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Abstract. The basic idea of voting protocols is that nodes query a sample of other
nodes and adjust their own opinion throughout several rounds based on the proportion
of the sampled opinions. In the classic model, it is assumed that all nodes have the same
weight. We study voting protocols for heterogeneous weights with respect to fairness. A
voting protocol is fair if the influence on the eventual outcome of a given participant is
linear in its weight. Previous work used sampling with replacement to construct a fair
voting scheme. However, it was shown that using greedy sampling, i.e., sampling with
replacement until a given number of distinct elements is chosen, turns out to be more
robust and performant.

In this paper, we study fairness of voting protocols with greedy sampling and propose
a voting scheme that is asymptotically fair for a broad class of weight distributions. We
complement our theoretical findings with numerical results and present several open
questions and conjectures.

1. Introduction

This article focuses on fairness in binary voting protocols. Marquis de Condorcet
observed the principle of voting in 1785 [4]. Let us suppose there is a large population of
voters, and each of them independently votes “correctly” with probability p > 1/2. Then,
the probability that the outcome of a majority vote is “correct” grows with the sample
size and converges to one. In many applications, for instance, distributed computing, it is
not feasible that every node queries every other participant and a centralized entity that
collects the votes of every participant and communicates the final result is not desired.
Natural decentralized solutions with low message complexity are the so-called voting
consensus protocols. Nodes query other nodes (only a sample of the entire population)
about their current opinion and adjust their own opinion throughout several rounds based
on the proportion of other opinions they have observed.

These protocols may achieve good performances in noiseless and undisturbed networks.
However, their performances significantly decreases with noise [6, 7] or errors [10] and
may completely fail in a Byzantine setting [2]. Recently, [14] introduced a variant of the
standard voting protocol, the so-called fast probabilistic consensus (FPC), that is robust
in Byzantine environment. The performance of FPC was then studied using Monte-Carlo
simulations in [2]. The above voting protocols are tailored for homogeneous networks
where all votes have equal weight. In [11, 12] FPC was generalized to heterogeneous
settings. These studies also revealed that how votes are sampled does have a considerable
impact on the quality of the protocol.

In a weighted or unweighted sampling, there are three different ways to choose a sample
from a population:
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(1) choose with replacement until one has m ∈ N elements;
(2) choose with replacement until one has k ∈ N distinct elements;
(3) choose without replacement until one has k = m (distinct) elements.

The first method is usually referred to as sampling with replacement. While in the
1950s, e.g., [16], the second way was called sampling without replacement, sampling
without replacement nowadays usually refers to the third possibility. To avoid any further
confusion, we call in this paper the second possibility greedy sampling.

Most voting protocols assume that every participant has the same weight. In hetero-
geneous situations, this does not reflect possible differences in weight or influence of the
participants. An essential way in which weights improve voting protocols is by securing
that the voting protocol is fair in the sense that the influence of a node on another node’s
opinion is proportional to its weight. This fairness is an essential feature of a voting pro-
tocol both for technical reasons, e.g., defense against Sybil attacks, and social reasons,
e.g., participants may decide to leave the network if the voting protocol is unfair. More-
over, an unfair situation may incentivize participants to split their weight among several
participants or increase their weight by pooling with other participants. These incentives
may lead to undesired effects as fragility against Sybil attacks and centralization.

The construction of a fair voting consensus protocols with weights was recently dis-
cussed in [11, 12]. We consider a network with N nodes (or participants), identified
with the integers {1, . . . , N}. The weights of the nodes are described by (mi)i∈N with∑N

i=1mi = 1, mi > 0 being the weight of the node i. Every node i has an initial state or
opinion si ∈ {0, 1}. Then, at each (discrete) time step, each node chooses k ∈ N random
nodes from the network and queries their opinions. This sampling can be done in one of
the three ways described above. For instance, [11] studied fairness in the case of sampling
with replacement. The mathematical treatment of this case is the easiest of the three
possibilities. However, simulations in [12] strongly suggest that the performance of some
consensus protocols are considerably better in the case of greedy sampling. The main
object of our work is the mathematical analysis of weighted greedy sampling with respect
to fairness.

