
Usable Privacy-aware Logging
for Unstructured Log Entries

Christof Rath
Institute of Applied Information Processing and Communications

Graz University of Technology
Graz, Austria

Email: christof.rath@iaik.tugraz.at

Abstract—Log files are a basic building block of computer
systems. They typically contain sensitive data, for example,
information about the internal structure of a service and its users.
Additionally, log records are usually unstructured in the sense
that sensitive data will not occur in every entry and not always
occur at defined positions within a record. To mitigate the threat
of illicit access to log files, we propose a flexible framework for the
creation of privacy-preserving log records. A crucial step is the
annotation of sensitive data, by using arbitrary labels, during the
development of a system. These labels are mapped to redaction
filters to form a redaction policy. Thus, we can create two parallel
log streams. One log stream contains fully redacted log entries. It,
hence, does not contain any sensitive information and is intended
for everyday use. The second stream contains the original entires.
Here, confidentiality must be ensured. Our framework fosters
privacy by default principles and can support selective disclosure
of relevant data. We developed an implementation of our solution
for logback, one of the major logging frameworks in Java, and
successfully evaluated its applicability.

Keywords-Privacy-aware Logging; Privacy-preserving Audit-
ing; Redacted Logfiles; Logging Framework; Usable Privacy

I. INTRODUCTION

The paradigm shift towards distributed computing and espe-
cially cloud computing of recent years leads to an increased
demand on verbose log data. First, this data is required for
debugging purposes. This is owed to the increased complexity
of distributed systems and the limited possibilities to remotely
debug applications. Furthermore, it is required as evidence
in the case of disputes between the acting parties, as a
proof of the correct functionality of a system, or to increase
transparency of data processing. The EU directive 1995/46/EC
on Data Protection, for instance, recognizes transparency as a
key privacy principle [1]. Although required, the accumulation
of log data contradicts fundamental privacy and data protection
goals: data minimization and a defined purpose for the pro-
cessing of data. Often, log data is accumulated as preventive
measure, which in most cases would not have been necessary.
Since the actual use is unknown, it has to be collected in such
quantities that hopefully all conceivable woes can be mitigated.

At the same time as the demand on verbose log data
increases, also potential threats regarding data breach grow.
In almost all cases do log files contain sensitive data. These
are, for example, information about the internal structure of a
service, process flows, or data about related services. But in
many cases it also contains information about the users of a

service. Even if a log file may not directly contain sensitive
data of a user, like a password or social security number,
it might still be possible to use these records for profiling
purposes.

This lead to the design of a privacy-aware logging frame-
work for unstructured log entries. It fosters privacy by design
by annotating sensitive data during the development of a
system and follows privacy by default principles. With a so-
called redaction policy, it is possible to generate two different
log streams. A privacy-friendly log stream, which does not
contain any sensitive data. It can, thus, be stored unencrypted
and is intended for everyday use, for example, for debugging
purposes. The second log stream contains the original infor-
mation. For this stream confidentiality has to be ensured. A
possible use case could be to encrypt this log under the public
key of a data protection agency. In case of disputes, it requires
the consent, that is, the involvement of the data protection
agency to decrypt the log files. Our framework supports
the integration of new redaction mechanisms and log file
encodings to support advanced and upcoming cryptographic
schemes.

II. RELATED WORK

One of the first works regarding secure logging is from
1998 by Schneier and Kelsey [2]. They proposed cryptographic
support to create secure log files on untrusted machines. In
their scheme all log entries are encrypted using a unique
symmetric encryption key. A cryptographic hash function is
used to derive a new encryption key for each log entry.
Furthermore, a hash chain as well as message authentication
codes (MAC) are used to ensure the integrity of the log file.
The main shortcoming of this scheme is the missing search
capability, when used for debugging purposes. To search for a
specific incidence, the complete, or at least a substantial part of
the log file has to be decrypted. Once the relevant log entries
are found it is, however, possible to selectively communicate
the corresponding keys to allow access only to those entries.

In 2004, Waters et al. extended the concept of secure logging
by a searchable encryption scheme [3]. They proposed two
different schemes for the encryption of keywords: Their first
approach is based on symmetric encryption. To read the log
entries that contain a certain keyword, the auditor has to obtain
a search capability for that keyword from an audit escrow

agent, a trusted third party. A disadvantage of this scheme is a
shared secret key between the servers that create the log entries
and the audit escrow agent. If that key gets compromised,
an adversary cannot only create new log entires but can also
read all previous entries for which keywords are known or
can be guessed. To mitigate this threat, Waters et al. proposed
an asymmetric version of their scheme. They use an identity-
based encryption scheme to encrypt an ephemeral key by using
the set of keywords as public keys. To decrypt an entry the
auditor has to obtain the private key that corresponds to a
certain keyword, which only the audit escrow agent is able to
compute. However, the drawback of this solution is the num-
ber of computationally expensive pairing and exponentiation
operations.

