protocol P1 may lead to larger values for αT . However, mathematical relations for
T ≥ 3 are sufficient for the calculation of the finite `2 gain, which follows for T → ∞,
as shown in Figure 7.23.
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7.2.3 Protocol P3

The maximal number of samples to consider for protocol P3 is T + 2τ̄ + 1 as stated in
(7.16) because they contribute to wk = ck − ak. To show that the worst case `p gain
of the uncertainty is (7.6c), one has to maximize the squared 2-norm of output (wk),
while taking into account (2.38c). All initial conditions, as, e.g., ck for k = −1, are
assumed to be zero.

Due to the fact that (ak) is monotonically increasing and the difference between ck and
ak is used to get wk, the worst case sequence (wk) follows if one selects the packets
containing the smallest ck and keep them as long as possible, utilizing the hold mech-
anism. This can be clearly seen using, for example, τ̄ = 3 and T = 9 as in Figure 7.24.
Sample a0 = 1 is received at the latest possible time instant k = τ̄ = 3, which yields

k −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b
(0)
k = ak 0 �1 �2 �3 4 �5 �6 �7 8 �9 ��10 ��10 10 ��10 ��10 ��10 10

b
(1)
k �0 �0 �1 �2 3 �4 �5 �6 7 �8 �9 ��10 10 ��10 ��10 ��10 10

b
(2)
k �0 �0 �0 �1 2 �3 �4 �5 6 �7 �8 �9 10 ��10 ��10 ��10 10

b
(3)
k �0 �0 �0 �0 1 �2 �3 �4 5 �6 �7 �8 9 ��10 ��10 ��10 10

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

b
(2)
k − ak 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0 0 0

b
(3)
k − ak 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0 0 0 0

packet arr. yes no no no yes no no no yes no no no yes no no no yes
ck 0 0 0 0 1 1 1 1 5 5 5 5 9 9 9 9 10

wk 0 −1 −2 −3 −3 −4 −5 −6 −3 −4 −5 −5 −1 −1 −1 −1 0

block A A A B B B B C C C C C C C C D

τj 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

Figure 7.24: Protocol P3: arriving packets (represented using different colors) that lead
to the worst case gain for τ̄ = 3 and T = 9. Additionally, it shows all inner signals of
the structure in Figure 7.6 and the corresponding packet delays τj .

ck = b
(3)
k −ak = 1 for k = 3. No packet has to arrive for k = 0, 1, 2 to maximize (wk). In

addition, c3 = 1 has to be hold as long as possible, i.e. until the next packet has to ar-
rive due to Assumption 6.2. This means, that no packet should arrive at time instants
k = 4, 5, 6 and a4 = 5 is selected at time instant k = 7. Consequently, the packets
containing a1 = 2, a2 = 3 and a3 = 4 have to be discarded, which is only possible if
they arrive at k = 3 and are not selected at this time instant, see Figure 7.24. Next,
c7 = 5 has to be kept as long as possible until packet a8 = 9 is selected at k = 11. The
entire pattern of received packets, all packets “on the way”, the resulting worst case
sequence (wk) and the corresponding packet delays τj are depicted in Figure 7.24.

k −1 0 1 2 3 4 5 6 7 8 9 10 11

b
(0)
k = ak 0 �1 �2 �3 4 �5 �6 �6 6 �6 �6 �6 6

b
(1)
k �0 �0 �1 �2 3 �4 �5 �6 6 �6 �6 �6 6

b
(2)
k �0 �0 �0 �1 2 �3 �4 �5 6 �6 �6 �6 6

b
(3)
k �0 �0 �0 �0 1 �2 �3 �4 5 �6 �6 �6 6

wk 0 −1 −2 −3 −3 −4 −5 −5 −1 −1 −1 −1 0
τj 3 2 1 0 3 2 1 0 3 2 1 0

Figure 7.25: Protocol P3: packet receiving pattern for τ̄ = 3 and T = 5.

Figures 7.25 and 7.26 present the worst case patterns of arriving packets for the cases
with different τ̄ and T . The results for other truncation times T can be found in
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k −1 0 1 2 3 4 5 6 7 8 9

b
(0)
k = ak 0 �1 �2 3 �4 �5 6 �6 �6 6 �6

b
(1)
k �0 �0 �1 2 �3 �4 5 �6 �6 6 �6

b
(2)
k �0 �0 �0 1 �2 �3 4 �5 �6 6 �6

wk 0 −1 −2 −2 −3 −4 −2 −2 −2 0 0
τj 2 1 0 2 1 0 2 1 0 2

k −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

b
(0)
k = ak 0 �1 �2 3 �4 �5 6 �7 �8 9 ��10 ��10 10 ��10 ��10

b
(1)
k �0 �0 �1 2 �3 �4 5 �6 �7 8 �9 ��10 10 ��10 ��10

b
(2)
k �0 �0 �0 1 �2 �3 4 �5 �6 7 �8 �9 10 ��10 ��10

wk 0 −1 −2 −2 −3 −4 −2 −3 −4 −2 −3 −3 0 0 0
τj 2 1 0 2 1 0 2 1 0 2 1 0 2 1

Figure 7.26: Protocol P3: packet receiving pattern for τ̄ = 2 and T = 5 (top) and
T = 9 (bottom).

Appendix B.3 for τ̄ = 3 and τ̄ = 2.

The worst case sequence (wk) consists of maximal four different blocks A, B, C and D
as indicated in the figures using different colors as, e.g. in Figure 7.24. The worst case
pattern consists of a (green) introductory part A consisting of τ̄ samples, followed by
the remaining T + τ̄ + 1 samples that are split into several parts. First, the k1 (orange)
blocks B with length τ̄ + 1 are separated from the rest to get ≤ 3τ̄ remaining samples.
This rest with k2 elements is split into a (blue) block C with length

k3 =

⌊
k2

τ̄ + 1

⌋
, (7.28)

which represents the largest integer smaller than k2
τ̄+1 , and a (red) block D with k2 −

k3(τ̄ + 1) elements. Note that the last element is always equal to zero. Based on
this splitting into four parts, one can formalize the 2-norm of the truncated worst case
sequence such that

∣∣∣∣(wk
)
T

∣∣∣∣2
2

=

τ̄∑

i=1

i2v̄2

︸ ︷︷ ︸
A

+

k1−1∑

j=0

{
2τ̄+j(τ̄+1)∑

i=τ̄+j(τ̄+1)

(
ai − aj(τ̄+1)

)2
}

︸ ︷︷ ︸
B

+ (7.29)

k1+k3−1∑

j=k1

{
2τ̄+j(τ̄+1)∑

i=τ̄+j(τ̄+1)

(
ai − aj(τ̄+1)

)2
}

︸ ︷︷ ︸
C

+

T+2τ̄∑

i=τ̄+(k1+k3)(τ̄+1)

(
ai − aτ̄+(k1+k3)(τ̄+1)

)2

︸ ︷︷ ︸
D

with the underlying worst case packet delay pattern

(τj) =
(
τ̄ , τ̄ − 1, τ̄ − 2, . . . , 0,︸ ︷︷ ︸

τ̄+1 elements

τ̄ , τ̄ − 1, τ̄ − 2, . . . , 0,︸ ︷︷ ︸
τ̄+1 elements

. . .
)
. (7.30)
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Next, the gain αT is calculated for different τ̄ and T following the steps described for
protocols P1 and P2. Figure 7.27 compares calculated values for αT (stars) with the
actual results, which are obtained by evaluating the effect of all possible combinations
of bounded packet delays τj indicated using circles. The derived relations allow to

2 4 6 8 10 12 14 16 18 20

2

3

4

5

6

T

α
T

τ̄ = 2 τ̄ = 3 τ̄ = 4 τ̄ = 5

Figure 7.27: Protocol P3: Comparison of actual (circles) and calculated (stars) gains
αT for different τ̄ and T .

correctly reproduce the accurate results from direct iterations and, thus, provide the
basis for the derivation of the finite `2 gain α (7.12). The limit of αT for T → ∞ is
computed using ||(wk)T ||22 = A+B+C+D, where the part corresponding to B consists
of k1 blocks of the form

(
− τ̄ v̄,−(τ̄ + 1)v̄,−(τ̄ + 2)v̄ . . . ,−2τ̄ v̄

)
(7.31)

with τ̄ + 1 samples each. One of these blocks B contributes to the overall 2-norm of
(wk)T with

d =
τ̄+1∑

i=1

(
(τ̄ − 1) + i

)
v̄2

=
τ̄+1∑

i=1

(
(τ̄ − 1)2 + 2(τ̄ − 1)i+ i2

)
v̄2

=

(
(τ̄ − 1)2

τ̄+1∑

i=1

1 + 2(τ̄ − 1)
τ̄+1∑

i=1

i+
τ̄+1∑

i=1

i2

)
v̄2

=
τ̄ + 1

6

(
14τ̄2 + τ̄

)
v̄2 . (7.32)

leading to
∣∣∣∣(wk

)
T

∣∣∣∣2
2

= A+
T + 1

τ̄ + 1
d+ C +D , (7.33)

where blocks A, C and D are constant with respect to T . Consequently, one gets

α2
T =

A+ T+1
τ̄+1 d+ C +D

1 + T
=
A+ C +D

1 + T
+

d

1 + T
(7.34)
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and thus

α = lim
T→∞

αT =

√
d

τ̄ + 1
=

√
14τ̄2

6
+
τ̄

6
, (7.35)

which is equivalent to (7.6c) in Theorem 7.1. Figure 7.28 depicts the gains αT for a
larger range of truncation times T and maximal time-varying delays τ̄ ∈ {2, 3, 4, 5}.
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τ̄ = 4

τ̄ = 5

Figure 7.28: Protocol P3: gains αT for different τ̄ and T (stars). The associated
maximal `2 gains α are shown using dotted lines.

A comparison of all three protocols is presented in Figure 7.29 to emphasize the relations
of the corresponding `2 gains for P1, P2 and P3.

This completes the proof. �
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1
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T

α

τ̄ = 2

τ̄ = 3

τ̄ = 4

τ̄ = 5

Figure 7.29: Comparison of the gains αT for different τ̄ and T as well as the corre-
sponding `2 gains (dotted lines) for all three protocols: P1 (crosses), P2 (plus signs)
and P3 (stars).
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7.3 Simulation Example

Theorem 7.1 is now applied to the feedback loop with Smith predictor, which was
introduced in Chapter 1 and Chapter 6. Hence, condition (7.5) is evaluated with R(z)
as defined in (6.8) and

D̂(z) = z−d̂ . (7.36)

The finite `2 gains α are a function of the maximal admissible variable time delays τ̄
and depend on the actual protocol as stated in (7.6). Figures 7.30, 7.31 and 7.32 present
the corresponding magnitude plots of M(z)α for protocols P1, P2 and P3, respectively.
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Figure 7.30: Simulation example: Bode magnitude plots of M(z)α in condition (7.5)
for protocol P1.

Since the magnitude plot has to remain below the zero dB line, one gets a maximal
time-varying delay of:

(a) τ̄ = 4 for protocol P1 (orange curve in Figure 7.30),

(b) τ̄ = 3 for protocol P2 (green curve in Figure 7.31),

(c) τ̄ = 2 for protocol P3 (red curve in Figure 7.32).

It is evident, that an increased `2 gain decreases the maximal admissible τ̄ .

Figure 7.33 shows the achieved step responses for changes in the reference signal (rk)
of the networked filtered Smith predictor in closed loop with the plant including a
nominal delay of d̂ = 5 and with the worst case pattern τj for protocol P3 as shown
in Figure 7.12. Two different scenarios are chosen for P3 such that either the packet
leading to the worst case or a random packet is selected whenever more packets are
available at the same time instant.

Please note that Theorem 7.1 provides a more restrictive bound on the time-varying de-
lays when compared to Theorem 6.3. However, the packetized character of the network
transmissions is explicitly incorporated into Theorem 7.1 to prevent contradictions be-
tween the theoretical statements and actual results for the networked feedback loops if
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Figure 7.31: Simulation example: Bode magnitude plots of M(z)α in condition (7.5)
for protocol P2.
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Figure 7.32: Simulation example: Bode magnitude plots of M(z)α in condition (7.5)
for protocol P3.

different protocols are utilized. This is not the case for the LMI-based Theorem 6.3 as
can be seen in the simulation example in Section 6.2.2.
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Figure 7.33: Simulation example: step responses of the closed networked loop as in
Figure 6.3 for different protocols (2.38) and a network induced packet pattern as in
Figure 7.12 with τ̄ = 2.

7.4 Laboratory Experiment

The application of Theorem 7.1 is also shown using a real-world laboratory experiment
presented in Figure 7.34. It consists of a dc-motor that winds up a cord, which is fixed

Figure 7.34: Photo and schematic structure of the laboratory setup (form [LRSH19]).

at the left hand side of a spring with spring constant c. The other side of the spring is
attached to another cord that is connected via a pulley with a viscous friction coefficient
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v to a mass m.

The application of an input voltage −5V ≤ u(t) ≤ 5V to the motor allows to lift the
mass in y-direction as indicated in Figure 7.34. Due to a low level motor controller, the
position z(t) at the left hand side of the spring is proportional to the integral of input
u via constant V . Newton’s second law of motion yields a mathematical model of the
considered mass spring system as

dx(t)

dt
=




0 1 0
− c
m − v

m
c
m

0 0 0


x(t) +




0
0
V


u(t) , (7.37)

with state variables z(t), y(t) and ẏ(t), i.e.

x =
[
y dy

dt z
]T

. (7.38)

The output variable is defined as the vertical mass position y(t). The mass of m =
0.19 kg was measured; all other parameters were identified using experimental data and
are given by V = 0.2702mV −1s−1, c = 5.4285Nm−1 and v = 0.0489 kgs−1. In addi-
tion, a nominal plant delay of five time steps, i.e. d̂ = 5 is introduced. Matlab/Simulink
[MAT] with the additional control software QUARC [QUA] is utilized to connect the
lab setup to the computer, where the introduced filtered Smith predictor structure is
implemented with a sampling interval of h = 0.1 s.

To be able to introduce network induced packed delays in a reproducible way (for
all protocols), the simulation framework presented in Chapter 3 is put to use in the
laboratory. A nominal controller is designed for the nominal, delay-free, discretized
plant

P̂ (z) =
0.0012604 (z + 3.647) (z + 0.2707)

(z − 1) (z2 − 1.699z + 0.9746)
(7.39)

such that its weakly damped conjugate complex poles are compensated and replaced
by desired ones. This yields the nominal controller

C(z) =
18.652(z2 − 1.699z + 0.9746)

(z − 0.3012)2
, (7.40)

which leads to the step response of the nominal closed loop as in Figure 7.35.

The remaining transfer functions F (z) and H(z) needed for the filtered Smith predictor
follow from (6.9), (6.10) and (6.11) such that

F (z) =
1.5

(z + 0.5)
(7.41)

and

H(z) =
0.0012604 (z + 1.174) (z + 3.647) (z + 0.2707)

(
z2 + 1.248z + 1.217

)

z5 (z + 0.5)

·
(
z2 − 0.9216z + 1.05

)

(z2 − 1.699z + 0.9746)
. (7.42)

Details about the design can be found in Appendix A.
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Figure 7.35: Experiment: nominal step response (bottom plot, blue) to reference input
(rk) (black) and the corresponding actuating signal (uk) (top).

Theorem 7.1 is evaluated in the next step to find the maximal admissible bound τ̄ for
the time-varying packet delays τj . Figures 7.36 and 7.37 reveal that

(a) τ̄ = 2 for protocol P1 (red curve in Figure 7.36),

(c) τ̄ = 1 for protocol P3 (blue curve in Figure 7.37).

Case (b), i.e. protocol P2, is not considered here because it represents an intermediate
case with respect to the corresponding finite `2 gain.

Figure 7.38 show measurement results of step responses, where different τ̄ are used. As
shown in Section 7.1, constant packet delays constitute the worst case scenario for P1

and are, thus, realized for this experiment. Larger variable time delays degrade the
closed loop performance when compared to the nominal behavior in Figure 7.35 and
lead to instability for τ̄ = 3, as foreseen by Theorem 7.1.

An evaluation of Theorem 7.1 suggests that the maximal admissible, stabilizing network
delay is given by τ̄ = 1 for protocol P3. The corresponding worst case sequence (shown
in Figure 7.12) is utilized for the experiments in this case. However, the output (yk)
converges to its desired value in Figure 7.39 for τ̄ = 2 as well. An enlarged value
of τ̄ = 3 results in an unstable behavior. Please note that the introduced theorem
is sufficient and therefore might lead to conservative results as for the experimental
setup for protocol P3. A strategy to reduce the introduced conservatism is proposed in
Chapter 8.
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Figure 7.36: Experiment: Bode magnitude plots of M(z)α in condition (7.5) for pro-
tocol P1
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Figure 7.37: Experiment: Bode magnitude plots of M(z)α in condition (7.5) for pro-
tocol P3
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Figure 7.38: Experiment: step responses (yk) and actuating signals (uk) for different
maximal admissible τ̄ utilizing protocol P1.
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Figure 7.39: Experiment: step responses (yk) and actuating signals (uk) for different
maximal admissible τ̄ utilizing protocol P3.
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7.5 SGT-based Stability Criterion for uncertain Plants

The stability criterion introduced in Section 7.1 is extended in the following to uncertain
plant models. For that purpose, the plant model (6.1) is modified to account for
uncertainties such that

P (z) = P̂ (z)z−d̂
(
1 + δP

)
, (7.43)

consists of a nominal, delay-free part P̂ (z), a nominal constant time delay d̂ and a
multiplicative uncertainty represented by δP .

The underlying stability analysis is then based on the block diagram in Figure 7.40,
which is a modification of the structure shown in Figure 7.1. Using sequences (eP,k),

plant
uncertainty

R(z) P̂ (z) D̂(z)

δP (z)

z−1
z

(y2,k),(eP,k) (yP,k),(e1,k)

−

network uncertainty

z
z−1

τj

(eτ,k)

(y1,k)

(ak)

(ck)

(yτ,k)

(e2,k)

−

Figure 7.40: Decomposition of the networked feedback loop into a nominal part (gray),
one uncertainty related to time-varying packet delays (blue) and a second block δP
accounting for plant uncertainties (green).

(yP,k) as well as (eτ,k), (yτ,k), Figure 7.40 can be drawn as depicted in Figure 7.41.
Additional input signals (u1,k), (u2,k), (uP,k) and (uτk) are introduced and exploited in

∆P nominal
∆τ

(yP,k)

(u1,k)

(e1,k)

(eP,k)

(uP,k)

(y2,k)

(eτ,k)

(uτ,k)

(y1,k)

(yτ,k)

(u2,k)

(e2,k)

αP ατα12 α21

α11

α22

Figure 7.41: Three block structure consisting of a nominal block (gray), a block ∆P

representing the plant uncertainties (green) and a block ∆τ including the networked
induced variable packet delays (blue).

the proof of the following theorem. Parameters α stand for the various `2 gains between
different inputs and outputs of the three considered blocks.
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Theorem 7.3 (Stability criterion, uncertain plant [SH20]). Let the same assump-
tions hold as in Theorem 7.1 except that plant model (7.43) is uncertain and∣∣∣∣δP

∣∣∣∣
∞ ≤ αP > 0. In addition, conditions

αPα12 +
αPατα11α22

1− ατα21
< 1 , ατα21 < 1 (7.44a)

ατα21 +
αPατα11α22

1− αPα12
< 1 , αPα12 < 1 (7.44b)

hold, where

α11 =

∣∣∣∣
∣∣∣∣Ŝ(z)

(z − 1)

z

∣∣∣∣
∣∣∣∣
∞
, α12 =

∣∣∣
∣∣∣T̂ (z)

∣∣∣
∣∣∣
∞

(7.45a)

α21 =

∣∣∣∣
∣∣∣∣T̂ (z)

(z − 1)

z

∣∣∣∣
∣∣∣∣
∞
, α22 =

∣∣∣
∣∣∣T̂ (z)

∣∣∣
∣∣∣
∞

(7.45b)

T̂ (z) =
R(z)P̂ (z)

1 +R(z)P̂ (z)
, S(z) =

1

1 +R(z)P̂ (z)
(7.45c)

as shown in Figure 7.41. Parameter ατ equals α from (7.6), depending on the
chosen protocol (2.38).

Then, the feedback loop in Figure 6.1 consisting of a linear controller R(z), the
uncertain plant (7.43) and the packetized transmission network is finite gain `2
stable for all time-varying bounded packet delays 0 ≤ τN ≤ τNj ≤ τ̄N and τ̄N > τN .

Proof. The proof follows the same main idea that is usually used to prove the SGT, see,
e.g., [Sas99]. Hence, the structure in Figure 7.41 is analyzed using the corresponding
`2 gains. It is shown that all signals in this three-block structure are bounded as long
as all input signals are bounded. The plant uncertainty and the uncertainty due to the
time-varying packet delays can be cast into a form as in Definition 6.7 such that

∣∣∣∣(yP,k
)
T

∣∣∣∣
2
≤ αP

∣∣∣∣(eP,k
)
T

∣∣∣∣
2

+ βP , (7.46a)
∣∣∣∣(yτ,k

)
T

∣∣∣∣
2
≤ ατ

∣∣∣∣(eτ,k
)
T

∣∣∣∣
2

+ βτ (7.46b)

hold. Due to linearity, the input-output behavior of the nominal block in Figure 7.41
can be written as

∣∣∣∣(y1,k

)
T

∣∣∣∣
2
≤ α11

∣∣∣∣(e1,k

)
T

∣∣∣∣
2

+ β11 + α21

∣∣∣∣(e2,k

)
T

∣∣∣∣
2

+ β21 , (7.47a)
∣∣∣∣(y2,k

)
T

∣∣∣∣
2
≤ α12

∣∣∣∣(e1,k

)
T

∣∣∣∣
2

+ β12 + α22

∣∣∣∣(e2,k

)
T

∣∣∣∣
2

+ β22 . (7.47b)

To prove Theorem 7.3, one has to show that all inner signals, as e.g. e1,k = u1,k + yP,k,
are bounded. Thus, taking into account (7.46a) yields

∣∣∣∣(e1,k

)
T

∣∣∣∣
2
≤
∣∣∣∣(u1,k

)
T

∣∣∣∣
2

+ αP
∣∣∣∣(eP,k

)
T

∣∣∣∣
2

+ βP (7.48)

and relation eP,k = uP,k + y2,k results in

∣∣∣∣(eP,k
)
T

∣∣∣∣
2
≤
∣∣∣∣(uP,k

)
T

∣∣∣∣
2

+ α12

∣∣∣∣(e1,k

)
T

∣∣∣∣
2

+ β12 + α22

∣∣∣∣(e2,k

)
T

∣∣∣∣
2

+ β22 . (7.49)
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Incorporating e2,k = u2,k + yτ,k and eτ,k = uτ,k + y1,k together with relations (7.46b)
and (7.47a) yields

∣∣∣∣(e2,k

)
T

∣∣∣∣
2

(1− ατα21) ≤ δ1 + ατα11

∣∣∣∣(e1,k

)
T

∣∣∣∣
2

(7.50)

with

δ1 =
∣∣∣∣(u2,k

)
T

∣∣∣∣
2

+ ατ
∣∣∣∣(uτ,k

)
T

∣∣∣∣
2

+ βτ + ατ (β11 + β21) (7.51)

and so ∣∣∣∣(e1,k

)
T

∣∣∣∣
2

(
1− αPα21 −

αPατα11α22

1− ατα21

)
≤ δ2 (7.52)

where

δ2 =
∣∣∣∣(u1,k

)
T

∣∣∣∣
2

+ βP + αP

(∣∣∣∣(uP,k
)
T

∣∣∣∣
2

+ β12 + β22 +
α22δ1

1− ατα21

)
. (7.53)

As a result, error (e1,k) is norm-bounded for bounded input signals ||(u1,k)T ||2, ||(u2,k)T ||2,
||(uP,k)T ||2 and ||(uτ,k)T ||2 if

1− αPα21 −
αPατα11α22

1− ατα21
> 0 for 1− ατα21 > 0 (7.54)

that constitute condition (7.44a) in Theorem 7.3. Analogue steps are followed to show
that the remaining ||(ei,k)T ||2 and ||(yi,k)||2, i ∈ {1, 2, P, τ}, are bounded for bounded
inputs ||(ui,k)||2.

The gains α11, α12, α21 and α22 (7.45) directly follow by computing the transfer func-
tions corresponding to Figure 7.40. This completes the proof. �

Please note that conditions (7.44) and (7.45) collapse to condition (7.5) of Theorem 7.1
for the case without uncertainties in the plant, i.e. δP = 0, or equivalently, αP = 0.

Note that conditions (7.44), (7.45) reduce to the classical formulation of the SGT pre-
sented in [Sas99] applied to the filtered Smith predictor if no network with time-varying
packet delays is present. In this case, the blue block in Figure 7.40 representing the
uncertainty due to the variable time delay is replaced by a direct connection resulting
in ατ = 0.