The weights of the node may enter at two points during the voting: in sampling
and in weighting the collected votes or opinions. We consider a first weighting function
f : [0,∞)→ [0,∞) that describes the weight of a node in the sampling. More precisely,
a node i is chosen with probability

pi :=
f(mi)∑N
j=1 f(mj)

. (1.1)

We call this function f the sampling weight function. A natural weight function is f ≡ id;
a node is chosen proportional to its weight.

As discussed later in the paper, we are interested in how the weights influence the
voting if the number of nodes in the network tends to infinity. Therefore, we often
consider the situation with an infinite number of nodes. The weights of these nodes are
again described by (mi)i∈N with

∑∞
i=1mi = 1. A network of N nodes is then described

by setting mi = 0 for all i > N .
Once a node has chosen k distinct elements, by greedy sampling, it calculates a weighted

mean opinion of these nodes. Let us denote by Si the multi-set of the sample for a given
node i. The mean opinion of the sampled node is

ηi :=

∑
j∈Si

g(mj)sj∑
j∈Si

g(mj)
, (1.2)
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where g : [0,∞) → [0,∞) is a second weight function that we dub the averaging weight
function. The pair (f, g) of the two weight functions is called a voting scheme.

In standard majority voting every node adjusts its opinion as follows: if ηi < 1/2 it
updates its own opinion si to 0 and if ηi > 1/2 to 1. The case of a draw, ηi = 1/2,
may be solved by randomization or choosing deterministically one of the options. After
the opinion update, every node would re-sample and continue this procedure until some
stopping condition is verified. In general, such a protocol aims that all nodes finally
agree on one opinion or, in other words, find consensus. As mentioned above, this kind
of protocol works well in a non-faulty environment. However, it fails to reach consensus
when some nodes do not follow the rules or even try to hinder the other nodes from
reaching consensus. In this case, one speaks of honest nodes, the nodes which follow
the protocol, and malicious nodes, the nodes that try to interfere. An additional feature
was introduced by [14] that makes this kind of consensus protocol robust to some given
proportion of malicious nodes in the network.

Let us briefly explain this crucial feature. As in [2, 11, 12] we consider a basic version
of the FPC introduced in [14]. Let Ut, t = 1, 2, . . . be i.i.d. random variables with law
Unif([β, 1 − β]) for some parameter β ∈ [0, 1/2]. Every node i has an opinion or state.
We note si(t) for the opinion of the node i at time t. Opinions take values in {0, 1}.
Every node i has an initial opinion si(0). The update rules for the opinion of a node i is
then given by

si(1) =

{
1, if ηi(1) ≥ τ,
0, otherwise,

for some τ ∈ [0, 1]. For t ≥ 1:

si(t+ 1) =

 1, if ηi(t+ 1) > Ut,
0, if ηi(t+ 1) < Ut,
si(t), otherwise.

Note that if τ = β = 0.5, FPC reduces to a standard majority consensus. It is impor-
tant that the above sequence of random variables Ut are the same for all nodes. The
randomness of the threshold effectively reduces the capabilities of an attacker to control
the opinions of honest nodes and it also increases the rate of convergence in the case of
honest nodes only. Since in this paper we focus our attention mainly on the construction
and analysis of the voting schemes (f, g) we refer to [2, 11, 12] for more details on FPC.

We concentrate mostly on the case f ≡ id and g ≡ 1. For the voting scheme with
sampling with replacement, it was shown in [11, Theorem 1] that for g ≡ 1, i.e., when
the opinions of different nodes are not additionally weighted after the nodes are sampled,
the voting scheme (f, g) is fair, see Definition 2.3, if and only if f ≡ id. For f ≡ id, the
probability of sampling a node j satisfies pj = mj because we assumed that

∑∞
i=1mi = 1.

In many places we usemj and pj interchangeably, and both notations refer simultaneously
to the weight of the node j and the probability that the node j is sampled.