With their work from 2008, Wouters et al. published a se-
cure and privacy-friendly logging framework for eGovernment
services [4]. Using their scheme, a citizen can reconstruct a
trail of log events in a privacy-friendly manner. In this context,
that means that only the authorized subject, that is, the citizen,
can link the different log entries related to one specific process.
Furthermore, their scheme allows logging servers to show that
they have behaved in accordance to a certain logging policy.

In 2013, Pulls et al. published an article about distributed
privacy-preserving transparency logging [5]. In their work,
they present a cryptographic scheme that enables data pro-
cessors to inform users about the actual data processing that
takes place on their personal data. Additionally, they claim
to be the first to formalize the required security and privacy
properties. Using their scheme, it is possible that multiple data
controllers process data disclosed by a user. Each of the data
processors can log the usage of the data to an arbitrary number
of log servers. The user then can query those log servers to
retrieve a complete trail of the usage of the data.

In previous work, the protection of privacy goals was
always achieved by encrypting the entire log entry. While this
obviously fulfils the goal, it also poses two drawbacks that we
are tackling in this work. First, the usage of fully encrypted
logs imposes a threat on its availability. Second, not all data
in a log file is privacy critical. As a result of full encryption,
the complete log file has to be decrypted even to trace some
incidence that might in the end not be related to sensitive
data. Additionally, this also renders use cases infeasible where
the private key is deposited at an external entity, like a data
protection agency.

In the later works by Wouters et al. and Pulls et al. access to
the log entries was limited to the data subject. This achieves
the highest possible level of privacy. However, we believe that
this condition is too restrictive for a practical use. The reasons
to collect log data can be split into three basic categories:
debugging, auditing and transparency. But these categories are
not necessarily independent. Data collected for auditing may
be useful for debugging, albeit probably not as verbose as if
collected specifically for debugging. Likewise, data collected
for transparency can certainly be part of an audit to prove
the lawful usage of personal data. Thus, if a data processor
has no access to the transparency logs, as in the works by

Wouters et al. and Pulls et al., the same information has to be
collected again as part of an audit log. More important, using
different logging facilities for different log purposes increase
the complexity of a system and add an additional source
of failure. We, therefore, propose a flexible and extendable
framework that can be used for arbitrary log purposes by
specifying different policies for particular requirements.

III. REQUIREMENTS

The conducted survey on existing privacy-preserving log-
ging schemes has identified a lack of dynamically adaptable
and practical solutions that can easily be integrated in existing
software and new solutions. To overcome this issue, we
propose a privacy-aware logging framework that can easily
be adapted to specific requirements. We have designed the
proposed solution, which will be introduced in Section IV in
detail, according to a set of requirements. These requirements
have been extracted from an analysis of existing solutions and
from published evaluations of these solutions such as [3], [5].
The derived requirements are discussed in the following in
more detail.

R1: Forward Integrity
For any secure logging framework it is paramount that the
integrity of logged data is ensured. It must be guaranteed,
that previous entries cannot be deleted or modified and that
new entries can only be appended at the end of the log
file. Even though such modifications can usually not be
prevented, it must always be possible to detect such changes.

R2: Confidentiality
To provide a secure and privacy-aware logging scheme it
is necessary that only a limited group of persons can read
sensitive data. This group should include the data subject
and eligible internal and external auditors.

R3: Selective Disclosure
For debugging, or the cause of an audit, the complete
information of a log file is not always necessary. For
example, one might look at the actions of a particular
user, then the identities and actions of other users do not
need to be disclosed. Thus, it should be possible to create
derived, authentic audit logs that contain only the necessary
information without compromising integrity (Req. 1).

R4: Fully Redacted Logs
As a means of a first debug/support vector, it should be
possible to create derived logs that do not contain any
sensitive data. Since no sensitive data is contained, these
logs can be stored and distributed more freely, for example,
to the developers of a system.

R5: Privacy by Design
A practical solution should foster privacy by design prin-
ciples [6]. That is, using this solution should enable the
development of systems that adhere to these principles
already in the design and development phase.