7.6 Simulation example with uncertain Plant Model

Theorem 7.3 is now applied to the simulation example with filtered Smith predictor
that is used for a known plant model, i.e. δP = 0, in Section 7.3. Therefore, the
original, continuous-time plant model

P (s) =
0.1

20s− 1
e−5s . (7.55)

is considered as uncertain in either the gain K = 0.1 or in the time constant T = 20.
This means that, e.g., the gain K is multiplied by a factor 0.8 ≤ f ≤ 1.2 in the analysis
resulting in different transfer functions P (z) such that the plant uncertainty

δP (z) =
P (z)

P̂ (z)
− 1 (7.56)
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describes the deviation from the nominal plant transfer function P (z) to determine gain
αP for the analysis.

For the filtered Smith predictor with

R(z) =
C(z)F (z)

1 + C(z)H(z)
(7.57)

as defined in (6.8), conditions (7.45) turn into

α11 =

∣∣∣∣
∣∣∣∣Ŝ(z)

(z − 1)

z

∣∣∣∣
∣∣∣∣
∞
, α12 =

∣∣∣
∣∣∣F (z)T̂ (z)

∣∣∣
∣∣∣
∞

(7.58a)

α21 =

∣∣∣∣
∣∣∣∣F (z)T̂ (z)

(z − 1)

z

∣∣∣∣
∣∣∣∣
∞
, α22 =

∣∣∣
∣∣∣F (z)T̂ (z)

∣∣∣
∣∣∣
∞

(7.58b)

with

T̂ (z) =
C(z)P̂ (z)

1 + C(z)P̂ (z)
F (z) and Ŝ(z) =

1 + C(z)H(z)

1 + C(z)P̂ (z)
, (7.59)

where the fact that ||D̂(z)|| = 1 is taken into account. Figure 7.42 presents the maxi-
mal τ̄ for the three considered protocols, where a multiplicative factor out of the range
between 0.8 and 1.2 is chosen. It can be clearly seen that the achieved shape is sym-
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0
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τ̄

P1 P2 P3

Figure 7.42: Example with uncertain plant model: maximal admissible variable time
delay τ̄ for different multiplicative factors for the gain and different protocols.

metric around the nominal gain value. Protocol P1 yields the largest range for the
time varying network delays, whereas P3 yields the smallest values τ̄ , i.e. the largest
sensitivity with respect to time-varying delays.

The results for the case with uncertain information of the time constant T is shown in
Figure 7.43 for multiplicative factors between 0.8 and 1.2. In contrast to the variation
of the gain, a variation of the time constant results in a not symmetric shape. However,
the results for P1 constitute the maximal achievable bound for the variable time delay,
whereas P3 yield the lowest, worst case values for τ̄ according to Theorem 7.3.

The analysis presented for this example can also extended to different P (z) representing
other uncertain plant models.
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Figure 7.43: Example with uncertain plant model: maximal admissible variable time
delay τ̄ for different multiplicative factors for the time constant and different protocols.
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Chapter 8

SGT-based Stability Analysis
using acausal Subsystems

In the previous chapter, sufficient stability criteria for networked feedback loops subject
to time-varying packet delays are considered. The results might be conservative in some
cases as the criteria are based on the small gain theorem. This chapter aims to reduce
the conservatism of the introduced approaches and is adopted from [SH21a].

This is possible via the optimal choice of a nominal constant time delay, which is used
in the design of the nominal controller. As a consequence, a splitting of the feedback
loop into a causal and an acausal subsystem is used in the derivation of the criterion
to minimize the effect of the uncertain variable delay. The enhanced criterion features
the same properties as the basic versions such as, e.g., its easy-to-use nature.

8.1 Modified Problem Setup

The original problem setup is described in detail in Section 6.1. Here, only the differ-
ences that are needed to reduce the conservatism of Theorem 7.1 are introduced for
the case without plant uncertainties, i.e. δP = 0. A generalization of the theorem pre-
sented in this chapter to uncertain plant model follows the same lines of argumentation
as Theorem 7.3 and is omitted here.

A combination of plant delay (6.1) and network delay (6.4) results in a constant time
delay d̂+ τN and a time-varying delay that is bounded such that

0 ≤ τNj − τN︸ ︷︷ ︸
τj

≤ τ̄N − τN = τ̄ , (8.1)

see also Assumption 6.2. For the nominal controller design and stability analysis pre-
sented below, an additional constant acausal time delay τA ∈ N is introduced, yielding
a modified constant time delay

τ̂ = d̂+ τN + τA (8.2)

and a (usually) acausal time-varying delay

− τA ≤ τj − τA ≤ τ̄ − τA (8.3)

for the overall delays of plant and communication network. The specific choice of τA = 0
constitutes the causal case as presented in Chapter 7.
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The task is now to state less conservative stability conditions for protocols P1 and P3

when compared to Theorem 7.1. Protocol P2 is not considered in this chapter because
it constitutes an intermediate case between P1 and P3. However, the criterion presented
below can also be formulated for P2 using the same ideas.

The main ingredients are the optimal selection for the acausal delay τA and the calcu-
lation of the resulting finite `2 gains. This makes it possible to state less conservative
conditions that yield a larger range of admissible time-varying packet delays.

8.2 SGT-based Stability Criterion using acausal Subsys-
tems

The proposed stability criterion rests on the separation of the original structure, pre-
sented in Figure 6.1 with controller (6.6), into a nominal part (gray in Figure 8.1) and
a part characterizing the uncertainty due to the time-varying packet delays (blue block
in Figure 8.1). In addition, the reference input (rk) is zero and the remaining linear

R(z) P̂ (z) D̂(z) z−1
z

−
z

z−1

acausal delays
−τA ≤ τj ≤ τ̄ − τA

(vk) (ak)

(ck)(wk) −

Figure 8.1: Restructured feedback loop that is used for the stability analysis: nominal
part (gray) and uncertainty due to the (acausal) time-varying delays (blue).

controller in Figure 6.1 is represented by transfer function R(z). A discrete-time in-
tegrator and differentiator are utilized to avoid issues for the case, where the nominal
controller R(z) is designed to achieve a dc-gain equal to one for the nominal loop as
explained in Chapter 7. The effect of the known constant time delay τ̂ (8.2) is included
in the nominal (gray) part via transfer function

D̂(z) = z−d̂−τ
N−τA = z−τ̂ . (8.4)

Note that the acausal delay τA also appears in (8.4) due to (8.2).

Based on [UI08] where an SGT for continuous-time systems with acausal subsystems
is introduced, one can now state the discrete-time SGT for the feedback loop shown in
Figure 6.9 with (u1,k), (u2,k) ∈ `2[a,∞) and (e1,k), (e2,k), (y1,k), (y2,k) ∈ `2e[a,∞). The
nominal part and the uncertainty are characterized by mappings (y1,k) = M1{(e1,k)}
and (y2,k) = M2{(e2,k)} respectively. They are assumed to be finite gain `2 stable in
the sense of Definition 6.8, i.e.

∣∣∣∣(y1,k

)∣∣∣∣
2
≤ α1

∣∣∣∣(e1,k

)∣∣∣∣
2

+ β1 ∀(e1,k) ∈ `2[a,∞) , (8.5a)
∣∣∣∣(y2,k

)∣∣∣∣
2
≤ α2

∣∣∣∣(e2,k

)∣∣∣∣
2

+ β2 ∀(e2,k) ∈ `2[a,∞) . (8.5b)

If both mappings are causal, the classical SGT as stated in [Vid02], [Sas99] can be
applied. However, for the stability analysis of networked control systems as considered
in this work, it will turn out to be beneficial that one subsystem is acausal.
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Theorem 8.1 (Acausal SGT for discrete-time systems [SH21a]). Consider the
feedback loop shown in Figure 6.9 with finite `2 gains (8.5). Let

α1α2 < 1 (8.6)

and conditions
(
M1

{
M2

{(
e2,k

)}})
T

=
(
M1

{
M2

{(
e2,k

)
T

}})
T

(8.7a)
(
M2

{
M1

{(
e1,k

)}})
T

=
(
M2

{
M1

{(
e1,k

)
T

}})
T

(8.7b)

and
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e
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e
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(
Mν

{(
e

(2)
ν,k

)
T

})
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∣∣∣∣∣
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2

,

(8.7c)

hold for all (eν,k), (e
(1)
ν,k), (e

(2)
ν,k) ∈ `2e[a,∞) and ν ∈ {1, 2}.

Then, the closed loop system is finite gain `2 stable.

Proof. The proof directly follows as discrete-time counterpart of the continuous-time
version from [UI08] evaluated for n1 = n2 = 1 and a1 = a2 = a. �

Conditions (8.7a) and (8.7b) ensure that the cascade connection of M1 and M2 (and
vice versa) is causal. For example, (y1,k) = M1{(e1,k)} = M1{(u1,k) + (y2,k)} =
M1{(u1,k)+M2{(e2,k)} has to be causal according to Definition 6.6 for (u1,k) identically
to zero as claimed in (8.7a). Please note that condition (8.7c) is automatically fulfilled
if both subsystems in Figure 6.9 are linear.

Theorem 8.1 establishes the basis for the proposed stability criterion for feedback loops
as depicted in Figure 6.1. The nominal part with input (wk) and output (vk) in Fig-
ure 8.1 can be described by transfer function

M(z) =
−R(z)P̂ (z)D̂(z)

1 +R(z)P̂ (z)D̂(z)

(z − 1)

z
(8.8)

with the corresponding finite `2 gain of α1 = ||M(z)||∞. In contrast, it is more chal-
lenging to find the `2 gain α2 = α of the uncertainty in Figure 8.1. This is because
(acausal) time-varying packet delays in combination with protocol P1 or P3 have to be
considered. Hence, one follows the general procedure proposed in the previous chapter
and extends it to include the acausal delay τA.

To find the `2 gain α associated with the uncertainty, on has to maximize the norm of
output wk = ck−ak, where the sequence (ak) is the summation of input sequence (vk).
This principle approach is explained in detail in Chapter 7.

Figure 8.2 shows all possible packets on the way for τ̄ = 3 and an acausal delay of
τA = 2. This means that, e.g., the packet containing a5 = 6 might arrive at the
receiver side at time instants k ∈ {3, 4, 5, 6} as can be seen in Figure 8.2 (gray packets
labeled with number 6). The set of all packets that might arrive at time instant k is{
b
(−τA)
k , b

(−τA+1)
k , . . . , b

(τ̄−τA)
k

}
.
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Figure 8.2: Packets on the way for τ̄ = 3, v̄ = 1 and τA = 2. Darker colors represent
more recently received packets.

Depending on the actual protocol, e.g., the most recent packet is selected as ck and
further used. See Definition 2.8 for the properties of the individual protocols as well as
relation (7.12) and (7.13) to calculate αT and the finite `2 gain α.

Table 8.1 shows the optimal acausal delays τ∗A that yield a minimization of the related
gain α for different maximal delays τ̄ and protocol P3. With this, we are able to state
the main stability criterion for the considered NCS. Details on the calculations of the
gains can be found in the proof of Theorem 8.2 in Section 8.3.

Table 8.1: Optimal acausal delays τ∗A and related `2 gains α∗ = g(τ∗A, τ̄) for different
maximal admissible variable network delays τ̄ and protocol P3.

τ̄ α∗ τ∗A τ̄ α∗ τ∗A τ̄ α∗ τ∗A
1 1.0000 1 21 19.000 19 41 37.07 37
2 2.0000 2 22 20.000 20 42 38.000 38
3 2.7839 2 23 21.000 21 43 39.000 39
4 3.6878 3 24 21.904 21 44 39.992 39
5 4.6260 4 25 22.784 22 45 40.866 40

6 5.5377 5 26 23.659 23 46 41.738 41
7 6.4254 6 27 24.531 24 47 42.615 42
8 7.3095 7 28 25.411 25 48 43.489 43
9 8.2082 8 29 26.288 26 49 44.362 44
10 9.0921 9 30 27.16 27 50 45.233 45

11 10.000 10 31 28.031 28 51 46.108 46
12 11.000 11 32 29.000 29 52 47.000 47
13 11.955 11 33 30.000 30 53 48.000 48
14 12.845 12 34 30.950 30 54 49.000 49
15 13.734 13 35 31.826 31 55 49.905 49

16 14.614 14 36 32.699 32 56 0.779 50
17 15.488 15 37 33.574 33 57 51.654 51
18 16.369 16 38 34.451 34 58 52.527 52
19 17.250 17 39 35.325 35 59 53.399 53
20 18.125 18 40 36.196 36 60 54.272 54

Theorem 8.2 (Stability criterion for NCS using acausal subsystems [SH21a]).
Consider the networked feedback loop shown in Figure 6.1 with plant (6.1) and
a packetized transmission network subject to time-varying network delays as in
Assumption 6.1. Let the linear controller ũ(z) = −R̃(z)ζ(z) for (rk) = 0 ∀k be
designed for a nominal delay τ̂ = d̂ + τN + τ∗A and suppose that acausal delay τ∗A
and the corresponding finite `2 gain α∗ are given such that
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(a) for protocol P1 (skip old packets, take newest if more packets are available):

τ∗A =

⌈
τ̄N + τN

2

⌉
or τ∗A =

⌊
τ̄N + τN

2

⌋
, (8.9a)

α∗ = α∗P1
= max

{
τ∗A, τ̄ − τ∗A

}
(8.9b)

(b) for protocol P3 (no numbering nor synchronization, worst case)

α∗ = α∗P3
= g (τ∗A, τ̄) (8.10)

and τ∗A in accordance with the Table 8.1.

The feedback loop is finite gain `2 stable for all bounded time-varying packet delays
0 ≤ τN ≤ τNj ≤ τ̄N , τ̄N > τN , if condition

∣∣∣
∣∣∣M(z)

∣∣∣
∣∣∣
∞
α∗ =

∣∣∣∣∣

∣∣∣∣∣
R(z)P̂ (z)

1 +R(z)P̂ (z)D̂(z)

(z − 1)

z

∣∣∣∣∣

∣∣∣∣∣
∞
α∗ < 1 (8.11)

is fulfilled. Constant τ∗A is the optimal acausal time delay that minimizes the finite
`2 gain α∗ for a given τ̄ .

Note that relation (8.10) cannot be stated explicitly, as it is also visible in Table 8.1. The
steps, how to numerically find optimal values τ∗A and α∗, are detailed in the next section.
However, it is possible to over-estimate the non-linear characteristics in Table 8.1 using
results from protocol P1 so that

τA = τ̄ and α = αP1

∣∣
τA=τ̄

= τ̄ (8.12)

hold for protocol P3 as depicted in Figure 8.3.

The specific patterns of packet delays leading to the `2 gains for both protocols are
presented in the proof of Theorem 8.2, which is shown in Section 8.3.

For the causal case, i.e. for τA = 0, one obtains the same conditions as in Chapter 7.
A generalization of the Theorem 8.2 to uncertain plant models of the form P (z) =

P̂ (z)z−d̂
(
1 + δP

)
, similar to Theorem 7.3, can be done in a straight forward way.

Please note that the evaluation of Theorem 8.2 follows the same simple principal steps
as for Theorem 7.1. The only difference is that a specific selection of τ̄ to be checked
leads to a specific acausal delay τ∗A and, as a consequence, to a new design for the
nominal controller R(z) due to (8.4).

Note that both choices of τ∗A in (8.9a) yield the very same gain α∗ (8.9). However, the
resulting maximal admissible τ̄ might be different as τ∗A is included in D(z) and, as a
consequence, has an impact on the nominal controller R(s).

The application of Theorem 8.2 is presented for a simulation example in Section 8.4
and for a laboratory experiment in Section 8.5.
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Figure 8.3: Optimal acausal time delay τ∗A and gain α∗ for protocol P3 (black) and a
possible over-estimation (blue).

8.3 Proof of Theorem 8.2

The proof is based on the application of Theorem 8.1 to the feedback structure shown
in Figure 8.1. Hence, the gains of the nominal part and the uncertainty due to the
time-varying delays are considered. Gain α1, as defined in (8.5a), is given by

α1 = ||M(z)||∞ , (8.13)

where (8.8) is used for the description of the nominal part. Condition (8.7c) is ful-
filled for the considered NCS because both subsystems (nominal part and uncertainty)
are linear as explained Section 7.2. Since Figure 6.1 is equivalent to Figure 8.1 for
(rk) = (0, 0, . . .), the cascade connections of both subsystems are causal, as requested
by conditions (8.7a) and (8.7b). Consequently, only the calculation of the finite `2 gain
α∗ = α2 for the uncertainty remains to show (8.9) and (8.10) in Theorem 8.2. This is
done below for the blue subsystem in Figure 8.1 with input vk (with v̄ = 1) and output
wk considering protocols P1 and P3.

8.3.1 Protocol P1

Figure 8.4 shows all inner signals as well as the output wk of the uncertainty for a
maximal admissible variable time delay τ̄ = 3 and an additional acausal delay τA = 2.
The input sequence (vk) and (ak), are truncated at T = 10. To maximize the norm of

wk, all possible packets on the way
{
b
(−τA)
k , b

(−τA+1)
k , . . . , b

(τ̄−τA)
k

}
, shown in Figure 8.2,

are considered. For example at time instant k = 0, the packet containing 3 yields the

largest absolute value for wk = b
(−2)
k − ak. Consequently, a2 = 3 has to arrive at time

instant k = 0, i.e. two time instants before it is sent. Its corresponding packet delay is
τ3 = −2.
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packet arr. no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
ck 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11

wk 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0

block A B B B B B B B B B B C 0 0 0 0 0 0 0
τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

Figure 8.4: Packet pattern and inner signals of the uncertainty for P1, τ̄ = 3, T = 10
and τA = 2.

In addition, one has to take into account the fact, that each packet can only be received
once at the receiver side and, as defined for protocol P1, the most recent packet is chosen
if more packets are available. The packet received at the last time instant, i.e. ck−1,
is used if no packet is received at instant k. Figure 8.4 presents the resulting packet
pattern that results in a maximization of the norm of (wk). The worst case delay
pattern is τj = −2 for all j.

Figures 8.5 and 8.6 extends the analysis to different τ̄ , T and acausal delays τA, where
also the minimal delay −τA and maximal delay τ̄ − τA are indicated. More resulting

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 2 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0

2 −1 1 τj 1 1 1 1 1 1 1 1 1 1 1 1 1
wk 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0

3 0 3 τj 3 3 3 3 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0

3 −1 2 τj 2 2 2 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0

3 −2 1 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0

3 −3 0 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 1 2 3 3 3 3 3 3 3 3 3 2 1 0 0 0 0

4 0 4 τj 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
wk 0 0 0 0 −1 −2 −3 −4 −4 −4 −4 −4 −4 −4 −4 −3 −2 −1 0

4 −1 3 τj 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0 0

4 −2 2 τj 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0

4 −3 1 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 0 1 2 3 3 3 3 3 3 3 3 3 2 1 0 0 0 0 0

4 −4 0 τj −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4
wk 1 2 3 4 4 4 4 4 4 4 4 3 2 1 0 0 0 0 0

Figure 8.5: Resulting delay patterns (τj) and worst case output sequences (wk) for P1,
τ̄ ∈ {2, 3, 4} and T = 10.

packet patterns are shown in Appendix C.1 for different maximal bounds on the time-
varying delays τ̄ and truncation times T .

All resulting delay patterns and output sequences show a similar structure as for the
causal case, with the important differences that:
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 2 2 2 2
wk 0 0 −1 −2 −2 −1 0

2 −1 1 τj 1 1 1 1 1
wk 0 0 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2
wk 1 2 2 1 0 0 0

3 0 3 τj 3 3 3 3 3 3
wk 0 0 0 −1 −2 −3 −2 −1 0

3 −1 2 τj 2 2 2 2 2 2
wk 0 0 0 −1 −2 −2 −1 0 0

3 −2 1 τj −2 −2 −2 −2 −2 −2
wk 0 1 2 2 1 0 0 0 0

3 −3 0 τj −3 −3 −3 −3 −3 −3
wk 1 2 3 2 1 0 0 0 0

4 0 4 τj 4 4 4 4 4 4 4
wk 0 0 0 0 −1 −2 −3 −3 −2 −1 0

4 −1 3 τj 3 3 3 3 3 3 3
wk 0 0 0 0 −1 −2 −3 −2 −1 0 0

4 −2 2 τj 2 2 2 2 2 2 2
wk 0 0 0 0 −1 −2 −2 −1 0 0 0

4 −3 1 τj −3 −3 −3 −3 −3 −3 −3
wk 0 1 2 3 2 1 0 0 0 0 0

4 −4 0 τj −4 −4 −4 −4 −4 −4 −4
wk 1 2 3 3 2 1 0 0 0 0 0

Figure 8.6: Resulting delay patterns (τj) and worst case output sequences (wk) for P1,
τ̄ ∈ {2, 3, 4} and T = 2.

(a) a maximal relative delay

τ̄∗ = max
{
τA, τ̄ − τA

}
(8.14)

is relevant;

(b) the norm of the output sequence for the introductory part A (green), main part
B (orange) and remaining part C (red) is given by

∣∣∣∣(wk
)
T

∣∣∣∣2
2

= A+B + C = 2A+B

= 2

τ̄−1∑

i=1

i2v̄2 + (T − τ̄ + 2) τ̄2v̄2 (8.15)

for T − τ̄ + 2 ≥ 0, i.e. T ≥ τ̄ − 2.

Evaluating (7.13) with (8.15) yields αT as depicted in Figure 8.7 for different acausal
delays τA (blue plus signs). The black circles are the resulting worst case gains found
numerically by direct variation of all possible combinations of packet delays τj . Hence,
one can mathematically reproduce the true worst case gains αT that tend to α = τ̄ for
T →∞, see dashed lines in Figure 8.7 and Appendix C.2.

An alternative way to plot the results from Figure 8.7, and also for different τ̄ is
presented in Figures 8.8 to 8.10. Circles indicate the different values for αT for
different T and the black dashed line visualizes α as a function of τA.

Consequently, an optimal choice of the acausal delay τA is possible to minimize the
corresponding `2 gain as shown in Figures 8.11 to 8.13. The optimal choice for the
acausal delay (black dots) is equivalent to relation (8.9a) in Theorem 8.2 resulting in
τ̄∗ = max

{
τ∗A, τ̄ − τ∗A

}
and α∗ = τ̄∗ as in (8.9b). The corresponding worst case delay

pattern is given by

τj =

{
τ̄∗ if τ̄∗ = τ̄ − τ∗A
−τ̄∗ otherwise

(8.16)

as can be seen in Appendix C.1.
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Figure 8.7: Gains αT as a function of truncation times T for P1, τ̄ = 3 and different
acausal delays τA. The dashed lines represent the corresponding `2 gains α.
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Figure 8.8: Gains αT for different T and τA as well as `2 gains α (dashed lines) for P1,
τ̄ = 1 (left) and τ̄ = 2 (right).
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Figure 8.9: Gains αT for different T and τA as well as `2 gains α (dashed lines) for P1,
τ̄ = 3 (left) and τ̄ = 4 (right).
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Figure 8.10: Gains αT for different T and τA as well as `2 gains α (dashed lines) for
P1, τ̄ = 5 (left) and τ̄ = 6 (right).
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Figure 8.11: Finite `2 gain α (blue) and the optimal choice of the acausal delay τA
(black dots) for P1, τ̄ = 1 (left) and τ̄ = 2 (right).
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Figure 8.12: Finite `2 gain α (blue) and the optimal choice of the acausal delay τA
(black dots) for P1, τ̄ = 3 (left) and τ̄ = 4 (right).
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Figure 8.13: Finite `2 gain α (blue) and the optimal choice of the acausal delay τA
(black dots) for P1, τ̄ = 5 (left) and τ̄ = 6 (right).
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8.3.2 Protocol P3

The calculation of α∗ is more demanding for protocol P3, because the delay patterns
from the previous section only partially reproduce gains αT , e.g., for P3 and τA = τ̄ .
This is visualized in Figure 8.14 and in Appendix C.3 using blue plus signs.
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Figure 8.14: Comparison of the actual values of αT found by direct iteration for P3 and
τ̄ = 3 (black circles) as well as the calculated gain values for P1 (blue plus signs), for
different acausal delays τA.
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An analysis of the delay patterns that correspond to the numerically found worst case
gains αT reveals that three different delay patterns P ′3, P ′′3 and P ′′′3 have to be considered
to mathematically describe the gains related to protocol P3.

Delay Pattern P ′3
The first packet arrival pattern is based on the causal case of P3. Figure 8.15 shows
the associated delay pattern, inner signals of the uncertainty and the worst case output
sequence for τ̄ = 3, T = 10 and τA = 2.