Our primary goal is to verify whether the voting scheme (id, 1) is fair in the case of
greedy sampling. We show in Proposition 4.1 that the voting scheme (id, 1) is in general
not fair. For this reason, we introduce the notion of asymptotic fairness, see Definition
2.5. Even though the definition of asymptotic fairness is very general, the best example
to keep in mind is when the number of nodes grows to infinity. An important question
related to the robustness of the protocol against Sybil attacks is if the gain in influence
on the voting obtained by splitting one node in “infinitely” many nodes is limited.

We find a sufficient condition on the sequence of weight distributions {(m(n)
i )i∈N}n∈N

for asymptotic fairness, see Theorem 4.5. In particular, this ensures robustness against
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Sybil attacks for wide classes of weight distributions. However, we also note that there
are situations that are not asymptotically fair, see Corollary 4.3 and Remark 4.4.

A key ingredient of our proof is a preliminary result on greedy sampling. This is a
generalization of some of the results of [16]. More precisely, we obtain a formula for the
joint distribution of the random vector (Ak(i), vk). Here, the random variable vk, defined
in (2.1), counts the number of samplings needed to sample k different elements, and the
random variable Ak(i), defined in (2.2), counts how many times in those vk samplings,
the node i was sampled. The result of asymptotic fairness, Corollary 4.3, relies on a
stochastic coupling that compares the nodes’ influence before and after splitting. We use
this coupling also in the simulations in Section 5; it considerably improves the convergence
of our simulations by reducing the variance.

Fairness plays a prominent role in many areas of science and applications. It is, there-
fore, not astonishing that it plays its part also in distributed ledger technologies. For
instance, proof-of-work in Nakamoto consensus ensures that the probability of creating a
new block is proportional to the computational power of a node; see [3] for an axiomatic
approach to block rewards and further references. In proof-of-stake blockchains, the prob-
ability of creating a new block is usually proportional to the node’s balance. However,
this does not always have to be the optimal choice, [8, 13].

Our initial motivation for this paper was to show that the consensus protocol used in
the next generation protocol of IOTA, see [15], is robust against splitting and merging.
Both effects are not desirable in a decentralized and permissionless distributed system.
We refer to [11, 12] for more details. Besides this, we believe that the study of the different
voting schemes is of theoretical interest and that many natural questions are still open,
see Section 5.

We organize the article as follows. Section 2 defines the key concepts of this paper:
voting power, fairness, and asymptotic fairness. We also recall Zipf’s law that we use to
model the weight distribution of the nodes. Even though our results are obtained in a
general setting, we discuss in several places how these results apply to the case of Zipf’s
law, see Subsection 2.2 and Figure 1. Section 3 is devoted to studying greedy sampling on
its own. We find the joint probability distribution of sample size and occurrences of the
nodes, (Ak(i), vk), and develop several asymptotic results we use in the rest of the paper.
In Section 4 we show that the voting scheme (id, 1) is in general not fair. However, we
give a sufficient condition on the sequence of weight distributions that ensures asymptotic
fairness. We provide an example where, without this condition, the voting scheme (id, 1)
is not asymptotically fair. Section 5 contains a short simulation study. Besides illustrating
the theoretical results developed in the paper, we investigate the cases when some of the
assumptions we impose in our theoretical results are not met. Last but not least, we
present some open problems and conjectures in 5. To keep the presentation as clear as
possible, we present some technical results in the Appendix 6.

2. Preliminaries

2.1. Main definitions. We now introduce this paper’s key concepts: greedy sampling,
voting scheme, voting power, fairness, and asymptotic fairness.

We start with defining greedy sampling. We consider a probability distribution P =
(pi)i∈N on N and an integer k ∈ N. We sample with replacement until k different nodes
(or integers) are chosen. The number of samplings needed to choose k different nodes is
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given by

vk := v
(P )
k := the number of samplings with replacement from

distribution P until k different nodes are sampled.
(2.1)

The outcome of a sampling will be denoted by the multi-set

S := {a1, a2, . . . , avk};

here the ai’s take values in N. Furthermore, for any i ∈ N, let

Ak(i) := A
(P )
k (i) := #{j ∈ {1, 2, . . . , vk} : aj = i} (2.2)

be the number of occurrences of i in the multi-set S = {a1, a2, . . . , avk}.
Every node i is assigned a weightmi. Together with a function f : [0,∞)→ [0,∞), that

we call sampling weight function, the weights define a probability distribution P = (pi)i∈N
on N by

pi =
f(mi)∑∞
j=1 f(mj)

.