R6: Privacy by Default
While privacy by design covers the design and development
of a system, privacy by default deals with the runtime
of such systems. A system using our scheme should by
default not leak any sensitiv information. Even if the logging
framework is not configured to support our solution and
falls back to some default configuration must no sensitive
information be leaked.

IV. PROPOSED SOLUTION

In recent years, generic logging frameworks evolved as
independent projects and libraries. These frameworks allow
the segregation of program logic and logging-related tasks, for
example, which log entry has to be stored to what medium,
or the filtering according to a certain log level. Later, a new
abstraction layer, logging facades, was introduced to further
decouple the software from the underlying logging framework.

A. Basic Functionality
The basic building blocks of a logging framework usually

consist of a set of loggers and a set of appenders, as shown in
Figure 1. The logger objects provide the interface to issue new
logging incidences and the appenders take care of persisting
or presenting the resulting log message according to their
implementation. Certain types of appender additionally use
encoders to convert a log event e to its binary representation.
The creation of the log message is sometimes computationally

L
og
ge
r A

p
p
en
d
er

1

E
n
co
d
er

F
il
e

..
.

Log Event e:
m∗, [. . .]
date, metadata L

og
E
v
n
t

b
y
te
[]

m∗

[. . .]

A
p
p
en
d
er

n

D
B

insert into. . .

Fig. 1. Building Blocks of a Logger Framework

expensive, for instance, if it requires marshalling of large XML
structures, or database queries. Typically, the level of verbosity
also reflects the length and complexity of a log message;
however, it is less likely that messages with a high level of
verbosity will be presented or persisted at all in a productive
environment. Consequently, it became common practice to
check if a certain log level is enabled before a log message
m is created:

Modern logging frameworks, thus, support a substitution
mechanism, visualized in Figure 2. The log message consists
of some fixed strings sx and can be augmented by placeholders
p, for example, "{}", yielding a log message template m∗.

m∗ := s0||p||s1||p . . .

m∗: “User {} ({}) logged in”

[“Smith”, “101”]

m: “User Smith (101) logged in”

Fig. 2. Basic Logging Functionality

Additionally, a set of object [o0, o1, . . . , on] can be passed
to the log(...) function or its derivatives:

ComplexObject co = new ComplexObject();
LOG.debug("Log this {}", co);

Only if the debug level is enabled in the current con-
figuration, the placeholders will be replaced by the string
representation of the corresponding elements in the provided
object array, resulting again in the log message m:

m := s0|| str(o0)||s1|| str(o1) . . .

In the above equation, str(. . .) denotes the function that
converts an object to its string representation.

B. Annotation of Privacy-relevant Data

We extended this placeholder concept to annotate sensitive
data. For that, each placeholder gets a label, for example,
{userID}. We will show later how these labels are connected
to, so-called, redactors to allow for a policy-based configura-
tion. By labeling the placeholders we reach multiple goals:
• Specifying already during development which data is sen-

sitive supports the requirement privacy by design (Req. 5).
• Since this is a non-standard syntax we already fulfil the

requirement privacy by default (Req. 6). For instance,
given the following code:
LOG.debug("User {userID} has logged
in", user.getUserID());

The underlying logging framework does not recog-
nize {userID} as a placeholder. Thus, if the log-
ging framework is not configured to support our ar-
chitecture, the resulting log message will be: "User
{userID} has logged in" and the provided object
user.getUserID() will be ignored.

• Finally, by annotating the data, that is, giving the place-
holders a semantic, we can provide context-specific substi-
tutions. The user ID, for example, might be replaced by a
pseudonym for allowing the identification of related entries
without revealing the identity of the user. Other attributes
might be irrelevant for the everyday use of the log file and,
hence, blanked out entirely.

We want to note that there is one flaw in our privacy by de-
fault solution. When mixing labeled and unlabeled placehold-
ers, private data might be disclosed unintentionally: Consider
a case where the message template contains first labeled and
then unlabeled placeholders, for example, "User {userID}
has logged in {}". If this template is processed by a
logger context that has not been configured to support our

framework, unintentional information leakage will occur. In
this situation the labeled placeholders are not recognized and
will be ignored. The unlabeled placeholders will, consequently,
be replaced by the first values of the object array. For example,
given the message template from above and the object array
["101", "successfully"] would result in the log mes-
sage "User {userID} has logged in 101" instead
of "User ***** has logged in successfully".
We propose two solutions for that: First, one can ensure that
unlabeled placeholders are used only before labeled placehold-
ers in all message templates. While this works, we would
not recommend this approach, especially when working in
large development teams, since it is hard to ensure that this
requirement is fulfilled over a long period of time. Hence,
our recommendation is to eliminate all unlabeled placeholders
and instead explicitly label a placeholder to be substituted
by non-critical data, for example, "User {userID} has
logged in {non-critical}". This label can then be
connected to a ‘pass-through’ redactor. This solution has
the practical advantage that unlabeled placeholders can be
spotted easily even in a very large code base and if desired
automatically replaced by a default label and, thus, fulfill
Req. 6.