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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b
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b
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b
(0)
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b
(1)
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packet arr. no no no no yes no no no yes no no no yes no no no yes no no no
ck 0 0 0 0 1 1 1 1 5 5 5 5 9 9 9 9 11 11 11 11

wk 0 0 0 −1 −1 −2 −3 −4 −1 −2 −3 −4 −1 −2 −2 −2 0 0 0 0

block A B B B B B B B B C C C C C C C C
τj 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1

Figure 8.15: Packet pattern and inner signals of the uncertainty for P ′3, τ̄ = 3, T = 10
and τA = 2.

This is then generalized for different τ̄ , T , and τA as shown in Figures 8.16, 8.17, and
in more detail in Appendix C.4.

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0
wk 0 0 −1 −2 −2 −3 −4 −2 −3 −4 −2 −3 −4 −1 −1 −1 0

2 −1 1 τj 1 0 −1 1 0 −1 1 0 −1 1 0 −1 1 0 −1
wk 0 0 −1 −1 −2 −3 −1 −2 −3 −1 −2 −3 −1 −1 −1 0 0

2 −2 0 τj 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −2
wk 0 0 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −1 0 0 0

3 0 3 τj 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3
wk 0 0 0 −1 −2 −3 −3 −4 −5 −6 −3 −4 −5 −6 −2 −2 −2 −2 0 0

3 −1 2 τj 2 1 0 −1 2 1 0 −1 2 1 0 −1 2 1 0 −1 2
wk 0 0 0 −1 −2 −2 −3 −4 −5 −2 −3 −4 −5 −2 −2 −2 −2 0 0 0

3 −2 1 τj 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1
wk 0 0 0 −1 −1 −2 −3 −4 −1 −2 −3 −4 −1 −2 −2 −2 0 0 0 0

3 −3 0 τj 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0
wk 0 0 0 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −2 0 0 0 0 0

4 0 4 τj 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1
wk 0 0 0 0 −1 −2 −3 −4 −4 −5 −6 −7 −8 −4 −5 −5 −5 −5 0 0 0 0 0

4 −1 3 τj 3 2 1 0 −1 3 2 1 0 −1 3 2 1 0 −1 3 2 1 0
wk 0 0 0 0 −1 −2 −3 −3 −4 −5 −6 −7 −3 −4 −5 −5 −5 0 0 0 0 0 0

4 −2 2 τj 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0 −1
wk 0 0 0 0 −1 −2 −2 −3 −4 −5 −6 −2 −3 −4 −5 −5 0 0 0 0 0 0 0

4 −3 1 τj 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1 −2
wk 0 0 0 0 −1 −1 −2 −3 −4 −5 −1 −2 −3 −4 −5 0 0 0 0 0 0 0 0

4 −4 0 τj 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2 −3
wk 0 0 0 0 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 0 0 0 0 0 0 0 0

Figure 8.16: Resulting delay patterns (τj) and worst case output sequences (wk) for
P ′3, τ̄ ∈ {2, 3, 4} and T = 10.

Hence, the delay pattern

(τj) =
(

(τ̄ − τA) , (τ̄ − τA − 1) , . . . ,−τA︸ ︷︷ ︸
?

, ?, ?, . . .
)

(8.17)
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 1 0 2 1 0 2
wk 0 0 −1 −2 −2 −2 −2 0 0

2 −1 1 τj 1 0 −1 1 0 −1 1
wk 0 0 −1 −1 −2 −2 0 0 0

2 −2 0 τj 0 −1 −2 0 −1 −2 0
wk 0 0 0 −1 −2 0 0 0 0

3 0 3 τj 3 2 1 0 3 2 1 0 3
wk 0 0 0 −1 −2 −3 −2 −2 −2 −2 0 0

3 −1 2 τj 2 1 0 −1 2 1 0 −1 2
wk 0 0 0 −1 −2 −2 −2 −2 −2 0 0 0

3 −2 1 τj 1 0 −1 −2 1 0 −1 −2 1
wk 0 0 0 −1 −1 −2 −2 −2 0 0 0 0

3 −3 0 τj 0 −1 −2 −3 0 −1 −2 −3 0
wk 0 0 0 0 −1 −2 −2 0 0 0 0 0

4 0 4 τj 4 3 2 1 0 4 3 2 1 0 4
wk 0 0 0 0 −1 −2 −3 −3 −2 −2 −2 −2 −2 0 0

4 −1 3 τj 3 2 1 0 −1 3 2 1 0 −1 3
wk 0 0 0 0 −1 −2 −3 −2 −2 −2 −2 −2 0 0 0

4 −2 2 τj 2 1 0 −1 −2 2 1 0 −1 −2 2
wk 0 0 0 0 −1 −2 −2 −2 −2 −2 −2 0 0 0 0

4 −3 1 τj 1 0 −1 −2 −3 1 0 −1 −2 −3 1
wk 0 0 0 0 −1 −1 −2 −2 −2 −2 0 0 0 0 0

4 −4 0 τj 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0
wk 0 0 0 0 0 −1 −2 −2 −2 0 0 0 0 0 0

Figure 8.17: Resulting delay patterns (τj) and worst case output sequences (wk) for
P ′3, τ̄ ∈ {2, 3, 4} and T = 2.

yields
∣∣∣∣(wk

)
T

∣∣∣∣2
2

= A+B + C +D (8.18)

consisting of four parts A, B, C and D. The introductory (green) part A consists of
τ̄ − τA samples. It contributes to ||(wk)T ||22 with

A =

τ̄−τA∑

i=1

(
min

{
i, T + 1

})2
v̄2 (8.19)

and T ≥ 0, where this formulation with the min-operator is used to account for cases
where T + 1 < τ̄ as, e.g., shown in the Figure 8.17 for T = 2, τ̄ = 4 and τA = 0.

Block B consists of k1 (orange) blocks of length τ̄ + 1, containing a repeating sequence(
τ̄ − τA, τ̄ − τA + 1, . . . , 2τ̄ − τA

)
with a squared norm of

d =

τ̄∑

i=0

(
τ̄ − τA + i

)2
v̄2 . (8.20)

The causal case in Chapter 7 provides the basis to generalize the calculation of k1 for
the acausal one. Overall T + 2τ̄ + 1 samples (cf. (7.16)) are taken into account in the
analysis, where block A contributes with τ̄ − τA samples. To get k1, one subtracts the
length of the repeating sequence (τ̄+1) from the remaining T+1+τ̄+τA samples so many
times that ≤ 3τ̄ samples are left. The remaining samples k2 = T +1+ τ̄+τA−k1(τ̄+1)
are split into

k3 =

⌊
k2

τ̄ + 1

⌋
(8.21)

times τ̄ + 1 samples (block C, blue) and the left k2 − k3(τ̄ + 1) samples shown in red.
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This yield

∣∣∣∣(wk)T
∣∣∣∣

2
=

τ̄−τA∑

i=1

i2v̄2

︸ ︷︷ ︸
A

+ k1

τ̄∑

i=0

(
τ̄ − τA + i

)2
v̄2

︸ ︷︷ ︸
B

+ (8.22)

k1+k3−1∑

j=k1

{
2τ̄−τA+j(τ̄+1)∑

i=τ̄−τA+j(τ̄+1)

(
ai − aj(τ̄+1)

)2
}

︸ ︷︷ ︸
C

+

T+2τ̄∑

i=τ̄−τA+(k1+k3)(τ̄+1)

(
ai − aτ̄−τA+(k1+k3)(τ̄+1)

)2

︸ ︷︷ ︸
D

,

which is used in the calculation of αT . The `2 gain follows from (7.12), (8.20), (8.22)
and

α2
T =

A+ T+1
τ̄+1 d+ C +D

1 + T
=
A+ C +D

1 + T
+

d

τ̄ + 1
. (8.23)

A comparison of the calculated values αT for different τ̄ and T with values from direct
iteration are presented in Figures 8.18 and in Appendix C.5.

The finite `2 gain α follows for T →∞ such that

d =

τ̄∑

i=1

(
∆τ − 1 + i

)2
v̄2 (8.24)

=

[
(∆τ − 1)2

τ̄+1∑

i=1

1 + 2(∆τ − 1)
τ̄+1∑

i=1

i+
τ̄+1∑

i=1

i2
]
v̄2

= (τ̄ + 1)

[
∆τ2 + ∆τ τ̄ +

1

3
τ̄2 +

1

6
τ̄

]
v̄2

with ∆τ = τ̄ − τA and so

αP ′3 =

√
∆τ2 + ∆τ τ̄ +

1

3
τ̄2 +

1

6
τ̄ . (8.25)

Figure 8.18 shows the results for αT and the corresponding `2 gains αP ′3 for different
acausal delays. Condition (8.25) reduces to

α =

√
τ̄

6
(14τ̄ + 1) (8.26)

in causal case where ∆τ = τ̄ as indicated in Chapter 7. The presented delay pattern
allows to reproduce additional points in Figure 8.18 as, e.g., for τA = 0 and τA = 1 as
well as for different cases as shown in Appendix C.5.
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T
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T
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Figure 8.18: Gains αT as a function of truncation times T , τ̄ = 3 and different acausal
delays τA: P1 (blue), P ′3 (red). The dashed lines represent the corresponding `2 gains
α.
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Delay Pattern P ′′3
A second delay pattern follows by modifying the introductory part of P ′3 such that

(τj) =
(
(τ̄ − τA), −τA,−τA, . . . ,−τA︸ ︷︷ ︸

τ̄ times

, (τ̄ − τA) , (τ̄ − τA − 1) , . . . ,−τA︸ ︷︷ ︸
?

, ?, ?, . . .
)
.

(8.27)
The resulting packet patterns and inner signals of the uncertainty are exemplified in
Figure 8.19 for τ̄ = 3, T = 10 and an acausal delay of τA = 2.

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−2)
k

0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11

b
(1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(−2)
k

0 �1 2 3 4 �5 �6 �7 8 �9 ��10 ��11 11 ��11 ��11 ��11 11 ��11 ��11 ��11

b
(−1)
k

0 0 �1 �2 �3 �4 �5 �6 7 �8 �9 ��10 11 ��11 ��11 ��11 11 ��11 ��11 ��11

b
(0)
k = ak 0 0 0 �1 �2 �3 �4 �5 6 �7 �8 �9 10 ��11 ��11 ��11 11 ��11 ��11 ��11

b
(1)
k

0 0 0 0 1 �2 �3 �4 5 �6 �7 �8 9 ��10 ��11 ��11 11 ��11 ��11 ��11

b
(−2)
k − ak 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

packet arr. no no yes yes yes no no no yes no no no yes no no no yes no no no
ck 0 0 2 3 1 1 1 1 5 5 5 5 9 9 9 9 11 11 11 11

wk 0 0 2 2 −1 −2 −3 −4 −1 −2 −3 −4 −1 −2 −2 −2 0 0 0 0

block A− A+ B B B B B B B B C C C C C C C C
τj 1 −2 −2 −2 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1

Figure 8.19: Packet pattern and inner signals of the uncertainty for P ′′3 , τ̄ = 3, T = 10
and τA = 2.

Figures 8.20 and 8.21 illustrate the patterns for different τ̄ , τA and truncation times T .
More cases are considered in Appendix C.6.

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 1 0 2 1 0 2 1 0 2 1 0
wk 0 0 −1 0 −2 −3 −4 −2 −3 −4 −2 −3 −4 −1 −1 −1 0

2 −1 1 τj 1 −1 −1 1 0 −1 1 0 −1 1 0 −1 1 0 −1
wk 0 0 1 −1 −2 −3 −1 −2 −3 −1 −2 −3 −1 −1 −1 0 0

2 −2 0 τj 0 −2 −2 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −2
wk 0 2 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −1 0 0 0

3 0 3 τj 3 0 0 0 3 2 1 0 3 2 1 0 3 2 1 0 3
wk 0 0 0 −1 0 0 −3 −4 −5 −6 −3 −4 −5 −6 −2 −2 −2 −2 0 0

3 −1 2 τj 2 −1 −1 −1 2 1 0 −1 2 1 0 −1 2 1 0 −1 2
wk 0 0 0 1 1 −2 −3 −4 −5 −2 −3 −4 −5 −2 −2 −2 −2 0 0 0

3 −2 1 τj 1 −2 −2 −2 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1
wk 0 0 2 2 −1 −2 −3 −4 −1 −2 −3 −4 −1 −2 −2 −2 0 0 0 0

3 −3 0 τj 0 −3 −3 −3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0
wk 0 2 3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −2 0 0 0 0 0

4 0 4 τj 4 0 0 0 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1
wk 0 0 0 0 −1 0 0 0 −4 −5 −6 −7 −8 −4 −5 −5 −5 −5 0 0 0 0 0

4 −1 3 τj 3 −1 −1 −1 −1 3 2 1 0 −1 3 2 1 0 −1 3 2 1 0
wk 0 0 0 0 1 1 1 −3 −4 −5 −6 −7 −3 −4 −5 −5 −5 0 0 0 0 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0 −1
wk 0 0 0 2 2 2 −2 −3 −4 −5 −6 −2 −3 −4 −5 −5 0 0 0 0 0 0 0

4 −3 1 τj 1 −3 −3 −3 −3 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1 −2
wk 0 0 2 3 3 −1 −2 −3 −4 −5 −1 −2 −3 −4 −5 0 0 0 0 0 0 0 0

4 −4 0 τj 0 −4 −4 −4 −4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2 −3
wk 0 2 3 4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 0 0 0 0 0 0 0 0

Figure 8.20: Resulting delay patterns (τj) and worst case output sequences (wk) for
P ′′3 , τ̄ ∈ {2, 3, 4} and T = 10.

In contrast to (8.22), the introductory part A is split into A+ for k ≥ 0 and A− for
k < 0. All other parts remain the same as in P ′3. According to Figures 8.20 and 8.21
and the tables in Appendix C.6, the modified introductory part can mathematically be
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 1 0 2
wk 0 0 −1 0 −2 −2 −2 0 0

2 −1 1 τj 1 −1 −1 1 0 −1 1
wk 0 0 1 −1 −2 −2 0 0 0

2 −2 0 τj 0 −2 −2 0 −1 −2 0
wk 0 2 0 −1 −2 0 0 0 0

3 0 3 τj 3 0 0 0 3 2 1 0 3
wk 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −1 2 τj 2 −1 −1 −1 2 1 0 −1 2
wk 0 0 0 1 1 −2 −2 −2 −2 0 0 0

3 −2 1 τj 1 −2 −2 −2 1 0 −1 −2 1
wk 0 0 2 2 −1 −2 −2 −2 0 0 0 0

3 −3 0 τj 0 −3 −3 −3 0 −1 −2 −3 0
wk 0 2 3 0 −1 −2 −2 0 0 0 0 0

4 0 4 τj 4 0 0 0 0 4 3 2 1 0 4
wk 0 0 0 0 −1 0 0 0 −2 −2 −2 −2 −2 0 0

4 −1 3 τj 3 −1 −1 −1 −1 3 2 1 0 −1 3
wk 0 0 0 0 1 1 0 −2 −2 −2 −2 −2 0 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 1 0 −1 −2 2
wk 0 0 0 2 2 1 −2 −2 −2 −2 −2 0 0 0 0

4 −3 1 τj 1 −3 −3 −3 −3 1 0 −1 −2 −3 1
wk 0 0 2 3 2 −1 −2 −2 −2 −2 0 0 0 0 0

4 −4 0 τj 0 −4 −4 −4 −4 0 −1 −2 −3 −4 0
wk 0 2 3 3 0 −1 −2 −2 −2 0 0 0 0 0 0

Figure 8.21: Resulting delay patterns (τj) and worst case output sequences (wk) for
P ′′3 , τ̄ ∈ {2, 3, 4} and T = 2.

described by

A+ =





v̄2 if τA = 0
τ̄−τA∑

i=1

(
min

{
T, τA,max

{
0, T − i+ 1

}})2

v̄2 otherwise
(8.28a)

and

A− =





0 if τA ∈ {0, 1}
τA∑

i=2

(
min

{
i, T + 1

})2
v̄2 otherwise

. (8.28b)

Relation (7.12) in combination with (8.22) and (8.28) allows to calculate αT as presented
in Figure 8.22. It can be observed that the limit of αT for T → ∞ is equal to P ′3.
However, larger vales

αP ′′3 = sup
T
αT,P ′′3 (8.29)

result for smaller T , as, e.g. for τA = 2 and T = 3 in Figure 8.22. This effect can also
be observed for other parameter settings in Appendix C.7.
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Figure 8.22: Gains αT as a function of truncation times T , τ̄ = 3 and different acausal
delays τA: P1 (blue), P ′3 (red), P ′′3 (green). The dashed lines represent the corresponding
`2 gains α.
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Delay Pattern P ′′′3

Almost all points in Figure 8.22 can be mathematically described by using either P1,
P ′3 or P ′′3 . However, this is not true for, e.g., τA = 3 and T = 3. Thus, the additional
delay pattern

(τj) =
(
−τA,−τA, . . . ,−τA︸ ︷︷ ︸

T−τ̄+1 elements

, (τ̄−τA), −τA,−τA, . . . ,−τA︸ ︷︷ ︸
τ̄ elements

, (τ̄−τA), (τ̄−τA), . . .
)

(8.30)

for T − τ̄ + 1 ≥ 0, i.e. T ≥ τ̄ − 1 is utilized. The corresponding patterns and inner
signals are shown in Figures 8.23 to 8.25 and in Appendix C.8 for different values of τ̄ ,
τA, and T .

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−2)
k

0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11

b
(1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(−2)
k

0 1 2 3 4 5 6 7 8 �9 10 11 11 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(−1)
k

0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(0)
k = ak 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(1)
k

0 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 9 ��10 ��11 ��11 11 11 11 11

b
(−2)
k − ak 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

packet arr. no yes yes yes yes yes yes yes yes no yes yes yes no no no yes yes yes yes
ck 0 1 2 3 4 5 6 7 8 8 10 11 9 9 9 9 11 11 11 11

wk 0 1 2 2 2 2 2 2 2 1 2 2 −1 −2 −2 −2 0 0 0 0

block A A B B B B B B B C C C D D D D
τj −2 −2 −2 −2 −2 −2 −2 −2 1 −2 −2 −2 1 1 1 1 1

Figure 8.23: Packet pattern and inner signals of the uncertainty for P ′′′3 , τ̄ = 3, T = 10
and τA = 2.

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 0 0 0 0 0 0 0 0 0 2 0 0 2 2 2
wk 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj −1 −1 −1 −1 −1 −1 −1 −1 −1 1 −1 −1 1 1 1
wk 0 1 1 1 1 1 1 1 1 1 0 1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 0 −2 −2 0 0 0
wk 1 2 2 2 2 2 2 2 2 1 2 0 −1 −1 0 0 0

3 −3 0 τj 0 0 0 0 0 0 0 0 3 0 0 0 3 3 3 3 3
wk 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −2 1 τj −1 −1 −1 −1 −1 −1 −1 −1 2 −1 −1 −1 2 2 2 2 2
wk 0 0 1 1 1 1 1 1 1 1 0 1 1 −2 −2 −2 −2 0 0 0

3 −1 2 τj −2 −2 −2 −2 −2 −2 −2 −2 1 −2 −2 −2 1 1 1 1 1
wk 0 1 2 2 2 2 2 2 2 1 2 2 −1 −2 −2 −2 0 0 0 0

3 0 3 τj −3 −3 −3 −3 −3 −3 −3 −3 0 −3 −3 −3 0 0 0 0 0
wk 1 2 3 3 3 3 3 3 2 3 3 0 −1 −2 −2 0 0 0 0 0

4 −4 0 τj 0 0 0 0 0 0 0 4 0 0 0 0 4 4 4 4 4 4 4
wk 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −3 −3 −3 −3 −3 0 0 0

4 −3 1 τj −1 −1 −1 −1 −1 −1 −1 3 −1 −1 −1 −1 3 3 3 3 3 3 3
wk 0 0 0 1 1 1 1 1 1 1 0 1 1 1 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj −2 −2 −2 −2 −2 −2 −2 2 −2 −2 −2 −2 2 2 2 2 2 2 2
wk 0 0 1 2 2 2 2 2 2 1 2 2 2 −2 −3 −3 −3 −3 0 0 0 0 0

4 −1 3 τj −3 −3 −3 −3 −3 −3 −3 1 −3 −3 −3 −3 1 1 1 1 1 1 1
wk 0 1 2 3 3 3 3 3 2 3 3 3 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 0 4 τj −4 −4 −4 −4 −4 −4 −4 0 −4 −4 −4 −4 0 0 0 0 0 0 0
wk 1 2 3 4 4 4 4 3 4 4 4 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure 8.24: Resulting delay patterns (τj) and worst case output sequences (wk) for
P ′′′3 , τ̄ ∈ {2, 3, 4} and T = 10.

Block A, C and D consist of τ̄ − 1, τ̄ and τ̄ + 1 samples, respectively. As a result, the
length of (orange) block B is T − τ̄ − τA + 2. The worst case norm of output sequence
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 0 2 0 0 2 2 2
wk 0 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj −1 1 −1 −1 1 1 1
wk 0 1 0 1 −1 −1 −1 0 0

2 −2 0 τj −2 0 −2 −2 0 0 0
wk 1 1 2 0 −1 −1 0 0 0

3 −3 0 τj 3 0 0 0 3 3 3 3 3
wk 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −2 1 τj 2 −1 −1 −1 2 2 2 2 2
wk 0 0 0 1 1 −2 −2 −2 −2 0 0 0

3 −1 2 τj 1 −2 −2 −2 1 1 1 1 1
wk 0 0 2 2 −1 −2 −2 −2 0 0 0 0

3 0 3 τj 0 −3 −3 −3 0 0 0 0 0
wk 0 2 3 0 −1 −2 −2 0 0 0 0 0

4 −4 0 τj
wk

4 −3 1 τj
wk

4 −2 2 τj
wk

4 −1 3 τj
wk

4 0 4 τj
wk

Figure 8.25: Resulting delay patterns (τj) and worst case output sequences (wk) for
P ′′′3 , τ̄ ∈ {2, 3, 4} and T = 2.

(wk) for P ′′′3 is given by ∣∣∣∣(wk
)
T
||22 = A+B + C +D (8.31)

with

A =





0 if τA ∈ {0, 1}
τA−1∑

i=1

(
i− δ(i)

)2
v̄2 otherwise

(8.32a)

δ(i) =

{
1 if i = (T − τ̄ + 2) ∧ (T < τ̄ − 2 + τA)

0 otherwise
(8.32b)

B =

{(
T − τ̄ − τA + 2

)
τ2
Av̄

2 if T ≥ τ̄ − 2 + τA(
T − τA + 2

)
τ2
Av̄

2 otherwise
(8.32c)

C =





τA+τ̄−2∑

i=τA−1

(
min

{
i, τA

})2
v̄2 if T ≥ τ̄ − 2 + τA

0 otherwise

(8.32d)

and

D =

2τ̄−τA∑

i=τ̄−τA

(
min

{
i, τ̄ − 1

})2
v̄2 (8.32e)

for T ≥ τ̄ − 1. The different cases in (8.32) allow to correctly calculate αT,P ′′′3
also for

small truncation T as shown in Figure 8.26 and, in more detail, in Appendix C.9 as
well as

αP ′′′3
= sup

T
αT,P ′′′3

. (8.33)

177



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

2

3

α
T

τA = 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

2

3

α
T

τA = 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

2

3

4

α
T

τA = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

2

3

4

5

T

α
T

τA = 0

Figure 8.26: Gains αT as a function of truncation times T , τ̄ = 3 and different acausal
delays τA: P1 (blue), P ′3 (red), P ′′3 (green) and P ′′′3 (orange). The dashed lines represent
the corresponding `2 gains α.
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Protocol P3

To find the overall finite `2 gain for protocol P3 one has to combine the results for
packet patterns P1, P ′3, P ′′3 and P ′′′3 .

Different gains that depend on the actual choice of the acausal delay τA follow for
the considered delay patterns. Values for αT that are found by direct variation of all
possible combinations of packet delays τj are indicated as black circles in Figure 8.26 to
show that the used mathematical description exactly reproduces all αT . In Figures 8.27
and 8.28, the results for T = {1, 2, 3, 4} are shown depending on acausal delay τA and
truncation times T . Results for larger T are omitted for more clarity in the plots.
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Figure 8.27: Gains αT for different T and τA as well as `2 gains α (dashed lines) for
P3, τ̄ = 1 (left) and τ̄ = 2 (right).
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Figure 8.28: Gains αT for different T and τA as well as `2 gains α (dashed lines) for
P3, τ̄ = 3 (left) and τ̄ = 4 (right).