We consider a second weight function g : [0,∞) → [0,∞), the averaging weight func-
tion, that weighs the samples opinions, see Equation (1.2). The couple (f, g) is called a
voting scheme. We first consider general voting schemes but focus later on the voting
scheme (f, g) with f ≡ id and g ≡ 1.

Let us denote by Si the multi-set of the sample for a given node i. To define the voting
powers of the nodes, we recall the definition of the mean opinion, Equation (1.2),

ηi =

∑
j∈Si

g(mj)sj∑
j∈Si

g(mj)
.

The multi-set Si is a random variable. Taking expectation leads to

E[ηi] = E

∑
j∈N

g(mj)Ak(j)sj∑
`∈N g(m`)Ak(`)

 =
∑
j∈N

E

[
g(mj)Ak(j)sj∑
`∈N g(m`)Ak(`)

]
.

Hence, the influence of the node j on another node’s mean opinion is measured by the
corresponding coefficient in the above series.

Definition 2.1 (Voting power). The voting power of a node i is defined as

Vk(i) := V
(P )
k (mi) := E

[
g(mi)Ak(i)∑
`∈N g(m`)Ak(`)

]
.

If g ≡ 1, the voting power reduces to

Vk(i) = V
(P )
k (i) = E

[
Ak(i)

vk

]
.

Definition 2.2 (r-splitting). Let (mi)i∈N be the weight distribution of the nodes and let
k ∈ N be a positive integer. We fix some node i and r ∈ N. We say that m

i
(r)
1
, . . . ,m

i
(r)
r
> 0

is an r-splitting of node i if mi =
∑r

j=1mi
(r)
j
. The probability distribution P = (pi)i∈N,

given in (1.1), changes to the probability distribution of the weights with r-splitting of
node i given by

P̂r,i := (p̂1, . . . , p̂i−1, p̂i(r)1
, . . . , p̂

i
(r)
r
, p̂i+1, . . .)
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on {1, . . . , i− 1, i
(r)
1 , . . . , i

(r)
r , i+ 1, . . .}, where

p̂j =
f(mj)∑

u∈N\{i} f(mu) +
∑r

u=1 f(m
i
(r)
u

)
, j 6= i,

p̂
i
(r)
j

=
f(m

i
(r)
j

)∑
u∈N\{i} f(mu) +

∑r
u=1 f(m

i
(r)
u

)
, j ∈ {1, 2, . . . , r}.

Definition 2.3 (Fairness). We say that a voting scheme (f, g) is
(i) robust to splitting into r nodes if for all nodes i and all r-splittings m

i
(r)
1
, . . . ,m

i
(r)
r

we have

V
(P )
k (mi) >

r∑
j=1

V
(P̂r,i)
k (m

i
(r)
j

); (2.3)

(ii) robust to merging of r nodes if for all nodes i and all r-splittings m
i
(r)
1
, . . . ,m

i
(r)
r

we have

V
(P )
k (mi) 6

r∑
j=1

V
(P̂r,i)
k (m

i
(r)
j

). (2.4)

If Relation (2.3) holds for every r ∈ N, we say that the voting scheme (f, g) is robust to
splitting and if Relation (2.4) holds for every r ∈ N, we say that the voting scheme (f, g)
is robust to merging. If a voting scheme (f, g) is robust to splitting and robust to merging,
that is, if for every node i and every r ∈ N and every r-splitting m

i
(r)
1
, . . . ,m

i
(r)
r
> 0 it

holds that

V
(P )
k (mi) =

r∑
j=1

V
(P̂r,i)
k (m

i
(r)
j

),

we say that the voting scheme (f, g) is fair.