C. Redactors

In our architecture, we use redactors to replace a private
information with its redacted representation. A redactor gets
as input some private data d and outputs a redacted value d′.

d′ := R(d)

Trivially, the output of such a filter might be just a series of as-
terisk characters. Other examples are pure random characters,

R0uid →

R1name →

m∗: “User {name} ({uid}) logged in”

[“Smith”, “101”]

m′: “User S. (*****) logged in”

Legacy Processing

m: “User

{
Smith
S.

}
(

{
101

}
) logged in”

Privacy-aware Processing

Fig. 3. Privacy-aware Logging Functionality

or the output of a random oracle.
By mapping the labels of the placeholders to redactors a

desired redaction policy can be defined. This leads to the
privacy-aware logger functionality shown in Figure 3.

V. IMPLEMENTATION

We implemented our framework in Java to demonstrate the
applicability of our solution. The source code is available on
github [7]. In this section we will first describe our implemen-
tation and then present the results of our performance tests
using different redactor and encoder configurations.

The implementation of our solution is integrated in the
logging framework logback [8], which is a native imple-
mentation of the simple logging framework for Java (slf4j).

The integration of our solution happens via our own im-
plementation of the LoggerEvent class. To instantiate the
PrivacyAwareLoggerEvent either a proxy-appender can
be used or the global filter mechanism of modern logging
frameworks. The latter has the advantage to provide the
modified logger event to all configured appenders and for lack
of space we will only describe this approach.

A. Privacy-aware Turbo Filter

In the logback terminology global filters are called turbo
filters. The privacy-aware turbo filter (PATF) implementation

PATF
Log
Level
Eval

Logger
Event

A0 A1 An

TF0 TF1 TFn

Log
Level
Eval

PA
Logger
Event

. . .

. . .

Global Filter: Legacy Logger:

Within the PATF:

DENY

DENY

DENY

LL < Threshold

ACCEPT

ACCEPT

ACCEPT

DENY

Fig. 4. Processing of Logging Incidences using the PATF. TFx is a global
filter instance (called turbo filter in the terminology of logback) and Ax an
appender of the current logger. The highlighted circles show objects where
the redactor mapping is used.

mimics the behaviour of the legacy logger. The necessary
steps are: Execution of a nested turbo filter list (TF0 . . . TFn),
evaluation of the log level, instantiation of a privacy-aware
logging event object e′ and processing of the list of appenders
(A0 . . . An) of the calling logger instance. The only difference
between the legacy logger and our filter is that we instantiate a
privacy-aware logger event object. The reason for the nested
list of turbo filters is as follows: The return value of each
filter may break the filter chain by returning either ACCEPT
or DENY, as shown in Figure 4. Hence, if the PATF is not
the first filter in the chain and any previous filter returned
ACCEPT or DENY, the PATF does not get executed. The PATF,
on the other hand, already calls the appenders of the issuing
logger instance, as illustrated in Figure 4. To avoid doubled
log entries for the same logging incidence, it is necessary
that the further execution of the logging incidence is aborted
by returning DENY. Consequently, this disables all filters that
might have been registered after the PATF. Our solution tackles
this by providing a nested list of turbo filters. When configured
correctly, our filter is the only turbo filter registered directly
at the logger context. This ensures that the PATF gets always
executed and that the legacy program flow is aborted after
the execution of the PATF, shown in Figure 4. All other turbo
filters shall be registered at the PATF. With this setup, the exact
same behaviour as in the legacy code is guaranteed, only now
using a privacy-aware logger event object.

The rest of the framework components consists of the alter-
native proxy-appender, the PrivacyAwareLoggerEvent
class and the interface of the redactors. The member function

getFormattedMessage(), which performs the actual
conversion of the message template m∗ and the provided
object array [o0 . . . on] into the formatted message m, has
been overwritten to return the redacted version m′ of m and a
new method has been defined to return m. Consequently, only
components which expect privacy-aware logger events have
access to the fully disclosed data.