The optimal `2 gain α∗ and the optimal acausal delay τ∗A are found numerically as the
minimum among the different patterns. Results for τ̄ ∈ {1, 2, 3, 4, 10, 30, 50, 100} are
visualized in Figures 8.29 to 8.32 using black dots. In addition, the contribution of the
individual packet patterns P1, P ′3, P ′′3 and P ′′′3 are plotted in different colors.
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Figure 8.29: Finite `2 gain α (black dashed lines) and the optimal choice of the acausal
delay τA (black dots) for P3, τ̄ = 1 (left) and τ̄ = 2 (right).
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Figure 8.30: Finite `2 gain α (black dashed lines) and the optimal choice of the acausal
delay τA (black dots) for P3, τ̄ = 3 (left) and τ̄ = 4 (right).
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Figure 8.31: Finite `2 gain α (black dashed lines) and the optimal choice of the acausal
delay τA (black dots) for P3, τ̄ = 10 (left) and τ̄ = 30 (right).
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Figure 8.32: Finite `2 gain α (black dashed lines) and the optimal choice of the acausal
delay τA (black dots) for P3, τ̄ = 50 (left) and τ̄ = 100 (right).

Consequently, the finite `2 gain follows as

α∗ = min
τA

{
max
τA

{
αP1 , αP ′3 , αP ′′3 , αP ′′′3

}}
, (8.34)

with the corresponding optimal choice for the acausal delay

τ∗A = argmin
τA

{
max
τA

{
αP1 , αP ′3 , αP ′′3 , αP ′′′3

}}
. (8.35)

The numeric evaluation of (8.34) and (8.35) results in relation (8.10) in Theorem 8.2
and Table 8.1.

As pointed out directly below Theorem 8.2, it is possible to make use of the gain that
follows for P1 evaluated at τA = τ̄ as an over-estimation of α∗ for protocol P3, cf.
Figures 8.29 to 8.32.

This completes the proof. �

8.4 Simulation Example

The example of a feedback loop with filtered Smith predictor is continued in this section.
The LMI-based stability analysis can be found in Section 6.2.2 and the analysis using
the basic version of the SGT-based Theorem 7.1 in Section 7.3.

An evaluation of the LMI conditions stated in Theorem 6.3 yields either 5 or 1 for
the maximal admissible time-varying delay τ̄ , see also Table 8.2. However, as shown
in Chapter 6, there are sequences of packet delays that already lead to instability for
τ̄ = 4. This is because the packetized character of the transmissions is not explicitly
considered in the analysis. This issue is overcome by using Theorem 7.1, where the
SGT is utilized for the causal case. The maximum achievable τ̄ = 4 for protocol P1

and τ̄ = 2 for P3.

Next, Theorem 8.2 is evaluated for the simulation example. Conditions (8.9), and (8.10)
are evaluated for τN = 0 and different τ̄ . The optimal acausal delay τ∗A is used in the
predictor and relation (8.11) is checked by using Bode magnitude plots for M(z)α∗ as
shown in Figures 8.33 and 8.34.
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Table 8.2: Simulation example: maximal admissible variable time delay τ̄ for con-
ventional LMI approaches and SGT approaches that include the packetized nature of
network transmissions.

approach theorem maximal τ̄

LMI Theorem 6.3(i) 5
LMI Theorem 6.3(ii) 1

SGT Theorem 7.1 for P1 4
SGT Theorem 7.1 for P3 2

SGT acausal Theorem 8.2 for P1 6
SGT acausal Theorem 8.2 for P3 3
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τ̄ = 6, τ∗A = 3
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Figure 8.33: Simulation example: Bode magnitude plots of M(z)α in condition (8.11)
for protocol P1.
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Figure 8.34: Simulation example: Bode magnitude plots of M(z)α in condition (8.11)
for protocol P3.

Figure 8.33 reveals that one can show stability for a maximal value of τ̄ = 6 with the
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proposed theorem for P1, which is larger than using the LMI-based approach.

A maximum τ̄ = 3 is achieved for protocol P3 as depicted in Figure 8.34. Please
note that one can find delay patterns for τ̄ = 4 (see Figures 6.7 and 6.8) that lead to
instability for the setting in the LMI-based approach in Section 6.2.2. Hence, the upper
bound provided by Theorem 8.2 equals the largest achievable value for the admissible
time-varying delay. An over-estimation of the gain as stated in (8.12) for P3 will often
lead to a smaller admissible τ̄ , which is not the case for the presented example, see
green dashed line in Figure 8.34. Table 8.2 compares of the results for all considered
approaches for the simulation example.

8.5 Laboratory Experiment

Theorem 8.2 is also evaluated for the mass-spring laboratory experiment introduced in
Section 7.4. Figures 8.35 and 8.35 show the resulting Bode magnitude plots of M(z)α∗

in Theorem 8.2. For the present lab setup, the choice of the acausal delay τ∗A in terms
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τ̄ = 4, τ∗A = 2

τ̄ = 5, τ∗A = 2

τ̄ = 6, τ∗A = 3

Figure 8.35: Experiment: Bode magnitude plots of M(z)α in condition (8.11) for
protocol P1.

of the use of the floor or ceiling-operator stated in (8.9a) for protocol P1 does not yield
any differences.

A maximal admissible time-varying delay of τ̄ = 4 for P1 as well as τ̄ = 2 for P3

follow the evaluation of Theorem 8.2. Hence, a less conservative stability result is
obtained, when compared to the basic version of the SGT-based Theorem 7.1. This is
also summarized in Table 8.3.

Figures 8.37 and 8.38 underpin that already τ̄ = 5 and τ̄ = 3 result in an unstable
feedback loops for protocols P1 and P2, respectively. As a result, the experiment is
stopped because the cord jumps out of the pulley. Please note that this was predicted
by Theorem 8.2 as shown in Table 8.3.
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Figure 8.36: Experiment: Bode magnitude plots of M(z)α in condition (8.11) for
protocol P3.

Table 8.3: Experiment: maximal admissible variable time delay τ̄ for the different SGT
approaches that include the packetized nature of network transmissions.

approach theorem maximal τ̄

SGT Theorem 7.1 with P1 2
SGT Theorem 7.1 with P3 1

SGT acausal Theorem 8.2 with P1 4
SGT acausal Theorem 8.2 with P3 2
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Figure 8.37: Experiment: step responses (yk) and actuating signals (uk) for different
maximal admissible τ̄ utilizing protocol P1 for the acausal design and analysis approach.
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Figure 8.38: Experiment: step responses (yk) and actuating signals (uk) for different
maximal admissible τ̄ utilizing protocol P3 for the acausal design and analysis approach.
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Chapter 9

Outlook

This work focuses on various aspects that appear in networked control systems, where
the data is sent in separate packets. The correct consideration of this packet-based
characteristics is vital for the analysis and controller design.

The very basis is laid by an accurate modeling and simulation of data transmissions
subject to time-varying packet delays. It is also shown in the present work that the
analysis and design of packetized NCS is always a trade-off between the properties
(and thus assumptions) on the network and the complexity for the controller design
and stability analysis. This can be seen, e.g., by the proposed robust control approach
for buffered networked systems as well as by the adaptive methods introduced in this
thesis.

Novel stability criteria are proposed for NCS, where the data transmissions occur with
time-varying packet delays while different protocols are in place. The considered proto-
cols differ in their packet selection, packet skipping and hold mechanisms. It is pointed
out that it is of utmost importance to include the packet-based characteristics of the
data transmissions in the analysis, which is commonly not explicitly done in LMI-based
approaches.

The goal of this thesis was to bridge the gap between classical methods from automatic
control and novel networked control systems by incorporating the effects of packet-
based data transmissions. An important aspect was to come up with methods, which
are easy to apply and simple to implement. For example, the introduced SGT-based
approaches are an extension of classical frequency domain techniques that preserves the
easy-to-use and computationally inexpensive nature.

Various enhancements of the introduced criteria are possible such as, e.g., to focus
on dedicated frequency ranges in the analysis. Further extensions may deal with the
inclusion of additional protocols and the generalization to more complex networked
structures, such as multi-loop systems. Also, an improved alleviation of the effects due
to external perturbations and packet dropout are of interest for future research.

187



188



Appendix A

Filtered Smith Predictor

The classical Smith predictor [Smi59] is a structure to control a linear plant P (z) =

P̂ (z)z−d̂ that includes a constant and known time delay d̂. Figure A.1 shows a feedback

C̃(z)

plant P (z)

P̂ (z) z−d̂
(rk) (ek) (uk)

(dk)
(yk)

−

Figure A.1: Unity feedback loop with a nominal plant P̂ (z), nominal plant delay d̂
and controller C̃(z). Sequences (rk) and (dk) represent the reference input and the
disturbance, respectively.

loop with such a plant and a controller C̃(z) that should be designed to track a reference
sequence (rk) and reduce the effect of a disturbance (dk). The overall transfer function
from the reference (rk) to the output (yk) is given by

T̃ (z) =
C̃(z)P̂ (z)z−d̂

1 + C̃(z)P̂ (z)z−d̂
(A.1)

The main idea of the Smith predictor is to design a controller C̃(z) such that the
feedback loop in Figure A.1 is equivalent to Figure A.2 with transfer function

T (z) =
C(z)P̂ (z)

1 + C(z)P̂ (z)
z−d̂ (A.2)

and, as a consequence, controller C(z) can be designed for the nominal, delay-free case.

C(z) P̂ (z) z−d̂
(rk) (ek) (uk)

(dk)
(yk)

−

Figure A.2: Target setup for the classical Smith predictor.
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The requirement T (z) = T̃ (z) yields a relation between the two controllers such that

C̃(z) =
C(z)

1 + C(z)
(
P̂ (z)− P̂ (z)z−d̂

) , (A.3)

which can be graphically represented as in Figure A.3. For F (z) = 1, one gets the

C(z)

plant P (z)

P̂ (z) z−d̂

P̂ (z) z−d̂

F (z)

(rk) (ek) (uk)
(dk)

(yk)

−

−

Figure A.3: Classical Smith predictor with additional filter transfer function F (z).

classical Smith predictor structure, where a copy of the nominal plant is used in parallel
to the real-world plant to generate an additional error signal that is used by the nominal
control loop formed by C(z) and P̂ (z). Consequently, the relation between (rk) and
(uk) is given by

ũ(z) = Z
{

(uk)
}

=
C(z)

1 + C(z)P̂ (z)
r̃(z) (A.4)

with r̃(z) = Z
{

(rk)
}

and between (dk) and (yk) one gets

ỹ(z) = P̂ (z)z−d̂
(
ũ(z) + d̃(z)

)
= P̂ (z)z−d̂ d̃(z) (A.5)

with d̃(z) = Z
{

(dk)
}

for the case that rk = 0 for all k. Additionally, it is assumed
in (A.5) that the plant model is identical to the model used in the predictor. In this

case, ũ(z) = −C(z)P̂ (z)ũ(z) +C(z)P̂ (z)z−d̂ũ(z)−C(z)P̂ (z)z−d̂ũ(z) +C(z)r̃(z) yields
ũ(z) = 0 for r̃(z) = 0. The resulting effect of disturbance (dk) on the output (yk) in
(A.5) makes it clear that the classical Smith predictor must only be used for stable
plants.

Several modified (filtered) Smith predictors as, e.g., in [NRC09] are proposed to enable
one to control unstable plants as well. The main idea here is to introduce an additional
filter transfer function F (z) as shown in Figure A.3 to weight the difference between
the output of the physical plant and the predicted output. Thus the modified feedback
loop can be described by

ỹ(z) =
C(z)P (z)

1 + C(z)P̂ (z) + C(z)F (z)
(
P (z)− P̂ (z)z−d̂

) r̃(z) (A.6)

+
P (z)

(
1 + C(z)P̂ (z)− C(z)F (z)P̂ (z)z−d̂

)

1 + C(z)P̂ (z) + C(z)F (z)
(
P (z)− P̂ (z)z−d̂

) d̃(z)
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and

ũ(z) =
C(z)

1 + C(z)P̂ (z) + C(z)F (z)
(
P (z)− P̂ (z)z−d̂)

) r̃(z) (A.7)

C(z)F (z)P (z)

1 + C(z)P̂ (z) + C(z)F (z)
(
P (z)− P̂ (z)z−d̂

) d̃(z) .

In the nominal case, i.e. P (z) = P̂ (z)z−d̂, the transfer functions between inputs (rk),
(dk) and (yk), (uk) are given as

(rk)→ (yk) T (z) =
C(z)P (z)

1 + C(z)P̂ (z)
, (A.8a)

(dk)→ (yk) S(z) = P (z)

[
1− C(z)F (z)P (z)

1 + C(z)P̂ (z)

]
, (A.8b)

(rk)→ (uk) Tu(z) =
C(z)

1 + C(z)P̂ (z)
, (A.8c)

(dk)→ (uk) Su(z) = −C(z)P (z)F (z)

1 + C(z)P̂ (z)
. (A.8d)

Transfer functions T (z) and Tu(z) are stable by design, e.g., using algebraic synthesis
[Che06]. The feedback loop in Figure A.3 is internally stable [DFT09] if P (z) and
F (z) are stable, see (A.8b) and (A.8d). To get rid of the limitation to stable plants,
Figure A.3 is drawn in a different way in Figure A.4.

C(z)

plant P (z)

P̂ (z) z−d̂

P̂ (z) z−d̂

F (z)

F (z)

H(z)

(rk) (ek) (uk)
(dk)

(yk)

−

−

Figure A.4: Modified Figure A.3 to introduce transfer function H(z).

An additional transfer function

H(z) = P̂ (z)− P̂ (z)z−d̂F (z) = P̂ (z)
(

1− z−d̂F (z)
)

(A.9)

is introduced to get the final structure of the filtered Smith predictor depicted in Fig-
ure A.5 with the corresponding relations

ỹ(z) =
C(z)P (z)

1 + C(z)H(z) + P (z)C(z)F (z)
r̃(z) (A.10)

+
P (z)

(
1 + C(z)H(z)

)

1 + C(z)H(z) + P (z)C(z)F (z)
d̃(z)
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filtered Smith predictor

V (z) C(z) P (z)

plant
H(z)

F (z)

(rk) (uk)
(dk)

(yk)

−

Figure A.5: Filtered Smith predictor.

and

ũ(z) =
C(z)

1 + C(z)H(z) + P (z)C(z)F (z)
r̃(z) (A.11)

− C(z)F (z)P (z)

1 + C(z)H(z) + P (z)C(z)F (z)
d̃(z) .

The choice of H(z) as in (A.9) in relations (A.10) and (A.11) yields transfer functions

(rk)→ (yk) T (z) =
C(z)P (z)

1 + C(z)P̂ (z)
, (A.12a)

(dk)→ (yk) S(z) =
P (z)

1 + C(z)P̂ (z)
+
P (z)C(z)H(z)

1 + C(z)P̂ (z)
, (A.12b)

(rk)→ (uk) Tu(z) =
C(z)

1 + C(z)P̂ (z)
, (A.12c)

(dk)→ (uk) Su(z) = −C(z)P (z)F (z)

1 + C(z)P̂ (z)
, (A.12d)

because 1 +C(z)H(z) + P (z)C(z)F (z) = 1 +C(z)P̂ (z) holds. Transfer functions T (z)
and Tu(z) are again stable by the nominal controller design as for the classical Smith
predictor. What about the stability of (A.12b) and (A.12d) that depend on the specific
choice of F (z) and the resulting H(z) defined in (A.9)? A stable filter transfer function

F (z) =
µF (z)

νF (z)
(A.13)

is designed [NRC09] such that

H(z) =
µ̂(z)

ν̂(z)

(
1− z−d̂µF (z)

νF (z)

)
=
µ̂(z)

(
zd̂νF (z)− µF (z)

)

zd̂ν̂(z)νF (z)
(A.14)

with
zd̂ νF (z)− µF (z) = 0 ∀z | ν̂(z) = 0 ∧ |z| ≥ 1 . (A.15)

to compensate all unstable poles in the denominator polynomial ν̂(z) of plant

P̂ (z) =
µ̂(z)

ν̂(z)
(A.16)

in H(z), which is possible because all parts of (A.14) are exactly realized in the very
same predictive controller. Hence, H(z) is stable. This implies that

S(z) =
T (z)

C(z)
+ T (z)H(z) (A.17)
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is stable, because T (z)
C(z) is also stable by design since no unstable zeros are canceled

between P̂ (z) and C(z). In addition, (A.12d) equals

Su(z) = −T (z)F (z) , (A.18)

which is stable as well. As a consequence, the filter Smith predictor in Figure A.5 is
also internally stable for unstable plants.

For the example plant (1.2) in Chapters 1 and 6, one has to compensate one pole at
z1 = 1.0513. Therefore, (A.15) has to hold for z1 and a chosen filter denominator
polynomial νF (z) = z − λ with λ = 0.95, which is possible for a numerator polynomial
µF (z) = z − f with f = 0.968. Consequently, the resulting filter transfer function

F (z) =

(
1− λ
1− f

)
z − f
z − λ (A.19)

with a dc-gain equal to one is given as in (1.8) and

H(z) =
0.0051271(z − 1)

(
z2 + 1.773z + 1.199

) (
z2 − 0.6713z + 1.199

)

z5(z − 0.95)
(A.20)

is the second transfer function needed for the filtered Smith predictor in Figure A.5.
The corresponding zeros of H(z) are z1,2 = −0.8863± j0.6431, z3,4 = 0.3357± j1.0421
and z5 = 1.
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Appendix B

Delay and Packet Patterns for
the SGT in Chapter 7

B.1 Patterns for P1

k −1 0 1 2 3 4 5 6

b
(0)
k = ak 0 �1 �2 �3 �4 �4 �4 4

b
(1)
k �0 �0 �1 �2 �3 �4 �4 4

b
(2)
k �0 �0 �0 �1 �2 �3 �4 4

b
(3)
k �0 �0 �0 �0 1 2 3 4

wk 0 −1 −2 −3 −3 −2 −1 0
τj 3 3 3 3 ≥ 2 ≥ 1 ≥ 0

(a) T = 3

k −1 0 1 2 3 4 5 6 7

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �5 �5 5

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �5 5

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 5

b
(3)
k �0 �0 �0 �0 1 2 3 4 5

wk 0 −1 −2 −3 −3 −3 −2 −1 0
τj 3 3 3 3 3 ≥ 2 ≥ 1 ≥ 0

(b) T = 4

k −1 0 1 2 3 4 5 6 7 8

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �6 �6 6

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �6 6

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 6

b
(3)
k �0 �0 �0 �0 1 2 3 4 5 6

wk 0 −1 −2 −3 −3 −3 −3 −2 −1 0
τj 3 3 3 3 3 3 ≥ 2 ≥ 1 ≥ 0

(c) T = 5

Figure B.1: P1, τ̄ = 3 and T ∈ {3, 4, 5}.
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k −1 0 1 2 3 4 5 6 7 8 9

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �7 �7 �7 7

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �7 �7 7

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 �7 7

b
(3)
k �0 �0 �0 �0 1 2 3 4 5 6 7

wk 0 −1 −2 −3 −3 −3 −3 −3 −2 −1 0
τj 3 3 3 3 3 3 3 ≥ 2 ≥ 1 ≥ 0

(a) T = 6

k −1 0 1 2 3 4 5 6 7 8 9 10

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �7 �8 �8 �8 8

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �8 8

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 8

b
(3)
k �0 �0 �0 �0 1 2 3 4 5 6 7 8

wk 0 −1 −2 −3 −3 −3 −3 −3 −3 −2 −1 0
τj 3 3 3 3 3 3 3 3 ≥ 2 ≥ 1 ≥ 0

(b) T = 7

k −1 0 1 2 3 4 5 6 7 8 9 10 11

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �9 �9 9

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �9 9

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 9

b
(3)
k �0 �0 �0 �0 1 2 3 4 5 6 7 8 9

wk 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −2 −1 0
τj 3 3 3 3 3 3 3 3 3 ≥ 2 ≥ 1 ≥ 0

(c) T = 8

k −1 0 1 2 3 4 5 6 7 8 9 10 11 12

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��10 ��10 10

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��10 10

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 10

b
(3)
k �0 �0 �0 �0 1 2 3 4 5 6 7 8 9 10

wk 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0
τj 3 3 3 3 3 3 3 3 3 3 ≥ 2 ≥ 1 ≥ 0

(d) T = 9

Figure B.2: P1, τ̄ = 3 and T ∈ {6, 7, 8, 9}.

k −1 0 1 2 3 4 5

b
(0)
k = ak 0 �1 �2 �3 �4 �4 4

b
(1)
k �0 �0 �1 �2 �3 �4 4

b
(2)
k �0 �0 �0 1 2 3 4

wk 0 −1 −2 −2 −2 −1 0
τj 2 2 2 2 ≥ 1 ≥ 0

(a) T = 3

Figure B.3: P1, τ̄ = 2 and T = 3.

196



k −1 0 1 2 3 4 5 6

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �5 5

b
(1)
k �0 �0 �1 �2 �3 �4 �5 5

b
(2)
k �0 �0 �0 1 2 3 4 5

wk 0 −1 −2 −2 −2 −2 −1 0
τj 2 2 2 2 2 ≥ 1 ≥ 0

(a) T = 4
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b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �6 6

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 6

b
(2)
k �0 �0 �0 1 2 3 4 5 6

wk 0 −1 −2 −2 −2 −2 −2 −1 0
τj 2 2 2 2 2 2 ≥ 1 ≥ 0

(b) T = 5

k −1 0 1 2 3 4 5 6 7 8

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �7 �7 7

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �7 7

b
(2)
k �0 �0 �0 1 2 3 4 5 6 7

wk 0 −1 −2 −2 −2 −2 −2 −2 −1 0
τj 2 2 2 2 2 2 2 ≥ 1 ≥ 0

(c) T = 6

k −1 0 1 2 3 4 5 6 7 8 9

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �7 �8 �8 8

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 8

b
(2)
k �0 �0 �0 1 2 3 4 5 6 7 8

wk 0 −1 −2 −2 −2 −2 −2 −2 −2 −1 0
τj 2 2 2 2 2 2 2 2 ≥ 1 ≥ 0

(d) T = 7

k −1 0 1 2 3 4 5 6 7 8 9 10

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �9 9

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 9

b
(2)
k �0 �0 �0 1 2 3 4 5 6 7 8 9

wk 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −1 0
τj 2 2 2 2 2 2 2 2 2 ≥ 1 ≥ 0

(e) T = 8

k −1 0 1 2 3 4 5 6 7 8 9 10 11

b
(0)
k = ak 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��10 10

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 10

b
(2)
k �0 �0 �0 1 2 3 4 5 6 7 8 9 10

wk 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0
τj 2 2 2 2 2 2 2 2 2 2 ≥ 1 ≥ 0

(f) T = 9

Figure B.4: P1, τ̄ = 2 and T ∈ {4, 5, 6, 7, 8, 9}.
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B.2 Patterns for P2

k −1 0 1 2 3 4 5 6 7 8

b
(0)
k = ak 0 �1 �2 3 �4 �4 �4 �4 4 4

b
(1)
k �0 �0 �1 2 �3 �4 �4 �4 4 4

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �4 4 4

b
(3)
k �0 �0 �0 �0 1 �2 �3 4 4 4

wk 0 −1 −2 0 −3 −3 −3 0 0 0
τj 3 1 0 3 3 ≥ 2 ≥ 1 ≥ 0 ≥ 0

(a) T = 3

k −1 0 1 2 3 4 5 6 7 8 9

b
(0)
k = ak 0 �1 �2 3 �4 �5 �5 �5 5 5 5

b
(1)
k �0 �0 �1 2 �3 �4 �5 �5 5 5 5

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 5 5 5

b
(3)
k �0 �0 �0 �0 1 �2 �3 4 5 5 5

wk 0 −1 −2 0 −3 −4 −4 −1 0 0 0
τj 3 1 0 3 3 ≥ 2 ≥ 1 ≥ 0 ≥ 0 ≥ 0

(b) T = 4

k −1 0 1 2 3 4 5 6 7 8 9 10

b
(0)
k = ak 0 �1 �2 3 �4 �5 �6 �6 �6 6 6 6

b
(1)
k �0 �0 �1 2 �3 �4 �5 �6 �6 6 6 6

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 6 6 6

b
(3)
k �0 �0 �0 �0 1 �2 �3 4 5 6 6 6

wk 0 −1 −2 0 −3 −4 −5 −2 −1 0 0 0
τj 3 1 0 3 3 3 ≥ 2 ≥ 1 ≥ 0 ≥ 0 ≥ 0

(c) T = 5

k −1 0 1 2 3 4 5 6 7 8 9 10 11

b
(0)
k = ak 0 �1 �2 3 �4 �5 �6 �7 �7 �7 7 7 7

b
(1)
k �0 �0 �1 2 �3 �4 �5 �6 �7 �7 7 7 7

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 �7 7 7 7

b
(3)
k �0 �0 �0 �0 1 �2 �3 4 5 6 7 7 7

wk 0 −1 −2 0 −3 −4 −5 −3 −2 −1 0 0 0
τj 3 1 0 3 3 3 3 ≥ 2 ≥ 1 ≥ 0 ≥ 0 ≥ 0

(d) T = 6

k −1 0 1 2 3 4 5 6 7 8 9 10 11 12

b
(0)
k = ak 0 �1 �2 3 �4 �5 �6 7 �8 �8 �8 8 8 8

b
(1)
k �0 �0 �1 2 �3 �4 �5 6 �7 �8 �8 8 8 8

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 8 8 8

b
(3)
k �0 �0 �0 �0 1 �2 �3 4 5 �6 �7 8 8 8

wk 0 −1 −2 0 −3 −4 −5 0 −3 −3 −3 0 0 0
τj 3 1 0 3 3 1 0 3 ≥ 2 ≥ 1 ≥ 0 ≥ 0 ≥ 0

(e) T = 7

Figure B.5: P2, τ̄ = 3 and T ∈ {3, 4, 5, 6, 7}.
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k −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
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(0)
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b
(1)
k �0 �0 �1 2 �3 �4 �5 6 �7 �8 �9 �9 9 9 9