To generalize the above definitions to sequences of weights and to define asymptotic
fairness, we first define sequence of r-splittings.

Definition 2.4 (Sequence of r-splittings). Let k ∈ N be a positive integer and let
{(m(n)

i )i∈N}n∈N be a sequence of weight distributions. Furthermore, for a fixed positive in-
teger r ∈ N and a fixed node i, we say that m(n)

i
(r)
1

, . . . ,m
(n)

i
(r)
r

> 0 is a sequence of r-splittings

of node i if m(n)
i =

∑r
j=1m

(n)

i
(r)
j

. We define the sequence of probability distributions on the

set {1, . . . , i− 1, i
(r)
1 , . . . , i

(r)
r , i+ 1, . . .}, by

P̂
(n)
r,i := (p̂

(n)
1 , . . . , p̂

(n)
i−1, p̂

(n)

i
(r)
1

, . . . , p̂
(n)

i
(r)
r

, p̂
(n)
i+1, . . .),

with

p̂
(n)
j =

f(m
(n)
j )∑

u∈N\{i} f(m
(n)
u ) +

∑r
u=1 f(m

(n)

i
(r)
u

)
, j 6= i,

p̂
(n)

i
(r)
j

=

f(m
(n)

i
(r)
j

)∑
u∈N\{i} f(m

(n)
u ) +

∑r
u=1 f(m

(n)

i
(r)
u

)
, j ∈ {1, 2, . . . , r}.
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Definition 2.5 (Asymptotic fairness). We say that a voting scheme (f, g) is asymptoti-
cally fair for the sequence {(m(n)

i )i∈N}n∈N of weight distributions if for all r and all nodes
i, ∣∣∣∣∣∣

r∑
j=1

V
(P̂

(n)
r,i )

k (m
(n)

i
(r)
j

)− V (P (n))
k (m

(n)
i )

∣∣∣∣∣∣ −−−→n→∞
0,

for all sequences of r-splittings of node i.

Remark 2.6. The canonical class of examples of the sequence {(m(n)
i )i∈N}n∈N of weight

distributions is the one where m(n)
i = 0 for all i > n. With these type of sequences of

weight distributions, we can model the scenario where the number of nodes in the network
grows to infinity.

2.2. Zipf’s law. We do not assume any particular weight distribution in our theoretical
results. However, for examples and numerical simulation, it is essential to consider specific
weight distributions.

Probably the most appropriate modelings of weight distributions rely on universality
phenomena. The most famous example of this universality phenomenon is the central
limit theorem. While the central limit theorem is suited to describe statistics where values
are of the same order of magnitude, it is not appropriate to model more heterogeneous
situations where the values might differ in several orders of magnitude. A Zipf law may
describe heterogeneous weight distributions. Zipf’s law was first observed in quantitative
linguistics, stating that any word’s frequency is inversely proportional to its rank in
the corresponding frequency table. Nowadays, many fields claim that specific data fits
a Zipf law; e.g., city populations, internet traffic data, the formation of peer-to-peer
communities, company sizes, and science citations. We refer to [9] for a brief introduction
and more references, and to [1] for the appearance of Zipf’s law in the internet and
computer networks. We also refer to [17] for a more mathematical introduction to this
topic.

There is a “rule of thumb” for situations when a Zipf law may govern the asymptotic
distribution of a data or statistic: variables

(1) take values as positive numbers;
(2) range over many different orders of magnitude;
(3) arise from a complicated combination of largely independent factors; and
(4) have not been artificially rounded, truncated, or otherwise constrained in size.

We consider a situation with n elements or nodes. Zipf’s law predicts that the (normal-
ized) frequency of the node of rank k is given by

y(k) :=
k−s∑n
i=1 i

−s , (2.5)

where s ∈ [0,∞) is the Zipf parameter. Since the value y(k) in (2.5) only depends on
two parameters, s and n, this provides a convenient model to investigate the performance
of a voting protocol in a wide range of network situations. For instance, nodes with
equal weight can be modeled by choosing s = 0, while more centralized networks can be
described with parameters s > 1.