B. Redactors

The most trivial redactor is an identity redactor. It passes
the input unmodified to the output.

Next, we implemented a blinding redactor. The output of
the blinding redactor depends on its configuration. This can
be a static string, for example, *****, or the label of the
placeholder ([userID]). By specifying the algorithm of a
cryptographic hash function, a message digest can be used to
offer pseudonymization.

A variant of the blinding redactor is the anonymizing
redactor. Here, not only the sanitized value gets redacted but
also the original value, effectively destroying all links to the
original data, even in the privacy-critical data path.

Finally, we developed two encryption-based redactors. The
output of these redactors is the Base64 encoded cipher text of
the input.

The main advantage of these redactors is the possibility to
selectively disclose (Req. 3) any single value.

C. Encryption Encoders

So far we have discussed two means to fulfil the confi-
dentiality requirement (Req. 2). First, we discussed the weak
notion of solving it on a organizational level, that is, by
persisting the data on a trusted device. Then we presented
a cryptographically secure solution by using the encrypting
redactors. Additionally it is possible to encrypt the complete
log stream. For that we developed two different wrapping
encoders. These encoder use a nested sub-encoder for the
actual encoding of the logging entry but provide a cipher
output stream to transparently encrypt the data. Our initial im-
plementation uses the Cryptographic Message Syntax (CMS)
scheme to encrypt the log records. Multiple recipients can be
configured that are then able to decrypt the complete log file.
However, our tests showed that the resulting log files may be
corrupted if the output stream is not closed correctly before
termination. This is a great risk for a logging system since
exactly situations of unexpected program terminations are sub-
ject to consult the log files. Additionally, we have implemented
a low-level implementation that uses a configurable symmetric
cipher algorithm to encrypt the log data. A random secret key
and initialization vector is generated, if not provided via the
configuration. It is possible to provide an RSA certificate to
instantiate a KEM-DEM scheme. With this encoder only the
last entry may be lost if the program is terminated without
closing the cipher output stream. With our implementation it is
furthermore possible to set a second output stream to separate
the key stream and the log data stream.

VI. EVALUATION

Using our implementation, we conducted a performance
evaluation. For that we measured the execution time of a test
program using different logging configurations. Each test run
issued 40,000 logging incidences in four parallel threads. All
calls have been made using the same message template with
four placeholders and always the same parameters. For each
configuration two executions with five test runs each have been
performed to mitigate the influence of the virtual machine,
other running processes and the operating system. The median
value of all execution times of a certain configuration was used
in the following table. The integration of our framework was
done using the privacy-aware turbo filter. All tests have been
performed on an Apple MacBook Air with a 1,7 GHz Intel
Core i7 processor (dual-core), 8GB RAM and a 250GB SSD.

A. Baseline Tests

To compare our results to the status quo, we first conducted
a baseline test using only the standard logback components.
Additionally, we used the same configuration also to test the
performance impact of our digest converter. The converter
was configured to print Base64 encoded values of a chain of
hashes, that is, the hash value of the previous record is part
of the input of the current message digest.

TABLE I
EXECUTION TIMES OF THE BASELINE TESTS

Exec Time [ms]
Test Med. Mean σ

Baseline 697 771 222
SHA-256 Digest 785 924 302

In Table I, it can be seen, that the digest converter added
roughly 13% overhead.

B. Redactor Tests

After the baseline test, we tested our five redactor imple-
mentations separately. We configured a single file-appender,
which used a pattern layout encoder to generate the log
records. The layout we used only printed the relative time,
the name of the thread and the log message. We also wanted
to evaluate the impact of our redactors when used multiple
times per log record. Thus, we ran our test once by redacting
only two parameters (Table II), and then again by redacting
all four parameters (Table III).

TABLE II
EXECUTION TIMES OF REDACTORS (2 PARAMETERS)

Exec Time [ms]
Redactor Med. Mean σ

Identity 649 702 138
Blind 576 617 116
Anonymize 736 851 278
AES Encrypt 721 797 180

TABLE III
EXECUTION TIMES OF REDACTORS (4 PARAMETERS)

Exec Time [ms]
Redactor Med. Mean σ

Identity 596 645 113
Blind 582 628 106
Anonymize 825 849 170
AES Encrypt 875 927 236

An interesting result of these test set can be seen in the
first rows of Tables II and III: The identity redactor showed
consistently better results when processing all four parameters.
The blinding and anonymizing redactors can be configured
in several ways, which will influence the execution time. We
decided to use a static text (*****) for the blinding redactor
and a SHA–1 hash-based anonymization. The AES encryption
redactor was configured as KEM-DEM instance, that is, only
an encryption certificate was configured. An ephemeral sym-
metric key and initialization vector was generated and RSA
encrypted during the initialization.