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 9 9 9

b
(3)
k �0 �0 �0 �0 1 �2 �3 4 5 �6 �7 8 9 9 9

wk 0 −1 −2 0 −3 −4 −5 0 −3 −4 −4 −1 0 0 0
τj 3 1 0 3 3 1 0 3 3 ≥ 2 ≥ 1 ≥ 0 ≥ 0 ≥ 0

(a) T = 8

k −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

b
(0)
k = ak 0 �1 �2 3 �4 �5 �6 7 �8 �9 ��10 ��10 ��10 10 10 10

b
(1)
k �0 �0 �1 2 �3 �4 �5 6 �7 �8 �9 ��10 ��10 10 10 10

b
(2)
k �0 �0 �0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 10 10 10

b
(3)
k �0 �0 �0 �0 1 �2 �3 4 5 �6 �7 8 9 10 10 10

wk 0 −1 −2 0 −3 −4 −5 0 −3 −4 −5 −2 −1 0 0 0
τj 3 1 0 3 3 1 0 3 3 3 ≥ 2 ≥ 1 ≥ 0 ≥ 0 ≥ 0

(b) T = 9

Figure B.6: P2, τ̄ = 3 and T ∈ {8, 9}.
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k �0 �0 �0 1 �2 3 4 4

wk 0 −1 0 −2 −3 −1 0 0
τj 2 0 2 2 ≥ 1 ≥ 0 ≥ 0

(a) T = 3

k −1 0 1 2 3 4 5 6 7

b
(0)
k = ak 0 �1 2 �3 �4 �5 �5 5 5

b
(1)
k �0 �0 �1 �2 �3 �4 �5 5 5

b
(2)
k �0 �0 �0 1 �2 3 4 5 5

wk 0 −1 0 −2 −3 −2 −1 0 0
τj 2 0 2 2 2 ≥ 1 ≥ 0 ≥ 0

(b) T = 4

k −1 0 1 2 3 4 5 6 7 8

b
(0)
k = ak 0 �1 2 �3 �4 �5 �6 �6 6 6

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 6 6

b
(2)
k �0 �0 �0 1 �2 3 4 5 6 6

wk 0 −1 0 −2 −3 −2 −2 −1 0 0
τj 2 0 2 2 2 2 ≥ 1 ≥ 0 ≥ 0

(c) T = 5

k −1 0 1 2 3 4 5 6 7 8 9

b
(0)
k = ak 0 �1 2 �3 �4 5 �6 �7 �7 7 7

b
(1)
k �0 �0 �1 �2 �3 �4 �5 �6 �7 7 7

b
(2)
k �0 �0 �0 1 �2 3 4 �5 6 7 7

wk 0 −1 0 −2 −3 0 −2 −3 −1 0 0
τj 2 0 2 2 0 2 2 ≥ 1 ≥ 0 ≥ 0

(d) T = 6

Figure B.7: P2, τ̄ = 2 and T ∈ {3, 4, 5, 6}.
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k −1 0 1 2 3 4 5 6 7 8 9 10

b
(0)
k = ak 0 �1 2 �3 �4 5 �6 �7 �8 �8 8 8
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(a) T = 7
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(c) T = 9

Figure B.8: P2, τ̄ = 2 and T ∈ {7, 8, 9}.
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B.3 Patterns for P3
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(e) T = 7

Figure B.9: P3, τ̄ = 3 and T ∈ {3, 4, 5, 6, 7}.
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Figure B.10: P3, τ̄ = 3 and T ∈ {8, 9}.
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(2)
k �0 �0 �0 1 �2 �3 4 �5 �6 6 �6

wk 0 −1 −2 −2 −3 −4 −2 −2 −2 0 0
τj 2 1 0 2 1 0 2 1 0 2

(c) T = 5

k −1 0 1 2 3 4 5 6 7 8 9 10

b
(0)
k = ak 0 �1 �2 3 �4 �5 6 �7 �7 7 �7 �7

b
(1)
k �0 �0 �1 2 �3 �4 5 �6 �7 7 �7 �7

b
(2)
k �0 �0 �0 1 �2 �3 4 �5 �6 7 �7 �7

wk 0 −1 −2 −2 −3 −4 −2 −3 −3 0 0 0
τj 2 1 0 2 1 0 2 1 0 2 1

(d) T = 6

Figure B.11: P3, τ̄ = 2 and T ∈ {3, 4, 5, 6}.
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k −1 0 1 2 3 4 5 6 7 8 9 10 11

b
(0)
k = ak 0 �1 �2 3 �4 �5 6 �7 �8 8 �8 �8 8

b
(1)
k �0 �0 �1 2 �3 �4 5 �6 �7 8 �8 �8 8

b
(2)
k �0 �0 �0 1 �2 �3 4 �5 �6 7 �8 �8 8

wk 0 −1 −2 −2 −3 −4 −2 −3 −4 −1 −1 −1 0
τj 2 1 0 2 1 0 2 1 0 2 1 0

(a) T = 7

k −1 0 1 2 3 4 5 6 7 8 9 10 11 12

b
(0)
k = ak 0 �1 �2 3 �4 �5 6 �7 �8 9 �9 �9 9 �9

b
(1)
k �0 �0 �1 2 �3 �4 5 �6 �7 8 �9 �9 9 �9

b
(2)
k �0 �0 �0 1 �2 �3 4 �5 �6 7 �8 �9 9 �9

wk 0 −1 −2 −2 −3 −4 −2 −3 −4 −2 −2 −2 0 0
τj 2 1 0 2 1 0 2 1 0 2 1 0 2

(b) T = 8

k −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

b
(0)
k = ak 0 �1 �2 3 �4 �5 6 �7 �8 9 ��10 ��10 10 ��10 ��10

b
(1)
k �0 �0 �1 2 �3 �4 5 �6 �7 8 �9 ��10 10 ��10 ��10

b
(2)
k �0 �0 �0 1 �2 �3 4 �5 �6 7 �8 �9 10 ��10 ��10

wk 0 −1 −2 −2 −3 −4 −2 −3 −4 −2 −3 −3 0 0 0
τj 2 1 0 2 1 0 2 1 0 2 1 0 2 1

(c) T = 9

Figure B.12: P3, τ̄ = 2 and T ∈ {7, 8, 9}.
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Appendix C

Delay and Packet Patterns for
the acausal SGT in Chapter 8

C.1 Patterns for P1

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(2)
k

0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11

b
(3)
k

0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11

b
(0)
k = ak 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(1)
k k 0 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11

b
(2)
k

0 0 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11

b
(3)
k

0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

b
(2)
k − ak 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0 0 0

b
(3)
k − ak 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0 0 0 0

packet arr. no no no no no no yes yes yes yes yes yes yes yes yes yes yes yes yes yes
ck 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11

wk 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0 0 0 0

block A A B B B B B B B B B C C 0 0 0 0
τj 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Figure C.1: P1, τ̄ = 3, T = 10 and τA = 0

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(2)
k

0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11

b
(−1)
k

0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(0)
k = ak 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(1)
k

0 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11

b
(2)
k

0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

b
(2)
k − ak 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0 0 0

packet arr. no no no no no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
ck 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11

wk 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0 0 0

block A B B B B B B B B B B C 0 0 0 0 0
τj 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Figure C.2: P1, τ̄ = 3, T = 10 and τA = 1
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k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−2)
k

0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11

b
(1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(−2)
k

0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11

b
(−1)
k

0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(0)
k = ak 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(1)
k

0 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11

b
(−2)
k − ak 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 −0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

packet arr. no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
ck 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11

wk 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0

block A B B B B B B B B B B C 0 0 0 0 0 0 0
τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

Figure C.3: P1, τ̄ = 3, T = 10 and τA = 2

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−3)
k

1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11

b
(−2)
k

0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11

b
(−1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(−3)
k

1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11

b
(−2)
k

0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(−1)
k

0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(0)
k = ak 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(−3)
k − ak 1 2 3 3 3 3 3 3 3 3 3 2 1 0 0 0 0 0 0 0

b
(−2)
k − ak 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

packet arr. yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
ck 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11

wk 1 2 3 3 3 3 3 3 3 3 3 2 1 0 0 0 0 0 0 0

block A A B B B B B B B B B C C 0 0 0 0 0 0 0
τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3

Figure C.4: P1, τ̄ = 3, T = 10 and τA = 3

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 2 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0

2 −1 1 τj 1 1 1 1 1 1 1 1 1 1 1 1 1
wk 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0

3 0 3 τj 3 3 3 3 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0

3 −1 2 τj 2 2 2 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0

3 −2 1 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0

3 −3 0 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 1 2 3 3 3 3 3 3 3 3 3 2 1 0 0 0 0

4 0 4 τj 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
wk 0 0 0 0 −1 −2 −3 −4 −4 −4 −4 −4 −4 −4 −4 −3 −2 −1 0

4 −1 3 τj 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0 0

4 −2 2 τj 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0

4 −3 1 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 0 1 2 3 3 3 3 3 3 3 3 3 2 1 0 0 0 0 0

4 −4 0 τj −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4
wk 1 2 3 4 4 4 4 4 4 4 4 3 2 1 0 0 0 0 0

Figure C.5: P1, τ̄ ∈ {2, 3, 4} and T = 10
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0

2 −1 1 τj 1 1 1 1 1 1 1 1 1 1 1 1
wk 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 1 2 2 2 2 2 2 2 2 2 1 0 0 0

3 0 3 τj 3 3 3 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0

3 −1 2 τj 2 2 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0

3 −2 1 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 0 1 2 2 2 2 2 2 2 2 2 1 0 0 0 0

3 −3 0 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 1 2 3 3 3 3 3 3 3 3 2 1 0 0 0 0

4 0 4 τj 4 4 4 4 4 4 4 4 4 4 4 4 4 4
wk 0 0 0 0 −1 −2 −3 −4 −4 −4 −4 −4 −4 −4 −3 −2 −1 0

4 −1 3 τj 3 3 3 3 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0 0

4 −2 2 τj 2 2 2 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0

4 −3 1 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 0 1 2 3 3 3 3 3 3 3 3 2 1 0 0 0 0 0

4 −4 0 τj −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4
wk 1 2 3 4 4 4 4 4 4 4 3 2 1 0 0 0 0 0

Figure C.6: P1, τ̄ ∈ {2, 3, 4} and T = 9

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −1 0

2 −1 1 τj 1 1 1 1 1 1 1 1 1 1 1
wk 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 1 2 2 2 2 2 2 2 2 1 0 0 0

3 0 3 τj 3 3 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −2 −1 0

3 −1 2 τj 2 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0

3 −2 1 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 0 1 2 2 2 2 2 2 2 2 1 0 0 0 0

3 −3 0 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 1 2 3 3 3 3 3 3 3 2 1 0 0 0 0

4 0 4 τj 4 4 4 4 4 4 4 4 4 4 4 4 4
wk 0 0 0 0 −1 −2 −3 −4 −4 −4 −4 −4 −4 −3 −2 −1 0

4 −1 3 τj 3 3 3 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −2 −1 0 0

4 −2 2 τj 2 2 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0

4 −3 1 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 0 1 2 3 3 3 3 3 3 3 2 1 0 0 0 0 0

4 −4 0 τj −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4
wk 1 2 3 4 4 4 4 4 4 3 2 1 0 0 0 0 0

Figure C.7: P1, τ̄ ∈ {2, 3, 4} and T = 8

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 2 2 2 2 2 2 2 2 2
wk 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −1 0

2 −1 1 τj 1 1 1 1 1 1 1 1 1 1
wk 0 0 −1 −1 −1 −1 −1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 1 2 2 2 2 2 2 2 1 0 0 0

3 0 3 τj 3 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −2 −1 0

3 −1 2 τj 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −1 0 0

3 −2 1 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 0 1 2 2 2 2 2 2 2 1 0 0 0 0

3 −3 0 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 1 2 3 3 3 3 3 3 2 1 0 0 0 0

4 0 4 τj 4 4 4 4 4 4 4 4 4 4 4 4
wk 0 0 0 0 −1 −2 −3 −4 −4 −4 −4 −4 −3 −2 −1 0

4 −1 3 τj 3 3 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −2 −1 0 0

4 −2 2 τj 2 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0

4 −3 1 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 0 1 2 3 3 3 3 3 3 2 1 0 0 0 0 0

4 −4 0 τj −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4
wk 1 2 3 4 4 4 4 4 3 2 1 0 0 0 0 0

Figure C.8: P1, τ̄ ∈ {2, 3, 4} and T = 7
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 2 2 2 2 2 2 2 2
wk 0 0 −1 −2 −2 −2 −2 −2 −2 −1 0

2 −1 1 τj 1 1 1 1 1 1 1 1 1
wk 0 0 −1 −1 −1 −1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 1 2 2 2 2 2 2 1 0 0 0

3 0 3 τj 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 −1 −2 −3 −3 −3 −3 −3 −2 −1 0

3 −1 2 τj 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 −1 −2 −2 −2 −2 −2 −2 −1 0 0

3 −2 1 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 0 1 2 2 2 2 2 2 1 0 0 0 0

3 −3 0 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 1 2 3 3 3 3 3 2 1 0 0 0 0

4 0 4 τj 4 4 4 4 4 4 4 4 4 4 4
wk 0 0 0 0 −1 −2 −3 −4 −4 −4 −4 −3 −2 −1 0

4 −1 3 τj 3 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 0 −1 −2 −3 −3 −3 −3 −3 −2 −1 0 0

4 −2 2 τj 2 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 0 −1 −2 −2 −2 −2 −2 −2 −1 0 0 0

4 −3 1 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 0 1 2 3 3 3 3 3 2 1 0 0 0 0 0

4 −4 0 τj −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4
wk 1 2 3 4 4 4 4 3 2 1 0 0 0 0 0

Figure C.9: P1, τ̄ ∈ {2, 3, 4} and T = 6

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 2 2 2 2 2 2 2
wk 0 0 −1 −2 −2 −2 −2 −2 −1 0

2 −1 1 τj 1 1 1 1 1 1 1 1
wk 0 0 −1 −1 −1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 −2 −2
wk 1 2 2 2 2 2 1 0 0 0

3 0 3 τj 3 3 3 3 3 3 3 3 3
wk 0 0 0 −1 −2 −3 −3 −3 −3 −2 −1 0

3 −1 2 τj 2 2 2 2 2 2 2 2 2
wk 0 0 0 −1 −2 −2 −2 −2 −2 −1 0 0

3 −2 1 τj −2 −2 −2 −2 −2 −2 −2 −2 −2
wk 0 1 2 2 2 2 2 1 0 0 0 0

3 −3 0 τj −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 1 2 3 3 3 3 2 1 0 0 0 0

4 0 4 τj 4 4 4 4 4 4 4 4 4 4
wk 0 0 0 0 −1 −2 −3 −4 −4 −4 −3 −2 −1 0

4 −1 3 τj 3 3 3 3 3 3 3 3 3 3
wk 0 0 0 0 −1 −2 −3 −3 −3 −3 −2 −1 0 0

4 −2 2 τj 2 2 2 2 2 2 2 2 2 2
wk 0 0 0 0 −1 −2 −2 −2 −2 −2 −1 0 0 0

4 −3 1 τj −3 −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 0 1 2 3 3 3 3 2 1 0 0 0 0 0

4 −4 0 τj −4 −4 −4 −4 −4 −4 −4 −4 −4 −4
wk 1 2 3 4 4 4 3 2 1 0 0 0 0 0

Figure C.10: P1, τ̄ ∈ {2, 3, 4} and T = 5

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 2 2 2 2 2 2
wk 0 0 −1 −2 −2 −2 −2 −1 0

2 −1 1 τj 1 1 1 1 1 1 1
wk 0 0 −1 −1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 −2
wk 1 2 2 2 2 1 0 0 0

3 0 3 τj 3 3 3 3 3 3 3 3
wk 0 0 0 −1 −2 −3 −3 −3 −2 −1 0

3 −1 2 τj 2 2 2 2 2 2 2 2
wk 0 0 0 −1 −2 −2 −2 −2 −1 0 0

3 −2 1 τj −2 −2 −2 −2 −2 −2 −2 −2
wk 0 1 2 2 2 2 1 0 0 0 0

3 −3 0 τj −3 −3 −3 −3 −3 −3 −3 −3
wk 1 2 3 3 3 2 1 0 0 0 0

4 0 4 τj 4 4 4 4 4 4 4 4 4
wk 0 0 0 0 −1 −2 −3 −4 −4 −3 −2 −1 0

4 −1 3 τj 3 3 3 3 3 3 3 3 3
wk 0 0 0 0 −1 −2 −3 −3 −3 −2 −1 0 0

4 −2 2 τj 2 2 2 2 2 2 2 2 2
wk 0 0 0 0 −1 −2 −2 −2 −2 −1 0 0 0

4 −3 1 τj −3 −3 −3 −3 −3 −3 −3 −3 −3
wk 0 1 2 3 3 3 2 1 0 0 0 0 0

4 −4 0 τj −4 −4 −4 −4 −4 −4 −4 −4 −4
wk 1 2 3 4 4 3 2 1 0 0 0 0 0

Figure C.11: P1, τ̄ ∈ {2, 3, 4} and T = 4

208



τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 2 2 2 2 2
wk 0 0 −1 −2 −2 −2 −1 0

2 −1 1 τj 1 1 1 1 1 1
wk 0 0 −1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2
wk 1 2 2 2 1 0 0 0

3 0 3 τj 3 3 3 3 3 3 3
wk 0 0 0 −1 −2 −3 −3 −2 −1 0

3 −1 2 τj 2 2 2 2 2 2 2
wk 0 0 0 −1 −2 −2 −2 −1 0 0

3 −2 1 τj −2 −2 −2 −2 −2 −2 −2
wk 0 1 2 2 2 1 0 0 0 0

3 −3 0 τj −3 −3 −3 −3 −3 −3 −3
wk 1 2 3 3 2 1 0 0 0 0

4 0 4 τj 4 4 4 4 4 4 4 4
wk 0 0 0 0 −1 −2 −3 −4 −3 −2 −1 0

4 −1 3 τj 3 3 3 3 3 3 3 3
wk 0 0 0 0 −1 −2 −3 −3 −2 −1 0 0

4 −2 2 τj 2 2 2 2 2 2 2 2
wk 0 0 0 0 −1 −2 −2 −2 −1 0 0 0

4 −3 1 τj −3 −3 −3 −3 −3 −3 −3 −3
wk 0 1 2 3 3 2 1 0 0 0 0 0

4 −4 0 τj −4 −4 −4 −4 −4 −4 −4 −4
wk 1 2 3 4 3 2 1 0 0 0 0 0

Figure C.12: P1, τ̄ ∈ {2, 3, 4} and T = 3

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 2 2 2 2
wk 0 0 −1 −2 −2 −1 0

2 −1 1 τj 1 1 1 1 1
wk 0 0 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2
wk 1 2 2 1 0 0 0

3 0 3 τj 3 3 3 3 3 3
wk 0 0 0 −1 −2 −3 −2 −1 0

3 −1 2 τj 2 2 2 2 2 2
wk 0 0 0 −1 −2 −2 −1 0 0

3 −2 1 τj −2 −2 −2 −2 −2 −2
wk 0 1 2 2 1 0 0 0 0

3 −3 0 τj −3 −3 −3 −3 −3 −3
wk 1 2 3 2 1 0 0 0 0

4 0 4 τj 4 4 4 4 4 4 4
wk 0 0 0 0 −1 −2 −3 −3 −2 −1 0

4 −1 3 τj 3 3 3 3 3 3 3
wk 0 0 0 0 −1 −2 −3 −2 −1 0 0

4 −2 2 τj 2 2 2 2 2 2 2
wk 0 0 0 0 −1 −2 −2 −1 0 0 0

4 −3 1 τj −3 −3 −3 −3 −3 −3 −3
wk 0 1 2 3 2 1 0 0 0 0 0

4 −4 0 τj −4 −4 −4 −4 −4 −4 −4
wk 1 2 3 3 2 1 0 0 0 0 0

Figure C.13: P1, τ̄ ∈ {2, 3, 4} and T = 2
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 2 2 2
wk 0 0 −1 −2 −1 0

2 −1 1 τj 1 1 1 1
wk 0 0 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2
wk 1 2 1 0 0 0

3 0 3 τj 3 3 3 3 3
wk 0 0 0 −1 −2 −2 −1 0

3 −1 2 τj 2 2 2 2 2
wk 0 0 0 −1 −2 −1 0 0

3 −2 1 τj −2 −2 −2 −2 −2
wk 0 1 2 1 0 0 0 0

3 −3 0 τj −3 −3 −3 −3 −3
wk 1 2 2 1 0 0 0 0

4 0 4 τj 4 4 4 4 4 4
wk 0 0 0 0 −1 −2 −2 −2 −1 0

4 −1 3 τj 3 3 3 3 3 3
wk 0 0 0 0 −1 −2 −2 −1 0 0

4 −2 2 τj 2 2 2 2 2 2
wk 0 0 0 0 −1 −2 −1 0 0 0

4 −3 1 τj −3 −3 −3 −3 −3 −3
wk 0 1 2 2 1 0 0 0 0 0

4 −4 0 τj −4 −4 −4 −4 −4 −4
wk 1 2 2 2 1 0 0 0 0 0

Figure C.14: P1, τ̄ ∈ {2, 3, 4} and T = 1
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C.2 Gains for P1
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Figure C.15: P1, τ̄ = 1
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Figure C.16: P1, τ̄ = 2
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Figure C.17: P1, τ̄ = 3
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Figure C.18: P1, τ̄ = 4
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Figure C.19: P1, τ̄ = 5
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Figure C.20: P1, τ̄ = 6
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C.3 Calculated gains from P1 applied to data from P3
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Figure C.21: P3, τ̄ = 1: P1 (blue)
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Figure C.22: P3, τ̄ = 2: P1 (blue)
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Figure C.23: P3, τ̄ = 3: P1 (blue)
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Figure C.24: P3, τ̄ = 4: P1 (blue)
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C.4 Patterns for P ′3

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(2)
k

0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11

b
(3)
k

0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11

b
(0)
k = ak 0 0 0 �1 �2 �3 4 �5 �6 �7 8 �9 ��10 ��11 11 ��11 ��11 ��11 11 ��11

b
(1)
k k 0 0 0 0 �1 �2 3 �4 �5 �6 7 �8 �9 ��10 11 ��11 ��11 ��11 11 ��11

b
(2)
k

0 0 0 0 0 �1 2 �3 �4 �5 6 �7 �8 �9 10 ��11 ��11 ��11 11 ��11

b
(3)
k

0 0 0 0 0 0 1 �2 �3 �4 5 �6 �7 �8 9 ��10 ��11 ��11 11 ��11

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

b
(2)
k − ak 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0 0 0

b
(3)
k − ak 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0 0 0 0

packet arr. no no no no no no yes no no no yes no no no yes no no no yes no
ck 0 0 0 0 0 0 1 1 1 1 5 5 5 5 9 9 9 9 11 11

wk 0 0 0 −1 −2 −3 −3 −4 −5 −6 −3 −4 −5 −6 −2 −2 −2 −2 0 0

block A A A B B B B B B B B C C C C D D
τj 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3

Figure C.25: P ′3, τ̄ = 3, T = 10 and τA = 0

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(2)
k

0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11

b
(−1)
k

0 0 �1 �2 �3 4 �5 �6 �7 8 �9 ��10 ��11 11 ��11 ��11 ��11 11 ��11 ��11

b
(0)
k = ak 0 0 0 �1 �2 3 �4 �5 �6 7 �8 �9 ��10 11 ��11 ��11 ��11 11 ��11 ��11

b
(1)
k

0 0 0 0 �1 2 �3 �4 �5 6 �7 �8 �9 10 ��11 ��11 ��11 11 ��11 ��11

b
(2)
k

0 0 0 0 0 1 �2 �3 �4 5 �6 �7 �8 9 ��10 ��11 ��11 11 ��11 ��11

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

b
(2)
k − ak 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0 0 0

packet arr. no no no no no yes no no no yes no no no yes no no no yes no no
ck 0 0 0 0 0 1 1 1 1 5 5 5 5 9 9 9 9 11 11 11

wk 0 0 0 −1 −2 −2 −3 −4 −5 −2 −3 −4 −5 −2 −2 −2 −2 0 0 0

block A A B B B B B B B B C C C C D D D
τj 2 1 0 −1 2 1 0 −1 2 1 0 −1 2 1 0 −1 2

Figure C.26: P ′3, τ̄ = 3, T = 10 and τA = 1
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k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−2)
k