A convenient way to observe a Zipf law is by plotting the data on a log-log graph, with
the axes being log(rank order) and log(value). The data conforms to a Zipf law to the
extent that the plot is linear, and the value of s may be estimated using linear regression.
We note that this visual inspection of the log-log plot of the ranked data is not a rigorous
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procedure. We refer to the literature on how to detect systematic modulation of the basic
Zipf law and on how to fit more accurate models. In this work, we deal with distributions
that are “Zipf like” without verifying certain test conditions.

For instance, Figure 1 shows the distribution of IOTA for the top 10.000 richest ad-
dresses with a fitted Zipf law.

Figure 1. Relative distribution of top 10.000 IOTA addresses with a fitted
Zipf distribution with s = 1.1, July 2020.

Due to the universality phenomenon, the plausibility of hypotheses 1) - 4) above, and
Figure 1, we assume the weight distribution to follow a Zipf law if we want to specify
a weight distribution. To be more precise, we assume that for every n ∈ N and some
parameter s > 0

p
(n)
j :=

{
1/js∑n

i=1(1/i
s)
, j 6 n,

0, j > n,
(2.6)

where P (n) = (p
(n)
j )j∈N is the weight distribution among the nodes in the network when

the total number of nodes is n. Notice that, for a fixed j, the sequence (p
(n)
j )n∈N is

decreasing in n. Furthermore, since
∑∞

i=1(1/i
s) diverges for s 6 1 the sequence (p

(n)
j )n∈N

converges to 0 in this case (when n goes to infinity). On the other hand, if the parameter
s is strictly larger than 1, the sequence (p

(n)
j )n∈N converges to a positive number (when n

goes to infinity).

3. Greedy weighted sampling

We consider sampling with replacement until k different elements are chosen. The
actual size of the sample is described by the random variable vk.

Proposition 3.1. Let P = (pi)i∈N be a probability distribution on N, k ∈ N a positive
integer and vk = v

(P )
k the random variable defined in (2.1). For every v ∈ {k, k + 1, k +
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2, . . .} we have

P (vk = v) =
∞∑
i=1

pi
∑

x1+···+xk−1=v−1
x1,...,xk−1>1

(
v − 1

x1, . . . , xk−1

) ∑
A⊂N\{i}
|A|=k−1

(pa1)
x1 · · · (pak−1

)xk−1 , (3.1)

where (
v − 1

x1, x2, . . . , xk−1

)
=

{
(v−1)!

x1!x2!···xk−1!
, x1 + x2 + . . .+ xk−1 = v − 1,

0, otherwise.
(3.2)

Proof. We are sampling from the distribution P until we sample k different nodes. A first
observation is that the last node will be sampled only once. All the nodes that appear
before the last one can be sampled more than once. We can construct such a sampling
in the following way: first we choose a node i ∈ N that will be sampled the last, then we
choose k − 1 different nodes a1, a2, . . . , ak−1 from the set N \ {i} that will appear in the
sequence before the last node and we choose positive integers x1, x2, . . . , xk−1 ∈ N that
represent how many times each of the k − 1 nodes from the set {a1, a2, . . . , ak−1} will
appear in the sampled sequence. Notice that

∑k−1
i=1 xi has to be equal to v − 1 because

the total length of the sequence, including the last node i, has to be v. The last thing we
need to choose is the permutation of the first v−1 elements in the sequence which can be
done in

(
v−1

x1,x2,...,xk−1

)
ways. Summarizing, the probability of sampling a sequence where

the last node is i and first k−1 nodes are a1, a2, . . . , ak−1 and they appear x1, x2, . . . , xk−1
times is

pi

(
v

x1, x2, . . . , xk−1

)
(pa1)

x1(pa2)
x2 · · · (pak−1

)xk−1 .

Now, we need to sum this up with respect to all the possible values of the element i, all
the possible sequences of k−1 positive integers x1, x2, . . . , xk−1 that sum up to v−1 (i.e.,
all the partitions of the integer v − 1 into k − 1 parts) and all the subsets of N \ {i} of
cardinality k − 1. This gives us exactly the expression from Equation (3.1). �

Remark 3.2. The random variable v(P )
k was studied in [16] in the case where the popula-

tion is finite and elements have equal weight. Therefore, Formula (3.1) is a generalization
of [16, Formula (16)].