C. Encoder Tests

Finally, we also tested our encoder implementations. For
these test runs we used always the same appender config-
uration, which was a single file-appender, a pattern layout
encoder and the four parameters redacted by the identity,
blinding, anonymizing and AES-encryption redactors. For the
first test run we used only the pattern layout encoder, as the
baseline result. Subsequently, the pattern layout encoder was
additionally wrapped by one of the privacy-aware wrapping
encoders.

TABLE IV
EXECUTION TIMES OF PRIVACY-AWARE ENCODERS

Exec Time [ms]
Encoder Med. Mean σ

Plaintext 919 989 203
AES Encrypt 1, 153 1, 168 179
CMS Encrypt 1, 036 1, 221 355

The results in Table IV show that the encryption of the
output requires at least 25% more time. However, the crypto
library we used performed the AES encryption in software
only. A significant performance gain can be achieved by using
the main processors AES instruction set or by using dedicated
crypto hardware like an HSM.

VII. CONCLUSION

In this article, we proposed, presented and discussed a
practical solution to generate unstructured privacy-preserving
log entries. Based on a set of relevant requirements, we have

developed an appropriate framework for the proposed solution.
We have then carried our proposed solution over to a concrete
implementation as an extension of the popular Java logging
framework logback [8]. Our architecture uses a new syntax
to annotate privacy-critical data, thus, supporting privacy by
design (Req. 5) and privacy by default (Req. 6) as a key
principles. With the support of global filters, a feature already
provided by logback and other logging frameworks, it is
very easy to integrate our framework in existing projects. The
requirements Req. 2 (confidentiality) and Req. 3 (selective
disclosure) can be fulfilled either on a per-label basis by
using encrypting redactors or on file-basis by using encrypting
encoders. The source code of our implementation is publicly
available on github.com [7].

Even though our framework is ready for productive use,
there are still some open issues that are regarded as future
work. The output of the fully disclosed log stream is currently
only implemented for stream-based appenders, like console
or file appenders. The means to process the fully disclosed
records by alternative appenders, e.g., the syslog appender, is
currently missing. However, our preliminary research shows
that the framework is flexible enough to support also these
use cases. Our solution shows, already in its current form,
substantial improvements over the state of the art regarding
privacy-aware logging of unstructured log entries. Especially
the creation of fully redacted log files, alongside the original
log data, offers a tremendous advantage over the state of
the art, for the confidentiality of sensitive data in log files,
for everyday use. Finally, this work is not intended as a
direct replacement of related work but should also be seen as
enabler to integrate sophisticated logging schemes into modern
logging frameworks.

REFERENCES

[1] European Parliament, “Directive 95/46/EC,” in Official Journal of the
European Communities. European Commision, 1995, vol. L 281/31.

[2] B. Schneier and J. Kelsey, “Cryptographic Support for Secure Logs on
Untrusted Machines,” Idea, pp. 53–62, 1998.

[3] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters, “Building an
Encrypted and Searchable Audit Log,” in In The 11th Annual Network
and Distributed System Security Symposium, 2004.

[4] K. Wouters, K. Simoens, D. Lathouwers, and B. Preneel, “Secure and
privacy-friendly logging for eGovernment services,” in ARES 2008 -
3rd International Conference on Availability, Security, and Reliability,
Proceedings, 2008, pp. 1091–1096.

[5] T. Pulls, R. Peeters, and K. Wouters, “Distributed privacy-preserving
transparency logging,” Proceedings of the 12th ACM workshop on Work-
shop on privacy in the electronic society - WPES ’13, no. 1, pp. 83–94,
2013.

[6] P. Schaar, “Privacy by Design,” Identity in the Information Society, vol. 3,
no. 2, pp. 267–274, Aug. 2010.

[7] Privacy-aware Logging Framework Source Code. visited on: 2016-03-18.
[Online]. Available: https://github.com/nobecutan/privacy-aware-logging

[8] Logback Project. visited on: 2016-03-18. [Online]. Available: http:
//logback.qos.ch

https://github.com/nobecutan/privacy-aware-logging
http://logback.qos.ch
http://logback.qos.ch