0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11

b
(1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(−2)
k

0 �1 �2 �3 4 �5 �6 �7 8 �9 ��10 ��11 11 ��11 ��11 ��11 11 ��11 ��11 ��11

b
(−1)
k

0 0 �1 �2 3 �4 �5 �6 7 �8 �9 ��10 11 ��11 ��11 ��11 11 ��11 ��11 ��11

b
(0)
k = ak 0 0 0 �1 2 �3 �4 �5 6 �7 �8 �9 10 ��11 ��11 ��11 11 ��11 ��11 ��11

b
(1)
k

0 0 0 0 1 �2 �3 �4 5 �6 �7 �8 9 ��10 ��11 ��11 11 ��11 ��11 ��11

b
(−2)
k − ak 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

packet arr. no no no no yes no no no yes no no no yes no no no yes no no no
ck 0 0 0 0 1 1 1 1 5 5 5 5 9 9 9 9 11 11 11 11

wk 0 0 0 −1 −1 −2 −3 −4 −1 −2 −3 −4 −1 −2 −2 −2 0 0 0 0

block A B B B B B B B B C C C C C C C C
τj 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1

Figure C.27: P ′3, τ̄ = 3, T = 10 and τA = 2
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k
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b
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b
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k �1 �2 �3 4 �5 �6 �7 8 �9 ��10 ��11 11 ��11 ��11 ��11 11 ��11 ��11 ��11 11

b
(−2)
k

0 �1 �2 3 �4 �5 �6 7 �8 �9 ��10 11 ��11 ��11 ��11 11 ��11 ��11 ��11 11

b
(−1)
k

0 0 �1 2 �3 �4 �5 6 �7 �8 �9 10 ��11 ��11 ��11 11 ��11 ��11 ��11 11

b
(0)
k = ak 0 0 0 1 �2 �3 �4 5 �6 �7 �8 9 ��10 ��11 ��11 11 ��11 ��11 ��11 11

b
(−3)
k − ak 1 2 3 3 3 3 3 3 3 3 3 2 1 0 0 0 0 0 0 0

b
(−2)
k − ak 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

packet arr. no no no yes no no no yes no no no yes no no no yes no no no yes
ck 0 0 0 1 1 1 1 5 5 5 5 9 9 9 9 11 11 11 11 11

wk 0 0 0 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −2 0 0 0 0 0

block 0 0 0 B B B B B B B B C C C C C C C C D
τj 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0

Figure C.28: P ′3, τ̄ = 3, T = 10 and τA = 3

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0
wk 0 0 −1 −2 −2 −3 −4 −2 −3 −4 −2 −3 −4 −1 −1 −1 0

2 −1 1 τj 1 0 −1 1 0 −1 1 0 −1 1 0 −1 1 0 −1
wk 0 0 −1 −1 −2 −3 −1 −2 −3 −1 −2 −3 −1 −1 −1 0 0

2 −2 0 τj 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −2
wk 0 0 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −1 0 0 0

3 0 3 τj 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3
wk 0 0 0 −1 −2 −3 −3 −4 −5 −6 −3 −4 −5 −6 −2 −2 −2 −2 0 0

3 −1 2 τj 2 1 0 −1 2 1 0 −1 2 1 0 −1 2 1 0 −1 2
wk 0 0 0 −1 −2 −2 −3 −4 −5 −2 −3 −4 −5 −2 −2 −2 −2 0 0 0

3 −2 1 τj 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1
wk 0 0 0 −1 −1 −2 −3 −4 −1 −2 −3 −4 −1 −2 −2 −2 0 0 0 0

3 −3 0 τj 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0
wk 0 0 0 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −2 0 0 0 0 0

4 0 4 τj 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1
wk 0 0 0 0 −1 −2 −3 −4 −4 −5 −6 −7 −8 −4 −5 −5 −5 −5 0 0 0 0 0

4 −1 3 τj 3 2 1 0 −1 3 2 1 0 −1 3 2 1 0 −1 3 2 1 0
wk 0 0 0 0 −1 −2 −3 −3 −4 −5 −6 −7 −3 −4 −5 −5 −5 0 0 0 0 0 0

4 −2 2 τj 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0 −1
wk 0 0 0 0 −1 −2 −2 −3 −4 −5 −6 −2 −3 −4 −5 −5 0 0 0 0 0 0 0

4 −3 1 τj 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1 −2
wk 0 0 0 0 −1 −1 −2 −3 −4 −5 −1 −2 −3 −4 −5 0 0 0 0 0 0 0 0

4 −4 0 τj 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2 −3
wk 0 0 0 0 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 0 0 0 0 0 0 0 0

Figure C.29: P ′3, τ̄ ∈ {2, 3, 4} and T = 10
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 1 0 2 1 0 2 1 0 2 1 0 2 1
wk 0 0 −1 −2 −2 −3 −4 −2 −3 −4 −2 −3 −3 0 0 0

2 −1 1 τj 1 0 −1 1 0 −1 1 0 −1 1 0 −1 1 0
wk 0 0 −1 −1 −2 −3 −1 −2 −3 −1 −2 −3 0 0 0 0

2 −2 0 τj 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −2 0 −1
wk 0 0 0 −1 −2 0 −1 −2 0 −1 −2 0 0 0 0 0

3 0 3 τj 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0
wk 0 0 0 −1 −2 −3 −3 −4 −5 −6 −3 −4 −5 −5 −1 −1 −1 −1 0

3 −1 2 τj 2 1 0 −1 2 1 0 −1 2 1 0 −1 2 1 0 −1
wk 0 0 0 −1 −2 −2 −3 −4 −5 −2 −3 −4 −5 −1 −1 −1 −1 0 0

3 −2 1 τj 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2
wk 0 0 0 −1 −1 −2 −3 −4 −1 −2 −3 −4 −1 −1 −1 −1 0 0 0

3 −3 0 τj 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3
wk 0 0 0 0 −1 −2 −3 0 −1 −2 −3 0 −1 −1 −1 0 0 0 0

4 0 4 τj 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2
wk 0 0 0 0 −1 −2 −3 −4 −4 −5 −6 −7 −8 −4 −4 −4 −4 −4 0 0 0 0

4 −1 3 τj 3 2 1 0 −1 3 2 1 0 −1 3 2 1 0 −1 3 2 1
wk 0 0 0 0 −1 −2 −3 −3 −4 −5 −6 −7 −3 −4 −4 −4 −4 0 0 0 0 0

4 −2 2 τj 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0
wk 0 0 0 0 −1 −2 −2 −3 −4 −5 −6 −2 −3 −4 −4 −4 0 0 0 0 0 0

4 −3 1 τj 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1
wk 0 0 0 0 −1 −1 −2 −3 −4 −5 −1 −2 −3 −4 −4 0 0 0 0 0 0 0

4 −4 0 τj 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2
wk 0 0 0 0 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 0 0 0 0 0 0 0

Figure C.30: P ′3, τ̄ ∈ {2, 3, 4} and T = 9

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 1 0 2 1 0 2 1 0 2 1 0 2
wk 0 0 −1 −2 −2 −3 −4 −2 −3 −4 −2 −2 −2 0 0

2 −1 1 τj 1 0 −1 1 0 −1 1 0 −1 1 0 −1 1
wk 0 0 −1 −1 −2 −3 −1 −2 −3 −1 −2 −3 0 0 0

2 −2 0 τj 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −2 0
wk 0 0 0 −1 −2 0 −1 −2 0 −1 −2 0 0 0 0

3 0 3 τj 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1
wk 0 0 0 −1 −2 −3 −3 −4 −5 −6 −3 −4 −4 −4 0 0 0 0

3 −1 2 τj 2 1 0 −1 2 1 0 −1 2 1 0 −1 2 1 0
wk 0 0 0 −1 −2 −2 −3 −4 −5 −2 −3 −4 −4 0 0 0 0 0

3 −2 1 τj 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1 0 −1
wk 0 0 0 −1 −1 −2 −3 −4 −1 −2 −3 −4 0 0 0 0 0 0

3 −3 0 τj 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2
wk 0 0 0 0 −1 −2 −3 0 −1 −2 −3 0 0 0 0 0 0 0

4 0 4 τj 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3
wk 0 0 0 0 −1 −2 −3 −4 −4 −5 −6 −7 −8 −3 −3 −3 −3 −3 0 0 0

4 −1 3 τj 3 2 1 0 −1 3 2 1 0 −1 3 2 1 0 −1 3 2
wk 0 0 0 0 −1 −2 −3 −3 −4 −5 −6 −7 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0 −1 −2 2 1
wk 0 0 0 0 −1 −2 −2 −3 −4 −5 −6 −2 −3 −3 −3 −3 0 0 0 0 0

4 −3 1 τj 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0
wk 0 0 0 0 −1 −1 −2 −3 −4 −5 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 −4 0 τj 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1
wk 0 0 0 0 0 −1 −2 −3 −4 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure C.31: P ′3, τ̄ ∈ {2, 3, 4} and T = 8

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 1 0 2 1 0 2 1 0 2 1 0
wk 0 0 −1 −2 −2 −3 −4 −2 −3 −4 −1 −1 −1 0

2 −1 1 τj 1 0 −1 1 0 −1 1 0 −1 1 0 −1
wk 0 0 −1 −1 −2 −3 −1 −2 −3 −1 −1 −1 0 0

2 −2 0 τj 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −2
wk 0 0 0 −1 −2 0 −1 −2 0 −1 −1 0 0 0

3 0 3 τj 3 2 1 0 3 2 1 0 3 2 1 0 3 2
wk 0 0 0 −1 −2 −3 −3 −4 −5 −6 −3 −3 −3 −3 0 0 0

3 −1 2 τj 2 1 0 −1 2 1 0 −1 2 1 0 −1 2 1
wk 0 0 0 −1 −2 −2 −3 −4 −5 −2 −3 −3 −3 0 0 0 0

3 −2 1 τj 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1 0
wk 0 0 0 −1 −1 −2 −3 −4 −1 −2 −3 −3 0 0 0 0 0

3 −3 0 τj 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0 −1
wk 0 0 0 0 −1 −2 −3 0 −1 −2 −3 0 0 0 0 0 0

4 0 4 τj 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4
wk 0 0 0 0 −1 −2 −3 −4 −4 −5 −6 −7 −7 −2 −2 −2 −2 −2 0 0

4 −1 3 τj 3 2 1 0 −1 3 2 1 0 −1 3 2 1 0 −1 3
wk 0 0 0 0 −1 −2 −3 −3 −4 −5 −6 −7 −2 −2 −2 −2 −2 0 0 0

4 −2 2 τj 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0 −1 −2 2
wk 0 0 0 0 −1 −2 −2 −3 −4 −5 −6 −2 −2 −2 −2 −2 0 0 0 0

4 −3 1 τj 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1 −2 −3 1
wk 0 0 0 0 −1 −1 −2 −3 −4 −5 −1 −2 −2 −2 −2 0 0 0 0 0

4 −4 0 τj 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0
wk 0 0 0 0 0 −1 −2 −3 −4 0 −1 −2 −2 −2 0 0 0 0 0 0

Figure C.32: P ′3, τ̄ ∈ {2, 3, 4} and T = 7
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 1 0 2 1 0 2 1 0 2 1
wk 0 0 −1 −2 −2 −3 −4 −2 −3 −3 0 0 0

2 −1 1 τj 1 0 −1 1 0 −1 1 0 −1 1 0
wk 0 0 −1 −1 −2 −3 −1 −2 −3 0 0 0 0

2 −2 0 τj 0 −1 −2 0 −1 −2 0 −1 −2 0 −1
wk 0 0 0 −1 −2 0 −1 −2 0 0 0 0 0

3 0 3 τj 3 2 1 0 3 2 1 0 3 2 1 0 3
wk 0 0 0 −1 −2 −3 −3 −4 −5 −6 −2 −2 −2 −2 0 0

3 −1 2 τj 2 1 0 −1 2 1 0 −1 2 1 0 −1 2
wk 0 0 0 −1 −2 −2 −3 −4 −5 −2 −2 −2 −2 0 0 0

3 −2 1 τj 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1
wk 0 0 0 −1 −1 −2 −3 −4 −1 −2 −2 −2 0 0 0 0

3 −3 0 τj 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0
wk 0 0 0 0 −1 −2 −3 0 −1 −2 −2 0 0 0 0 0

4 0 4 τj 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
wk 0 0 0 0 −1 −2 −3 −4 −4 −5 −6 −6 −6 −1 −1 −1 −1 −1 0

4 −1 3 τj 3 2 1 0 −1 3 2 1 0 −1 3 2 1 0 −1
wk 0 0 0 0 −1 −2 −3 −3 −4 −5 −6 −6 −1 −1 −1 −1 −1 0 0

4 −2 2 τj 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0 −1 −2
wk 0 0 0 0 −1 −2 −2 −3 −4 −5 −6 −1 −1 −1 −1 −1 0 0 0

4 −3 1 τj 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1 −2 −3
wk 0 0 0 0 −1 −1 −2 −3 −4 −5 −1 −1 −1 −1 −1 0 0 0 0

4 −4 0 τj 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2 −3 −4
wk 0 0 0 0 0 −1 −2 −3 −4 0 −1 −1 −1 −1 0 0 0 0 0

Figure C.33: P ′3, τ̄ ∈ {2, 3, 4} and, T = 6

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 1 0 2 1 0 2 1 0 2
wk 0 0 −1 −2 −2 −3 −4 −2 −2 −2 0 0

2 −1 1 τj 1 0 −1 1 0 −1 1 0 −1 1
wk 0 0 −1 −1 −2 −3 −1 −2 −2 0 0 0

2 −2 0 τj 0 −1 −2 0 −1 −2 0 −1 −2 0
wk 0 0 0 −1 −2 0 −1 −2 0 0 0 0

3 0 3 τj 3 2 1 0 3 2 1 0 3 2 1 0
wk 0 0 0 −1 −2 −3 −3 −4 −5 −5 −1 −1 −1 −1 0

3 −1 2 τj 2 1 0 −1 2 1 0 −1 2 1 0 −1
wk 0 0 0 −1 −2 −2 −3 −4 −5 −1 −1 −1 −1 0 0

3 −2 1 τj 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2
wk 0 0 0 −1 −1 −2 −3 −4 −1 −1 −1 −1 0 0 0

3 −3 0 τj 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3
wk 0 0 0 0 −1 −2 −3 0 −1 −1 −1 0 0 0 0

4 0 4 τj 4 3 2 1 0 4 3 2 1 0 4 3 2 1
wk 0 0 0 0 −1 −2 −3 −4 −4 −5 −5 −5 −5 0 0 0 0 0

4 −1 3 τj 3 2 1 0 −1 3 2 1 0 −1 3 2 1 0
wk 0 0 0 0 −1 −2 −3 −3 −4 −5 −5 −5 0 0 0 0 0 0

4 −2 2 τj 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0 −1
wk 0 0 0 0 −1 −2 −2 −3 −4 −5 −5 0 0 0 0 0 0 0

4 −3 1 τj 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1 −2
wk 0 0 0 0 −1 −1 −2 −3 −4 −5 0 0 0 0 0 0 0 0

4 −4 0 τj 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2 −3
wk 0 0 0 0 0 −1 −2 −3 −4 0 0 0 0 0 0 0 0 0

Figure C.34: P ′3, τ̄ ∈ {2, 3, 4} and T = 5

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 1 0 2 1 0 2 1 0
wk 0 0 −1 −2 −2 −3 −4 −1 −1 −1 0

2 −1 1 τj 1 0 −1 1 0 −1 1 0 −1
wk 0 0 −1 −1 −2 −3 −1 −1 −1 0 0

2 −2 0 τj 0 −1 −2 0 −1 −2 0 −1 −2
wk 0 0 0 −1 −2 0 −1 −1 0 0 0

3 0 3 τj 3 2 1 0 3 2 1 0 3 2 1
wk 0 0 0 −1 −2 −3 −3 −4 −4 −4 0 0 0 0

3 −1 2 τj 2 1 0 −1 2 1 0 −1 2 1 0
wk 0 0 0 −1 −2 −2 −3 −4 −4 0 0 0 0 0

3 −2 1 τj 1 0 −1 −2 1 0 −1 −2 1 0 −1
wk 0 0 0 −1 −1 −2 −3 −4 0 0 0 0 0 0

3 −3 0 τj 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2
wk 0 0 0 0 −1 −2 −3 0 0 0 0 0 0 0

4 0 4 τj 4 3 2 1 0 4 3 2 1 0 4 3 2
wk 0 0 0 0 −1 −2 −3 −4 −4 −4 −4 −4 −4 0 0 0 0

4 −1 3 τj 3 2 1 0 −1 3 2 1 0 −1 3 2 1
wk 0 0 0 0 −1 −2 −3 −3 −4 −4 −4 −4 0 0 0 0 0

4 −2 2 τj 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0
wk 0 0 0 0 −1 −2 −2 −3 −4 −4 −4 0 0 0 0 0 0

4 −3 1 τj 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1
wk 0 0 0 0 −1 −1 −2 −3 −4 −4 0 0 0 0 0 0 0

4 −4 0 τj 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2
wk 0 0 0 0 0 −1 −2 −3 −4 0 0 0 0 0 0 0 0

Figure C.35: P ′3, τ̄ ∈ {2, 3, 4} and T = 4
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 1 0 2 1 0 2 1
wk 0 0 −1 −2 −2 −3 −3 0 0 0

2 −1 1 τj 1 0 −1 1 0 −1 1 0
wk 0 0 −1 −1 −2 −3 0 0 0 0

2 −2 0 τj 0 −1 −2 0 −1 −2 0 −1
wk 0 0 0 −1 −2 0 0 0 0 0

3 0 3 τj 3 2 1 0 3 2 1 0 3 2
wk 0 0 0 −1 −2 −3 −3 −3 −3 −3 0 0 0

3 −1 2 τj 2 1 0 −1 2 1 0 −1 2 1
wk 0 0 0 −1 −2 −2 −3 −3 −3 0 0 0 0

3 −2 1 τj 1 0 −1 −2 1 0 −1 −2 1 0
wk 0 0 0 −1 −1 −2 −3 −3 0 0 0 0 0

3 −3 0 τj 0 −1 −2 −3 0 −1 −2 −3 0 −1
wk 0 0 0 0 −1 −2 −3 0 0 0 0 0 0

4 0 4 τj 4 3 2 1 0 4 3 2 1 0 4 3
wk 0 0 0 0 −1 −2 −3 −4 −3 −3 −3 −3 −3 0 0 0

4 −1 3 τj 3 2 1 0 −1 3 2 1 0 −1 3 2
wk 0 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj 2 1 0 −1 −2 2 1 0 −1 −2 2 1
wk 0 0 0 0 −1 −2 −2 −3 −3 −3 −3 0 0 0 0 0

4 −3 1 τj 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0
wk 0 0 0 0 −1 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 −4 0 τj 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1
wk 0 0 0 0 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure C.36: P ′3, τ̄ ∈ {2, 3, 4} and T = 3

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 1 0 2 1 0 2
wk 0 0 −1 −2 −2 −2 −2 0 0

2 −1 1 τj 1 0 −1 1 0 −1 1
wk 0 0 −1 −1 −2 −2 0 0 0

2 −2 0 τj 0 −1 −2 0 −1 −2 0
wk 0 0 0 −1 −2 0 0 0 0

3 0 3 τj 3 2 1 0 3 2 1 0 3
wk 0 0 0 −1 −2 −3 −2 −2 −2 −2 0 0

3 −1 2 τj 2 1 0 −1 2 1 0 −1 2
wk 0 0 0 −1 −2 −2 −2 −2 −2 0 0 0

3 −2 1 τj 1 0 −1 −2 1 0 −1 −2 1
wk 0 0 0 −1 −1 −2 −2 −2 0 0 0 0

3 −3 0 τj 0 −1 −2 −3 0 −1 −2 −3 0
wk 0 0 0 0 −1 −2 −2 0 0 0 0 0

4 0 4 τj 4 3 2 1 0 4 3 2 1 0 4
wk 0 0 0 0 −1 −2 −3 −3 −2 −2 −2 −2 −2 0 0

4 −1 3 τj 3 2 1 0 −1 3 2 1 0 −1 3
wk 0 0 0 0 −1 −2 −3 −2 −2 −2 −2 −2 0 0 0

4 −2 2 τj 2 1 0 −1 −2 2 1 0 −1 −2 2
wk 0 0 0 0 −1 −2 −2 −2 −2 −2 −2 0 0 0 0

4 −3 1 τj 1 0 −1 −2 −3 1 0 −1 −2 −3 1
wk 0 0 0 0 −1 −1 −2 −2 −2 −2 0 0 0 0 0

4 −4 0 τj 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0
wk 0 0 0 0 0 −1 −2 −2 −2 0 0 0 0 0 0

Figure C.37: P ′3, τ̄ ∈ {2, 3, 4} and T = 2

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 1 0 2 1 0
wk 0 0 −1 −2 −1 −1 −1 0

2 −1 1 τj 1 0 −1 1 0 −1
wk 0 0 −1 −1 −1 −1 0 0

2 −2 0 τj 0 −1 −2 0 −1 −2
wk 0 0 0 0 0 0 0 0

3 0 3 τj 3 2 1 0 3 2 1 0
wk 0 0 0 −1 −2 −2 −1 −1 −1 −1 0

3 −1 2 τj 2 1 0 −1 2 1 0 −1
wk 0 0 0 −1 −2 −1 −1 −1 −1 0 0

3 −2 1 τj 1 0 −1 −2 1 0 −1 −2
wk 0 0 0 −1 −1 −1 −1 −1 0 0 0

3 −3 0 τj 0 −1 −2 −3 0 −1 −2 −3
wk 0 0 0 0 −1 −1 −1 0 0 0 0

4 0 4 τj 4 3 2 1 0 4 3 2 1 0
wk 0 0 0 0 −1 −2 −2 −2 −1 −1 −1 −1 −1 0

4 −1 3 τj 3 2 1 0 −1 3 2 1 0 −1
wk 0 0 0 0 −1 −2 −2 −1 −1 −1 −1 −1 0 0

4 −2 2 τj 2 1 0 −1 −2 2 1 0 −1 −2
wk 0 0 0 0 −1 −2 −1 −1 −1 −1 −1 0 0 0

4 −3 1 τj 1 0 −1 −2 −3 1 0 −1 −2 −3
wk 0 0 0 0 −1 −1 −1 −1 −1 −1 0 0 0 0

4 −4 0 τj 0 −1 −2 −3 −4 0 −1 −2 −3 −4
wk 0 0 0 0 0 −1 −1 −1 −1 0 0 0 0 0

Figure C.38: P ′3, τ̄ ∈ {2, 3, 4} and T = 1
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C.5 Gains for P ′3
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Figure C.39: P3, τ̄ = 1: P1 (blue), P ′3 (red)
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Figure C.40: P3, τ̄ = 2: P1 (blue), P ′3 (red)
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Figure C.41: P3, τ̄ = 3: P1 (blue), P ′3 (red)
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Figure C.42: P3, τ̄ = 4: P1 (blue), P ′3 (red)
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C.6 Patterns for P ′′3

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(2)
k

0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11

b
(3)
k

0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11

b
(0)
k = ak 0 0 0 �1 2 3 4 �5 �6 �7 8 �9 ��10 ��11 11 ��11 ��11 ��11 11 ��11

b
(1)
k k 0 0 0 0 �1 �2 �3 �4 �5 �6 7 �8 �9 ��10 11 ��11 ��11 ��11 11 ��11

b
(2)
k

0 0 0 0 0 �1 �2 �3 �4 �5 6 �7 �8 �9 10 ��11 ��11 ��11 11 ��11

b
(3)
k

0 0 0 0 0 0 1 �2 �3 �4 5 �6 �7 �8 9 ��10 ��11 ��11 11 ��11

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

b
(2)
k − ak 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0 0 0

b
(3)
k − ak 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0 0 0 0

packet arr. no no no no yes yes yes no no no yes no no no yes no no no yes no
ck 0 0 0 0 2 3 1 1 1 1 5 5 5 5 9 9 9 9 11 11

wk 0 0 0 −1 0 0 −3 −4 −5 −6 −3 −4 −5 −6 −2 −2 −2 −2 0 0

block A+ A+ A+ B B B B B B B B C C C C D D
τj 3 0 0 0 3 2 1 0 3 2 1 0 3 2 1 0 3

Figure C.43: P ′′3 , τ̄ = 3, T = 10 and τA = 0

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(2)
k

0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11

b
(−1)
k

0 0 �1 2 3 4 �5 �6 �7 8 �9 ��10 ��11 11 ��11 ��11 ��11 11 ��11 ��11

b
(0)
k = ak 0 0 0 �1 �2 �3 �4 �5 �6 7 �8 �9 ��10 11 ��11 ��11 ��11 11 ��11 ��11

b
(1)
k

0 0 0 0 �1 �2 �3 �4 �5 6 �7 �8 �9 10 ��11 ��11 ��11 11 ��11 ��11

b
(2)
k

0 0 0 0 0 1 �2 �3 �4 5 �6 �7 �8 9 ��10 ��11 ��11 11 ��11 ��11

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

b
(2)
k − ak 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0 0 0

packet arr. no no no yes yes yes no no no yes no no no yes no no no yes no no
ck 0 0 0 2 3 1 1 1 1 5 5 5 5 9 9 9 9 11 11 11

wk 0 0 0 1 1 −2 −3 −4 −5 −2 −3 −4 −5 −2 −2 −2 −2 0 0 0

block A+ A+ B B B B B B B B C C C C D D D
τj 2 −1 −1 −1 2 1 0 −1 2 1 0 −1 2 1 0 −1 2

Figure C.44: P ′′3 , τ̄ = 3, T = 10 and τA = 1
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k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−2)
k

0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11

b
(1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(−2)
k

0 �1 2 3 4 �5 �6 �7 8 �9 ��10 ��11 11 ��11 ��11 ��11 11 ��11 ��11 ��11

b
(−1)
k

0 0 �1 �2 �3 �4 �5 �6 7 �8 �9 ��10 11 ��11 ��11 ��11 11 ��11 ��11 ��11

b
(0)
k = ak 0 0 0 �1 �2 �3 �4 �5 6 �7 �8 �9 10 ��11 ��11 ��11 11 ��11 ��11 ��11

b
(1)
k

0 0 0 0 1 �2 �3 �4 5 �6 �7 �8 9 ��10 ��11 ��11 11 ��11 ��11 ��11

b
(−2)
k − ak 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

packet arr. no no yes yes yes no no no yes no no no yes no no no yes no no no
ck 0 0 2 3 1 1 1 1 5 5 5 5 9 9 9 9 11 11 11 11

wk 0 0 2 2 −1 −2 −3 −4 −1 −2 −3 −4 −1 −2 −2 −2 0 0 0 0

block A− A+ B B B B B B B B C C C C C C C C
τj 1 −2 −2 −2 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1

Figure C.45: P ′′3 , τ̄ = 3, T = 10 and τA = 2

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−3)
k

1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11

b
(−2)
k

0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11

b
(−1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(−3)
k �1 2 3 4 �5 �6 �7 8 �9 ��10 ��11 11 ��11 ��11 ��11 11 ��11 ��11 ��11 11

b
(−2)
k

0 �1 �2 �3 �4 �5 �6 7 �8 �9 ��10 11 ��11 ��11 ��11 11 ��11 ��11 ��11 11

b
(−1)
k

0 0 �1 �2 �3 �4 �5 6 �7 �8 �9 10 ��11 ��11 ��11 11 ��11 ��11 ��11 11

b
(0)
k = ak 0 0 0 1 �2 �3 �4 5 �6 �7 �8 9 ��10 ��11 ��11 11 ��11 ��11 ��11 11

b
(−3)
k − ak 1 2 3 3 3 3 3 3 3 3 3 2 1 0 0 0 0 0 0 0

b
(−2)
k − ak 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

packet arr. no yes yes yes no no no yes no no no yes no no no yes no no no yes
ck 0 2 3 1 1 1 1 5 5 5 5 9 9 9 9 11 11 11 11 11

wk 0 2 3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −2 0 0 0 0 0

block 0 A− A− B B B B B B B B C C C C C C C C D
τj 0 −3 −3 −3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0

Figure C.46: P ′′3 , τ̄ = 3, T = 10 and τA = 3

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 1 0 2 1 0 2 1 0 2 1 0
wk 0 0 −1 0 −2 −3 −4 −2 −3 −4 −2 −3 −4 −1 −1 −1 0

2 −1 1 τj 1 −1 −1 1 0 −1 1 0 −1 1 0 −1 1 0 −1
wk 0 0 1 −1 −2 −3 −1 −2 −3 −1 −2 −3 −1 −1 −1 0 0

2 −2 0 τj 0 −2 −2 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −2
wk 0 2 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −1 0 0 0

3 0 3 τj 3 0 0 0 3 2 1 0 3 2 1 0 3 2 1 0 3
wk 0 0 0 −1 0 0 −3 −4 −5 −6 −3 −4 −5 −6 −2 −2 −2 −2 0 0

3 −1 2 τj 2 −1 −1 −1 2 1 0 −1 2 1 0 −1 2 1 0 −1 2
wk 0 0 0 1 1 −2 −3 −4 −5 −2 −3 −4 −5 −2 −2 −2 −2 0 0 0

3 −2 1 τj 1 −2 −2 −2 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2 1
wk 0 0 2 2 −1 −2 −3 −4 −1 −2 −3 −4 −1 −2 −2 −2 0 0 0 0

3 −3 0 τj 0 −3 −3 −3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3 0
wk 0 2 3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −2 0 0 0 0 0

4 0 4 τj 4 0 0 0 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1
wk 0 0 0 0 −1 0 0 0 −4 −5 −6 −7 −8 −4 −5 −5 −5 −5 0 0 0 0 0

4 −1 3 τj 3 −1 −1 −1 −1 3 2 1 0 −1 3 2 1 0 −1 3 2 1 0
wk 0 0 0 0 1 1 1 −3 −4 −5 −6 −7 −3 −4 −5 −5 −5 0 0 0 0 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0 −1
wk 0 0 0 2 2 2 −2 −3 −4 −5 −6 −2 −3 −4 −5 −5 0 0 0 0 0 0 0

4 −3 1 τj 1 −3 −3 −3 −3 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1 −2
wk 0 0 2 3 3 −1 −2 −3 −4 −5 −1 −2 −3 −4 −5 0 0 0 0 0 0 0 0

4 −4 0 τj 0 −4 −4 −4 −4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2 −3
wk 0 2 3 4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 0 0 0 0 0 0 0 0

Figure C.47: P ′′3 , τ̄ ∈ {2, 3, 4} and T = 10
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 1 0 2 1 0 2 1 0 2 1
wk 0 0 −1 0 −2 −3 −4 −2 −3 −4 −2 −3 −3 0 0 0

2 −1 1 τj 1 −1 −1 1 0 −1 1 0 −1 1 0 −1 1 0
wk 0 0 1 −1 −2 −3 −1 −2 −3 −1 −2 −3 0 0 0 0

2 −2 0 τj 0 −2 −2 0 −1 −2 0 −1 −2 0 −1 −2 0 −1
wk 0 2 0 −1 −2 0 −1 −2 0 −1 −2 0 0 0 0 0

3 0 3 τj 3 0 0 0 3 2 1 0 3 2 1 0 3 2 1 0
wk 0 0 0 −1 0 0 −3 −4 −5 −6 −3 −4 −5 −5 −1 −1 −1 −1 0

3 −1 2 τj 2 −1 −1 −1 2 1 0 −1 2 1 0 −1 2 1 0 −1
wk 0 0 0 1 1 −2 −3 −4 −5 −2 −3 −4 −5 −1 −1 −1 −1 0 0

3 −2 1 τj 1 −2 −2 −2 1 0 −1 −2 1 0 −1 −2 1 0 −1 −2
wk 0 0 2 2 −1 −2 −3 −4 −1 −2 −3 −4 −1 −1 −1 −1 0 0 0

3 −3 0 τj 0 −3 −3 −3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2 −3
wk 0 2 3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −1 −1 0 0 0 0

4 0 4 τj 4 0 0 0 0 4 3 2 1 0 4 3 2 1 0 4 3 2
wk 0 0 0 0 −1 0 0 0 −4 −5 −6 −7 −8 −4 −4 −4 −4 −4 0 0 0 0

4 −1 3 τj 3 −1 −1 −1 −1 3 2 1 0 −1 3 2 1 0 −1 3 2 1
wk 0 0 0 0 1 1 1 −3 −4 −5 −6 −7 −3 −4 −4 −4 −4 0 0 0 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 1 0 −1 −2 2 1 0 −1 −2 2 1 0
wk 0 0 0 2 2 2 −2 −3 −4 −5 −6 −2 −3 −4 −4 −4 0 0 0 0 0 0

4 −3 1 τj 1 −3 −3 −3 −3 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0 −1
wk 0 0 2 3 3 −1 −2 −3 −4 −5 −1 −2 −3 −4 −4 0 0 0 0 0 0 0

4 −4 0 τj 0 −4 −4 −4 −4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1 −2
wk 0 2 3 4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 0 0 0 0 0 0 0

Figure C.48: P ′′3 , τ̄ ∈ {2, 3, 4} and T = 9

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 1 0 2 1 0 2 1 0 2
wk 0 0 −1 0 −2 −3 −4 −2 −3 −4 −2 −2 −2 0 0

2 −1 1 τj 1 −1 −1 1 0 −1 1 0 −1 1 0 −1 1
wk 0 0 1 −1 −2 −3 −1 −2 −3 −1 −2 −2 0 0 0

2 −2 0 τj 0 −2 −2 0 −1 −2 0 −1 −2 0 −1 −2 0
wk 0 2 0 −1 −2 0 −1 −2 0 −1 −2 0 −1 −2 0

3 0 3 τj 3 0 0 0 3 2 1 0 3 2 1 0 3 2 1
wk 0 0 0 −1 0 0 −3 −4 −5 −6 −3 −4 −4 −4 0 0 0 0

3 −1 2 τj 2 −1 −1 −1 2 1 0 −1 2 1 0 −1 2 1 0
wk 0 0 0 1 1 −2 −3 −4 −5 −2 −3 −4 −4 0 0 0 0 0

3 −2 1 τj 1 −2 −2 −2 1 0 −1 −2 1 0 −1 −2 1 0 −1
wk 0 0 2 2 −1 −2 −3 −4 −1 −2 −3 −4 0 0 0 0 0 0

3 −3 0 τj 0 −3 −3 −3 0 −1 −2 −3 0 −1 −2 −3 0 −1 −2
wk 0 2 3 0 −1 −2 −3 0 −1 −2 −3 0 0 0 0 0 0 0

4 0 4 τj 4 0 0 0 0 4 3 2 1 0 4 3 2 1 0 4 3
wk 0 0 0 0 −1 0 0 0 −4 −5 −6 −7 −8 −3 −3 −3 −3 −3 0 0 0

4 −1 3 τj 3 −1 −1 −1 −1 3 2 1 0 −1 3 2 1 0 −1 3 2
wk 0 0 0 0 1 1 1 −3 −4 −5 −6 −7 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 1 0 −1 −2 2 1 0 −1 −2 2 1
wk 0 0 0 2 2 2 −2 −3 −4 −5 −6 −2 −3 −3 −3 −3 0 0 0 0 0

4 −3 1 τj 1 −3 −3 −3 −3 1 0 −1 −2 −3 1 0 −1 −2 −3 1 0
wk 0 0 2 3 3 −1 −2 −3 −4 −5 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 −4 0 τj 0 −4 −4 −4 −4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0 −1
wk 0 2 3 4 0 −1 −2 −3 −4 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure C.49: P ′′3 , τ̄ ∈ {2, 3, 4} and T = 8

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 1 0 2 1 0 2 1 0
wk 0 0 −1 0 −2 −3 −4 −2 −3 −4 −1 −1 −1 0

2 −1 1 τj 1 −1 −1 1 0 −1 1 0 −1 1 0 −1
wk 0 0 1 −1 −2 −3 −1 −2 −3 −1 −1 −1 0 0

2 −2 0 τj 0 −2 −2 0 −1 −2 0 −1 −2 0 −1 −2
wk 0 2 0 −1 −2 0 −1 −2 0 −1 −1 0 0 0

3 0 3 τj 3 0 0 0 3 2 1 0 3 2 1 0 3 2
wk 0 0 0 −1 0 0 −3 −4 −5 −6 −3 −3 −3 −3 0 0 0

3 −1 2 τj 2 −1 −1 −1 2 1 0 −1 2 1 0 −1 2 1
wk 0 0 0 1 1 −2 −3 −4 −5 −2 −3 −3 −3 0 0 0 0

3 −2 1 τj 1 −2 −2 −2 1 0 −1 −2 1 0 −1 −2 1 0
wk 0 0 2 2 −1 −2 −3 −4 −1 −2 −3 −3 0 0 0 0 0

3 −3 0 τj 0 −3 −3 −3 0 −1 −2 −3 0 −1 −2 −3 0 −1
wk 0 2 3 0 −1 −2 −3 0 −1 −2 −3 0 0 0 0 0 0

4 0 4 τj 4 0 0 0 0 4 3 2 1 0 4 3 2 1 0 4
wk 0 0 0 0 −1 0 0 0 −4 −5 −6 −7 −7 −2 −2 −2 −2 −2 0 0

4 −1 3 τj 3 −1 −1 −1 −1 3 2 1 0 −1 3 2 1 0 −1 3
wk 0 0 0 0 1 1 1 −3 −4 −5 −6 −7 −2 −2 −2 −2 −2 0 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 1 0 −1 −2 2 1 0 −1 −2 2
wk 0 0 0 2 2 2 −2 −3 −4 −5 −6 −2 −2 −2 −2 −2 0 0 0 0

4 −3 1 τj 1 −3 −3 −3 −3 1 0 −1 −2 −3 1 0 −1 −2 −3 1
wk 0 0 2 3 3 −1 −2 −3 −4 −5 −1 −2 −2 −2 −2 0 0 0 0 0

4 −4 0 τj 0 −4 −4 −4 −4 0 −1 −2 −3 −4 0 −1 −2 −3 −4 0
wk 0 2 3 4 0 −1 −2 −3 −4 0 −1 −2 −2 −2 0 0 0 0 0 0

Figure C.50: P ′′3 , τ̄ ∈ {2, 3, 4} and T = 7
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 1 0 2 1 0 2 1
wk 0 0 −1 0 −2 −3 −4 −2 −3 −3 0 0 0

2 −1 1 τj 1 −1 −1 1 0 −1 1 0 −1 1 0
wk 0 0 1 −1 −2 −3 −1 −2 −3 0 0 0 0

2 −2 0 τj 0 −2 −2 0 −1 −2 0 −1 −2 0 −1
wk 0 2 0 −1 −2 0 −1 −2 0 0 0 0 0

3 0 3 τj 3 0 0 0 3 2 1 0 3 2 1 0 3
wk 0 0 0 −1 0 0 −3 −4 −5 −6 −2 −2 −2 −2 0 0

3 −1 2 τj 2 −1 −1 −1 2 1 0 −1 2 1 0 −1 2
wk 0 0 0 1 1 −2 −3 −4 −5 −2 −2 −2 −2 0 0 0

3 −2 1 τj 1 −2 −2 −2 1 0 −1 −2 1 0 −1 −2 1
wk 0 0 2 2 −1 −2 −3 −4 −1 −2 −2 −2 0 0 0 0

3 −3 0 τj 0 −3 −3 −3 0 −1 −2 −3 0 −1 −2 −3 0
wk 0 2 3 0 −1 −2 −3 0 −1 −2 −2 0 0 0 0 0

4 0 4 τj 4 0 0 0 0 4 3 2 1 0 4 3 2 1 0
wk 0 0 0 0 −1 0 0 0 −4 −5 −6 −6 −6 −1 −1 −1 −1 −1 0

4 −1 3 τj 3 −1 −1 −1 −1 3 2 1 0 −1 3 2 1 0 −1
wk 0 0 0 0 1 1 1 −3 −4 −5 −6 −6 −1 −1 −1 −1 −1 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 1 0 −1 −2 2 1 0 −1 −2
wk 0 0 0 2 2 2 −2 −3 −4 −5 −6 −1 −1 −1 −1 −1 0 0 0

4 −3 1 τj 1 −3 −3 −3 −3 1 0 −1 −2 −3 1 0 −1 −2 −3
wk 0 0 2 3 3 −1 −2 −3 −4 −5 −1 −1 −1 −1 −1 0 0 0 0

4 −4 0 τj 0 −4 −4 −4 −4 0 −1 −2 −3 −4 0 −1 −2 −3 −4
wk 0 2 3 4 0 −1 −2 −3 −4 0 −1 −1 −1 −1 0 0 0 0 0

Figure C.51: P ′′3 , τ̄ ∈ {2, 3, 4} and T = 6

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 1 0 2 1 0 2
wk 0 0 −1 0 −2 −3 −4 −2 −2 −2 0 0

2 −1 1 τj 1 −1 −1 1 0 −1 1 0 −1 1
wk 0 0 1 −1 −2 −3 −1 −2 −2 0 0 0

2 −2 0 τj 0 −2 −2 0 −1 −2 0 −1 −2 0
wk 0 2 0 −1 −2 0 −1 −2 0 0 0 0

3 0 3 τj 3 0 0 0 3 2 1 0 3 2 1 0
wk 0 0 0 −1 0 0 −3 −4 −5 −5 −1 −1 −1 −1 0

3 −1 2 τj 2 −1 −1 −1 2 1 0 −1 2 1 0 −1
wk 0 0 0 1 1 −2 −3 −4 −5 −1 −1 −1 −1 0 0

3 −2 1 τj 1 −2 −2 −2 1 0 −1 −2 1 0 −1 −2
wk 0 0 2 2 −1 −2 −3 −4 −1 −1 −1 −1 0 0 0

3 −3 0 τj 0 −3 −3 −3 0 −1 −2 −3 0 −1 −2 −3
wk 0 2 3 0 −1 −2 −3 0 −1 −1 −1 0 0 0 0

4 0 4 τj 4 0 0 0 0 4 3 2 1 0 4 3 2 1
wk 0 0 0 0 −1 0 0 0 −4 −5 −5 −5 −5 0 0 0 0 0

4 −1 3 τj 3 −1 −1 −1 −1 3 2 1 0 −1 3 2 1 0
wk 0 0 0 0 1 1 1 −3 −4 −5 −5 −5 0 0 0 0 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 1 0 −1 −2 2 1 0 −1
wk 0 0 0 2 2 2 −2 −3 −4 −5 −5 0 0 0 0 0 0 0

4 −3 1 τj 1 −3 −3 −3 −3 1 0 −1 −2 −3 1 0 −1 −2
wk 0 0 2 3 3 −1 −2 −3 −4 −5 0 0 0 0 0 0 0 0

4 −4 0 τj 0 −4 −4 −4 −4 0 −1 −2 −3 −4 0 −1 −2 −3
wk 0 2 3 4 0 −1 −2 −3 −4 0 0 0 0 0 0 0 0 0

Figure C.52: P ′′3 , τ̄ ∈ {2, 3, 4} and T = 5

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 1 0 2 1 0
wk 0 0 −1 0 −2 −3 −4 −1 −1 −1 0

2 −1 1 τj 1 −1 −1 1 0 −1 1 0 −1
wk 0 0 1 −1 −2 −3 −1 −1 −1 0 0

2 −2 0 τj 0 −2 −2 0 −1 −2 0 −1 −2
wk 0 2 0 −1 −2 0 −1 −1 0 0 0

3 0 3 τj 3 0 0 0 3 2 1 0 3 2 1
wk 0 0 0 −1 0 0 −3 −4 −4 −4 0 0 0 0

3 −1 2 τj 2 −1 −1 −1 2 1 0 −1 2 1 0
wk 0 0 0 1 1 −2 −3 −4 −4 0 0 0 0 0

3 −2 1 τj 1 −2 −2 −2 1 0 −1 −2 1 0 −1
wk 0 0 2 2 −1 −2 −3 −4 0 0 0 0 0 0

3 −3 0 τj 0 −3 −3 −3 0 −1 −2 −3 0 −1 −2
wk 0 2 3 0 −1 −2 −3 0 0 0 0 0 0 0

4 0 4 τj 4 0 0 0 0 4 3 2 1 0 4 3 2
wk 0 0 0 0 −1 0 0 0 −4 −4 −4 −4 −4 0 0 0 0

4 −1 3 τj 3 −1 −1 −1 −1 3 2 1 0 −1 3 2 1
wk 0 0 0 0 1 1 1 −3 −4 −4 −4 −4 0 0 0 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 1 0 −1 −2 2 1 0
wk 0 0 0 2 2 2 −2 −3 −4 −4 −4 0 0 0 0 0 0

4 −3 1 τj 1 −3 −3 −3 −3 1 0 −1 −2 −3 1 0 −1
wk 0 0 2 3 3 −1 −2 −3 −4 −4 0 0 0 0 0 0 0

4 −4 0 τj 0 −4 −4 −4 −4 0 −1 −2 −3 −4 0 −1 −2
wk 0 2 3 4 0 −1 −2 −3 −4 0 0 0 0 0 0 0 0

Figure C.53: P ′′3 , τ̄ ∈ {2, 3, 4} and T = 4
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 1 0 2 1
wk 0 0 −1 0 −2 −3 −3 0 0 0

2 −1 1 τj 1 −1 −1 1 0 −1 1 0
wk 0 0 1 −1 −2 −3 0 0 0 0

2 −2 0 τj 0 −2 −2 0 −1 −2 0 −1
wk 0 2 0 −1 −2 0 0 0 0 0

3 0 3 τj 3 0 0 0 3 2 1 0 3 2
wk 0 0 0 −1 0 0 −3 −3 −3 −3 0 0 0

3 −1 2 τj 2 −1 −1 −1 2 1 0 −1 2 1
wk 0 0 0 1 1 −2 −3 −3 −3 0 0 0 0

3 −2 1 τj 1 −2 −2 −2 1 0 −1 −2 1 0
wk 0 0 2 2 −1 −2 −3 −3 0 0 0 0 0

3 −3 0 τj 0 −3 −3 −3 0 −1 −2 −3 0 −1
wk 0 2 3 0 −1 −2 −3 0 0 0 0 0 0

4 0 4 τj 4 0 0 0 0 4 3 2 1 0 4 3
wk 0 0 0 0 −1 0 0 0 −3 −3 −3 −3 −3 0 0 0

4 −1 3 τj 3 −1 −1 −1 −1 3 2 1 0 −1 3 2
wk 0 0 0 0 1 1 1 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 1 0 −1 −2 2 1
wk 0 0 0 2 2 2 −2 −3 −3 −3 −3 0 0 0 0 0

4 −3 1 τj 1 −3 −3 −3 −3 1 0 −1 −2 −3 1 0
wk 0 0 2 3 3 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 −4 0 τj 0 −4 −4 −4 −4 0 −1 −2 −3 −4 0 −1
wk 0 2 3 4 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure C.54: P ′′3 , τ̄ ∈ {2, 3, 4} and T = 3

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 1 0 2
wk 0 0 −1 0 −2 −2 −2 0 0

2 −1 1 τj 1 −1 −1 1 0 −1 1
wk 0 0 1 −1 −2 −2 0 0 0

2 −2 0 τj 0 −2 −2 0 −1 −2 0
wk 0 2 0 −1 −2 0 0 0 0

3 0 3 τj 3 0 0 0 3 2 1 0 3
wk 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −1 2 τj 2 −1 −1 −1 2 1 0 −1 2
wk 0 0 0 1 1 −2 −2 −2 −2 0 0 0

3 −2 1 τj 1 −2 −2 −2 1 0 −1 −2 1
wk 0 0 2 2 −1 −2 −2 −2 0 0 0 0

3 −3 0 τj 0 −3 −3 −3 0 −1 −2 −3 0
wk 0 2 3 0 −1 −2 −2 0 0 0 0 0

4 0 4 τj 4 0 0 0 0 4 3 2 1 0 4
wk 0 0 0 0 −1 0 0 0 −2 −2 −2 −2 −2 0 0

4 −1 3 τj 3 −1 −1 −1 −1 3 2 1 0 −1 3
wk 0 0 0 0 1 1 0 −2 −2 −2 −2 −2 0 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 1 0 −1 −2 2
wk 0 0 0 2 2 1 −2 −2 −2 −2 −2 0 0 0 0

4 −3 1 τj 1 −3 −3 −3 −3 1 0 −1 −2 −3 1
wk 0 0 2 3 2 −1 −2 −2 −2 −2 0 0 0 0 0

4 −4 0 τj 0 −4 −4 −4 −4 0 −1 −2 −3 −4 0
wk 0 2 3 3 0 −1 −2 −2 −2 0 0 0 0 0 0

Figure C.55: P ′′3 , τ̄ ∈ {2, 3, 4} and T = 2

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 1 0
wk 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj 1 −1 −1 1 0 −1
wk 0 0 1 −1 −1 −1 0 0

2 −2 0 τj 0 −2 −2 0 −1 −2
wk 0 2 0 −1 −1 0 0 0

3 0 3 τj 3 0 0 0 3 2 1 0
wk 0 0 0 −1 0 0 −1 −1 −1 −1 0

3 −1 2 τj 2 −1 −1 −1 2 1 0 −1
wk 0 0 0 1 0 −1 −1 −1 −1 0 0

3 −2 1 τj 1 −2 −2 −2 1 0 −1 −2
wk 0 0 2 1 −1 −1 −1 −1 0 0 0

3 −3 0 τj 0 −3 −3 −3 0 −1 −2 −3
wk 0 2 2 0 −1 −1 −1 0 0 0 0

4 0 4 τj 4 0 0 0 0 4 3 2 1 0
wk 0 0 0 0 −1 0 0 0 −1 −1 −1 −1 −1 0

4 −1 3 τj 3 −1 −1 −1 −1 3 2 1 0 −1
wk 0 0 0 0 1 0 0 −1 −1 −1 −1 −1 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 1 0 −1 −2
wk 0 0 0 2 1 0 −1 −1 −1 −1 −1 0 0 0

4 −3 1 τj 1 −3 −3 −3 −3 1 0 −1 −2 −3
wk 0 0 2 2 1 −1 −1 −1 −1 −1 0 0 0 0

4 −4 0 τj 0 −4 −4 −4 −4 0 −1 −2 −3 −4
wk 0 2 2 2 0 −1 −1 −1 −1 0 0 0 0 0

Figure C.56: P ′′3 , τ̄ ∈ {2, 3, 4} and T = 1
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C.7 Gains for P ′′3
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Figure C.57: P3, τ̄ = 1: P1 (blue), P ′3 (red), P ′′3 (green)
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Figure C.58: P3, τ̄ = 2: P1 (blue), P ′3 (red), P ′′3 (green)
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Figure C.59: P3, τ̄ = 3: P1 (blue), P ′3 (red), P ′′3 (green)
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Figure C.60: P3, τ̄ = 4: P1 (blue), P ′3 (red), P ′′3 (green)
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C.8 Patterns for P ′′′3

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(2)
k

0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11

b
(3)
k

0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 �9 10 11 11 ��11 ��11 ��11 ��11 ��11

b
(1)
k k 0 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11

b
(2)
k

0 0 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11

b
(3)
k

0 0 0 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 9 ��10 ��11 ��11 11 11

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

b
(2)
k − ak 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0 0 0

b
(3)
k − ak 0 0 0 −1 −2 −3 −3 −3 −3 −3 −3 −3 −3 −3 −2 −1 0 0 0 0

packet arr. no no no yes yes yes yes yes yes yes yes no yes yes yes no no no yes yes
ck 0 0 0 1 2 3 4 5 6 7 8 8 10 11 9 9 9 9 11 11

wk 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

block A A B B B B B B B B B C C C D D D D
τj 0 0 0 0 0 0 0 0 3 0 0 0 3 3 3 3 3

Figure C.61: P ′′′3 , τ̄ = 3, T = 10 and τA = 0

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(2)
k

0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11

b
(−1)
k

0 0 1 2 3 4 5 6 7 8 �9 10 11 11 ��11 ��11 ��11 ��11 ��11 ��11

b
(0)
k = ak 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(1)
k

0 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11

b
(2)
k

0 0 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 9 ��10 ��11 ��11 11 11 11

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

b
(2)
k − ak 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 0 0 0

packet arr. no no yes yes yes yes yes yes yes yes no yes yes yes no no no yes yes yes
ck 0 0 1 2 3 4 5 6 7 8 8 10 11 9 9 9 9 11 11 11

wk 0 0 1 1 1 1 1 1 1 1 0 1 1 −2 −2 −2 −2 0 0 0

block A A A B B B B B B B C C C D D D D
τj −1 −1 −1 −1 −1 −1 −1 −1 2 −1 −1 −1 2 2 2 2 2

Figure C.62: P ′′′3 , τ̄ = 3, T = 10 and τA = 1
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k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−2)
k

0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11

b
(1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(1)
k

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11

b
(−2)
k

0 1 2 3 4 5 6 7 8 �9 10 11 11 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(−1)
k

0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(0)
k = ak 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(1)
k

0 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 9 ��10 ��11 ��11 11 11 11 11

b
(−2)
k − ak 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b
(1)
k − ak 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0

packet arr. no yes yes yes yes yes yes yes yes no yes yes yes no no no yes yes yes yes
ck 0 1 2 3 4 5 6 7 8 8 10 11 9 9 9 9 11 11 11 11

wk 0 1 2 2 2 2 2 2 2 1 2 2 −1 −2 −2 −2 0 0 0 0

block A A B B B B B B B C C C D D D D
τj −2 −2 −2 −2 −2 −2 −2 −2 1 −2 −2 −2 1 1 1 1 1

Figure C.63: P ′′′3 , τ̄ = 3, T = 10 and τA = 2

k −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
(−3)
k

1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11

b
(−2)
k

0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11

b
(−1)
k

0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11

b
(0)
k = ak 0 0 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11

b
(−3)
k

1 2 3 4 5 6 7 8 �9 10 11 11 ��11 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(−2)
k

0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(−1)
k

0 0 �1 �2 �3 �4 �5 �6 �7 �8 �9 ��10 ��11 ��11 ��11 ��11 ��11 ��11 ��11 ��11

b
(0)
k = ak 0 0 0 �1 �2 �3 �4 �5 �6 �7 �8 9 ��10 ��11 ��11 11 11 11 11 11

b
(−3)
k − ak 1 2 3 3 3 3 3 3 3 3 3 2 1 0 0 0 0 0 0 0

b
(−2)
k − ak 0 1 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0

b
(−1)
k − ak 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

b
(0)
k − ak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

packet arr. yes yes yes yes yes yes yes yes no yes yes yes no no no yes yes yes yes yes
ck 1 2 3 4 5 6 7 8 8 10 11 9 9 9 9 11 11 11 11 11

wk 1 2 3 3 3 3 3 3 2 3 3 0 −1 −2 −2 0 0 0 0 0

block A A B B B B B B C C C D D D D
τj −3 −3 −3 −3 −3 −3 −3 −3 0 −3 −3 −3 0 0 0 0 0

Figure C.64: P ′′′3 , τ̄ = 3, T = 10 and τA = 3

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 0 0 0 0 0 0 0 0 0 2 0 0 2 2 2
wk 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj −1 −1 −1 −1 −1 −1 −1 −1 −1 1 −1 −1 1 1 1
wk 0 1 1 1 1 1 1 1 1 1 0 1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 −2 −2 −2 0 −2 −2 0 0 0
wk 1 2 2 2 2 2 2 2 2 1 2 0 −1 −1 0 0 0

3 −3 0 τj 0 0 0 0 0 0 0 0 3 0 0 0 3 3 3 3 3
wk 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −2 1 τj −1 −1 −1 −1 −1 −1 −1 −1 2 −1 −1 −1 2 2 2 2 2
wk 0 0 1 1 1 1 1 1 1 1 0 1 1 −2 −2 −2 −2 0 0 0

3 −1 2 τj −2 −2 −2 −2 −2 −2 −2 −2 1 −2 −2 −2 1 1 1 1 1
wk 0 1 2 2 2 2 2 2 2 1 2 2 −1 −2 −2 −2 0 0 0 0

3 0 3 τj −3 −3 −3 −3 −3 −3 −3 −3 0 −3 −3 −3 0 0 0 0 0
wk 1 2 3 3 3 3 3 3 2 3 3 0 −1 −2 −2 0 0 0 0 0

4 −4 0 τj 0 0 0 0 0 0 0 4 0 0 0 0 4 4 4 4 4 4 4
wk 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −3 −3 −3 −3 −3 0 0 0

4 −3 1 τj −1 −1 −1 −1 −1 −1 −1 3 −1 −1 −1 −1 3 3 3 3 3 3 3
wk 0 0 0 1 1 1 1 1 1 1 0 1 1 1 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj −2 −2 −2 −2 −2 −2 −2 2 −2 −2 −2 −2 2 2 2 2 2 2 2
wk 0 0 1 2 2 2 2 2 2 1 2 2 2 −2 −3 −3 −3 −3 0 0 0 0 0

4 −1 3 τj −3 −3 −3 −3 −3 −3 −3 1 −3 −3 −3 −3 1 1 1 1 1 1 1
wk 0 1 2 3 3 3 3 3 2 3 3 3 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 0 4 τj −4 −4 −4 −4 −4 −4 −4 0 −4 −4 −4 −4 0 0 0 0 0 0 0
wk 1 2 3 4 4 4 4 3 4 4 4 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure C.65: P ′′′3 and τ̄ ∈ {2, 3, 4}, T = 10
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 0 0 0 0 0 0 0 0 2 0 0 2 2 2
wk 0 0 0 0 0 0 0 0 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj −1 −1 −1 −1 −1 −1 −1 −1 1 −1 −1 1 1 1
wk 0 1 1 1 1 1 1 1 1 0 1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 −2 −2 0 −2 −2 0 0 0
wk 1 2 2 2 2 2 2 2 1 2 0 −1 −1 0 0 0

3 −3 0 τj 0 0 0 0 0 0 0 3 0 0 0 3 3 3 3 3
wk 0 0 0 0 0 0 0 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −2 1 τj −1 −1 −1 −1 −1 −1 −1 2 −1 −1 −1 2 2 2 2 2
wk 0 0 1 1 1 1 1 1 1 0 1 1 −2 −2 −2 −2 0 0 0

3 −1 2 τj −2 −2 −2 −2 −2 −2 −2 1 −2 −2 −2 1 1 1 1 1
wk 0 1 2 2 2 2 2 2 1 2 2 −1 −2 −2 −2 0 0 0 0

3 0 3 τj −3 −3 −3 −3 −3 −3 −3 0 −3 −3 −3 0 0 0 0 0
wk 1 2 3 3 3 3 3 2 3 3 0 −1 −2 −2 0 0 0 0 0

4 −4 0 τj 0 0 0 0 0 0 4 0 0 0 0 4 4 4 4 4 4 4
wk 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −3 −3 −3 −3 −3 0 0 0

4 −3 1 τj −1 −1 −1 −1 −1 −1 3 −1 −1 −1 −1 3 3 3 3 3 3 3
wk 0 0 0 1 1 1 1 1 1 0 1 1 1 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj −2 −2 −2 −2 −2 −2 2 −2 −2 −2 −2 2 2 2 2 2 2 2
wk 0 0 1 2 2 2 2 2 1 2 2 2 −2 −3 −3 −3 −3 0 0 0 0 0

4 −1 3 τj −3 −3 −3 −3 −3 −3 1 −3 −3 −3 −3 1 1 1 1 1 1 1
wk 0 1 2 3 3 3 3 2 3 3 3 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 0 4 τj −4 −4 −4 −4 −4 −4 0 −4 −4 −4 −4 0 0 0 0 0 0 0
wk 1 2 3 4 4 4 3 4 4 4 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure C.66: P ′′′3 and τ̄ ∈ {2, 3, 4}, T = 9

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 0 0 0 0 0 0 0 2 0 0 2 2 2
wk 0 0 0 0 0 0 0 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj −1 −1 −1 −1 −1 −1 −1 1 −1 −1 1 1 1
wk 0 1 1 1 1 1 1 1 0 1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 −2 0 −2 −2 0 0 0
wk 1 2 2 2 2 2 2 1 2 0 −1 −1 0 0 0

3 −3 0 τj 0 0 0 0 0 0 3 0 0 0 3 3 3 3 3
wk 0 0 0 0 0 0 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −2 1 τj −1 −1 −1 −1 −1 −1 2 −1 −1 −1 2 2 2 2 2
wk 0 0 1 1 1 1 1 1 0 1 1 −2 −2 −2 −2 0 0 0

3 −1 2 τj −2 −2 −2 −2 −2 −2 1 −2 −2 −2 1 1 1 1 1
wk 0 1 2 2 2 2 2 1 2 2 −1 −2 −2 −2 0 0 0 0

3 0 3 τj −3 −3 −3 −3 −3 −3 0 −3 −3 −3 0 0 0 0 0
wk 1 2 3 3 3 3 2 3 3 0 −1 −2 −2 0 0 0 0 0

4 −4 0 τj 0 0 0 0 0 4 0 0 0 0 4 4 4 4 4 4 4
wk 0 0 0 0 0 0 0 0 0 −1 0 0 0 −3 −3 −3 −3 −3 0 0 0

4 −3 1 τj −1 −1 −1 −1 −1 3 −1 −1 −1 −1 3 3 3 3 3 3 3
wk 0 0 0 1 1 1 1 1 0 1 1 1 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj −2 −2 −2 −2 −2 2 −2 −2 −2 −2 2 2 2 2 2 2 2
wk 0 0 1 2 2 2 2 1 2 2 2 −2 −3 −3 −3 −3 0 0 0 0 0

4 −1 3 τj −3 −3 −3 −3 −3 1 −3 −3 −3 −3 1 1 1 1 1 1 1
wk 0 1 2 3 3 3 2 3 3 3 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 0 4 τj −4 −4 −4 −4 −4 0 −4 −4 −4 −4 0 0 0 0 0 0 0
wk 1 2 3 4 4 3 4 4 4 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure C.67: P ′′′3 and τ̄ ∈ {2, 3, 4}, T = 8

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 0 0 0 0 0 0 2 0 0 2 2 2
wk 0 0 0 0 0 0 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj −1 −1 −1 −1 −1 −1 1 −1 −1 1 1 1
wk 0 1 1 1 1 1 1 0 1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 −2 0 −2 −2 0 0 0
wk 1 2 2 2 2 2 1 2 0 −1 −1 0 0 0

3 −3 0 τj 0 0 0 0 0 3 0 0 0 3 3 3 3 3
wk 0 0 0 0 0 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −2 1 τj −1 −1 −1 −1 −1 2 −1 −1 −1 2 2 2 2 2
wk 0 0 1 1 1 1 1 0 1 1 −2 −2 −2 −2 0 0 0

3 −1 2 τj −2 −2 −2 −2 −2 1 −2 −2 −2 1 1 1 1 1
wk 0 1 2 2 2 2 1 2 2 −1 −2 −2 −2 0 0 0 0

3 0 3 τj −3 −3 −3 −3 −3 0 −3 −3 −3 0 0 0 0 0
wk 1 2 3 3 3 2 3 3 0 −1 −2 −2 0 0 0 0 0

4 −4 0 τj 0 0 0 0 4 0 0 0 0 4 4 4 4 4 4 4
wk 0 0 0 0 0 0 0 0 −1 0 0 0 −3 −3 −3 −3 −3 0 0 0

4 −3 1 τj −1 −1 −1 −1 3 −1 −1 −1 −1 3 3 3 3 3 3 3
wk 0 0 0 1 1 1 1 0 1 1 1 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj −2 −2 −2 −2 2 −2 −2 −2 −2 2 2 2 2 2 2 2
wk 0 0 1 2 2 2 1 2 2 2 −2 −3 −3 −3 −3 0 0 0 0 0

4 −1 3 τj −3 −3 −3 −3 1 −3 −3 −3 −3 1 1 1 1 1 1 1
wk 0 1 2 3 3 2 3 3 3 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 0 4 τj −4 −4 −4 −4 0 −4 −4 −4 −4 0 0 0 0 0 0 0
wk 1 2 3 4 3 4 4 4 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure C.68: P ′′′3 and τ̄ ∈ {2, 3, 4}, T = 7
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 0 0 0 0 0 2 0 0 2 2 2
wk 0 0 0 0 0 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj −1 −1 −1 −1 −1 1 −1 −1 1 1 1
wk 0 1 1 1 1 1 0 1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 −2 0 −2 −2 0 0 0
wk 1 2 2 2 2 1 2 0 −1 −1 0 0 0

3 −3 0 τj 0 0 0 0 3 0 0 0 3 3 3 3 3
wk 0 0 0 0 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −2 1 τj −1 −1 −1 −1 2 −1 −1 −1 2 2 2 2 2
wk 0 0 1 1 1 1 0 1 1 −2 −2 −2 −2 0 0 0

3 −1 2 τj −2 −2 −2 −2 1 −2 −2 −2 1 1 1 1 1
wk 0 1 2 2 2 1 2 2 −1 −2 −2 −2 0 0 0 0

3 0 3 τj −3 −3 −3 −3 0 −3 −3 −3 0 0 0 0 0
wk 1 2 3 3 2 3 3 0 −1 −2 −2 0 0 0 0 0

4 −4 0 τj 0 0 0 4 0 0 0 0 4 4 4 4 4 4 4
wk 0 0 0 0 0 0 0 −1 0 0 0 −3 −3 −3 −3 −3 0 0 0

4 −3 1 τj −1 −1 −1 3 −1 −1 −1 −1 3 3 3 3 3 3 3
wk 0 0 0 1 1 1 0 1 1 1 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj −2 −2 −2 2 −2 −2 −2 −2 2 2 2 2 2 2 2
wk 0 0 1 2 2 1 2 2 2 −2 −3 −3 −3 −3 0 0 0 0 0

4 −1 3 τj −3 −3 −3 1 −3 −3 −3 −3 1 1 1 1 1 1 1
wk 0 1 2 3 2 3 3 3 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 0 4 τj −4 −4 −4 0 −4 −4 −4 −4 0 0 0 0 0 0 0
wk 1 2 3 3 4 4 4 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure C.69: P ′′′3 and τ̄ ∈ {2, 3, 4}, T = 6

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 0 0 0 0 2 0 0 2 2 2
wk 0 0 0 0 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj −1 −1 −1 −1 1 −1 −1 1 1 1
wk 0 1 1 1 1 0 1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 −2 0 −2 −2 0 0 0
wk 1 2 2 2 1 2 0 −1 −1 0 0 0

3 −3 0 τj 0 0 0 3 0 0 0 3 3 3 3 3
wk 0 0 0 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −2 1 τj −1 −1 −1 2 −1 −1 −1 2 2 2 2 2
wk 0 0 1 1 1 0 1 1 −2 −2 −2 −2 0 0 0

3 −1 2 τj −2 −2 −2 1 −2 −2 −2 1 1 1 1 1
wk 0 1 2 2 1 2 2 −1 −2 −2 −2 0 0 0 0

3 0 3 τj −3 −3 −3 0 −3 −3 −3 0 0 0 0 0
wk 1 2 3 2 3 3 0 −1 −2 −2 0 0 0 0 0

4 −4 0 τj 0 0 4 0 0 0 0 4 4 4 4 4 4 4
wk 0 0 0 0 0 0 −1 0 0 0 −3 −3 −3 −3 −3 0 0 0

4 −3 1 τj −1 −1 3 −1 −1 −1 −1 3 3 3 3 3 3 3
wk 0 0 0 1 1 0 1 1 1 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj −2 −2 2 −2 −2 −2 −2 2 2 2 2 2 2 2
wk 0 0 1 2 1 2 2 2 −2 −3 −3 −3 −3 0 0 0 0 0

4 −1 3 τj −3 −3 1 −3 −3 −3 −3 1 1 1 1 1 1 1
wk 0 1 2 2 3 3 3 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 0 4 τj −4 −4 0 −4 −4 −4 −4 0 0 0 0 0 0 0
wk 1 2 2 4 4 4 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure C.70: P ′′′3 and τ̄ ∈ {2, 3, 4}, T = 5

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 0 0 0 2 0 0 2 2 2
wk 0 0 0 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj −1 −1 −1 1 −1 −1 1 1 1
wk 0 1 1 1 0 1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 −2 0 −2 −2 0 0 0
wk 1 2 2 1 2 0 −1 −1 0 0 0

3 −3 0 τj 0 0 3 0 0 0 3 3 3 3 3
wk 0 0 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −2 1 τj −1 −1 2 −1 −1 −1 2 2 2 2 2
wk 0 0 1 1 0 1 1 −2 −2 −2 −2 0 0 0

3 −1 2 τj −2 −2 1 −2 −2 −2 1 1 1 1 1
wk 0 1 2 1 2 2 −1 −2 −2 −2 0 0 0 0

3 0 3 τj −3 −3 0 −3 −3 −3 0 0 0 0 0
wk 1 2 2 3 3 0 −1 −2 −2 0 0 0 0 0

4 −4 0 τj 0 4 0 0 0 0 4 4 4 4 4 4 4
wk 0 0 0 0 0 −1 0 0 0 −3 −3 −3 −3 −3 0 0 0

4 −3 1 τj −1 3 −1 −1 −1 −1 3 3 3 3 3 3 3
wk 0 0 0 1 0 1 1 1 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj −2 2 −2 −2 −2 −2 2 2 2 2 2 2 2
wk 0 0 1 1 2 2 2 −2 −3 −3 −3 −3 0 0 0 0 0

4 −1 3 τj −3 1 −3 −3 −3 −3 1 1 1 1 1 1 1
wk 0 1 1 3 3 3 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 0 4 τj −4 0 −4 −4 −4 −4 0 0 0 0 0 0 0
wk 1 1 3 4 4 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure C.71: P ′′′3 and τ̄ ∈ {2, 3, 4}, T = 4
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 0 0 2 0 0 2 2 2
wk 0 0 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj −1 −1 1 −1 −1 1 1 1
wk 0 1 1 0 1 −1 −1 −1 0 0

2 −2 0 τj −2 −2 0 −2 −2 0 0 0
wk 1 2 1 2 0 −1 −1 0 0 0

3 −3 0 τj 0 3 0 0 0 3 3 3 3 3
wk 0 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −2 1 τj −1 2 −1 −1 −1 2 2 2 2 2
wk 0 0 1 0 1 1 −2 −2 −2 −2 0 0 0

3 −1 2 τj −2 1 −2 −2 −2 1 1 1 1 1
wk 0 1 1 2 2 −1 −2 −2 −2 0 0 0 0

3 0 3 τj −3 0 −3 −3 −3 0 0 0 0 0
wk 1 1 3 3 0 −1 −2 −2 0 0 0 0 0

4 −4 0 τj 4 0 0 0 0 4 4 4 4 4 4 4
wk 0 0 0 0 −1 0 0 0 −3 −3 −3 −3 −3 0 0 0

4 −3 1 τj 3 −1 −1 −1 −1 3 3 3 3 3 3 3
wk 0 0 0 0 1 1 1 −3 −3 −3 −3 −3 0 0 0 0

4 −2 2 τj 2 −2 −2 −2 −2 2 2 2 2 2 2 2
wk 0 0 0 2 2 2 −2 −3 −3 −3 −3 0 0 0 0 0

4 −1 3 τj 1 −3 −3 −3 −3 1 1 1 1 1 1 1
wk 0 0 2 3 3 −1 −2 −3 −3 −3 0 0 0 0 0 0

4 0 4 τj 0 −4 −4 −4 −4 0 0 0 0 0 0 0
wk 0 2 3 4 0 −1 −2 −3 −3 0 0 0 0 0 0 0

Figure C.72: P ′′′3 and τ̄ ∈ {2, 3, 4}, T = 3

τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 0 2 0 0 2 2 2
wk 0 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj −1 1 −1 −1 1 1 1
wk 0 1 0 1 −1 −1 −1 0 0

2 −2 0 τj −2 0 −2 −2 0 0 0
wk 1 1 2 0 −1 −1 0 0 0

3 −3 0 τj 3 0 0 0 3 3 3 3 3
wk 0 0 0 −1 0 0 −2 −2 −2 −2 0 0

3 −2 1 τj 2 −1 −1 −1 2 2 2 2 2
wk 0 0 0 1 1 −2 −2 −2 −2 0 0 0

3 −1 2 τj 1 −2 −2 −2 1 1 1 1 1
wk 0 0 2 2 −1 −2 −2 −2 0 0 0 0

3 0 3 τj 0 −3 −3 −3 0 0 0 0 0
wk 0 2 3 0 −1 −2 −2 0 0 0 0 0

4 −4 0 τj
wk

4 −3 1 τj
wk

4 −2 2 τj
wk

4 −1 3 τj
wk

4 0 4 τj
wk

Figure C.73: P ′′′3 and τ̄ ∈ {2, 3, 4}, T = 2
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τ̄ min maxi k −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 2 τj 2 0 0 2 2 2
wk 0 0 −1 0 −1 −1 −1 0

2 −1 1 τj 1 −1 −1 1 1 1
wk 0 0 1 −1 −1 −1 0 0

2 −2 0 τj 0 −2 −2 0 0 0
wk 0 2 0 −1 −1 0 0 0

3 −3 0 τj
wk

3 −2 1 τj
wk

3 −1 2 τj
wk

3 0 3 τj
wk

4 −4 0 τj
wk

4 −3 1 τj
wk

4 −2 2 τj
wk

4 −1 3 τj
wk

4 0 4 τj
wk

Figure C.74: P ′′′3 and τ̄ ∈ {2, 3, 4}, T = 1
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C.9 Gains for P ′′′3
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Figure C.75: P3, τ̄ = 1: P1 (blue), P ′3 (red), P ′′3 (green) and P ′′′3 (orange)
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Figure C.76: P3, τ̄ = 2: P1 (blue), P ′3 (red), P ′′3 (green) and P ′′′3 (orange)
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Figure C.77: P3, τ̄ = 3: P1 (blue), P ′3 (red), P ′′3 (green) and P ′′′3 (orange)
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Figure C.78: P3, τ̄ = 4: P1 (blue), P ′3 (red), P ′′3 (green) and P ′′′3 (orange)
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