Another random variable studied in [16] is the number of different elements in a sample
with replacement of a fixed size. To be precise, let k ∈ N be a positive integer and
P = (pi)i∈N be a probability distribution on N. Denote with

u
(P )
k = the number of different nodes sampled in k

samplings with replacement from distribution P.

The authors in [16] calculated the distribution of the random variable u(P )
k , but again

under the assumptions that the set from which the elements are sampled is finite and that
all the elements are sampled with the same probability. Using analogous reasoning as in
the proof of Proposition 3.1, for u ∈ {1, 2, . . . , k}, we get

P(u
(P )
k = u) =

∑
x1+···+xu=k
x1,...,xu>1

(
k

x1, . . . , xu

) ∑
A⊂N
|A|=u

(pa1)
x1 · · · (pau)xu .

This formula generalizes [16, Formula (8)].

Using Proposition 3.1, we now find the distribution of the random vector (Ak(i), vk)
for all i ∈ N.



ASYMPTOTIC FAIRNESS IN VOTING 10

Proposition 3.3. Let P = (pi)i∈N be a probability distribution on N, k ∈ N a positive
integer, vk = v

(P )
k the random variable defined in (2.1) and Ak(i) = A

(P )
k (i) the random

variable defined in (2.2). The support of the random vector (Ak(i), vk) is

{(0, v) : v > k} ∪ {(`, v) : 1 6 ` 6 v − k + 1}.
For every node i ∈ N and every (`, v) in the support of (Ak(i), vk) we have

P(Ak(i) = `, vk = v) =



∞∑
j=1
j 6=i

pj
∑

x1+···+xk−1=v−1
x1,...,xk−1>1

(
v−1

x1,...,xk−1

) ∑
A⊂N\{i,j}
|A|=k−1

k−1∏
r=1

(par)
xr , ` = 0,

∞∑
j=1
j 6=i

pj

( ∑
x1+···+xk−2=v−2

x1,...,xk−2>1

(
v−1

x1,...,xk−2,1

)
pi

∑
A⊂N\{i,j}
|A|=k−2

k−2∏
r=1

(par)
xr

)
+

pi
∑

x1+···+xk−1=v−1
x1,...,xk−1>1

(
v−1

x1,...,xk−1

) ∑
A⊂N\{i}
|A|=k−1

k−1∏
r=1

(par)
xr , ` = 1,

∞∑
j=1
j 6=i

pj
∑

x1+···+xk−2=v−`−1
x1,...,xk−2>1

(
v−1

x1,...,xk−2,`

)
(pi)

`
∑

A⊂N\{i,j}
|A|=k−2

k−2∏
r=1

(par)
xr , ` > 2.

(3.3)

Proof. Notice first that (0, v) is in the support of (Ak(i), vk). Now, if ` > 1 then for all
v < ` + k − 1 we have that P(Ak(i) = l, vk = v) = 0 since we need at least ` + k − 1
samplings to sample ` times node i and the other k − 1 different nodes at least once.

Let us consider separately different values of non-negative integer ` ∈ N ∪ {0}.
` = 0: This case is an immediate consequence of Proposition 3.1. We just need to

restrict the set of all nodes that can be sampled to N \ {i}.
` = 1: Here we need to distinguish two disjoint scenarios. First one is when the node i

is not sampled as the last node (i.e., node i is not the k-th different node that has been
sampled). This means that the node i was sampled in the first v − 1 samplings. Hence,
we first choose node j ∈ N \ {i} that will be sampled the last. Then we choose k − 2
different nodes a1, a2, . . . , ak−2 from the set N \ {i, j} that will appear (together with the
node i) in the sampled sequence before the last node and we choose positive integers
x1, x2, . . . , xk−2 ∈ N that represent how many times each of the k − 2 nodes from the
set {a1, a2, . . . , ak−2} will appear in the sampled sequence. Notice that

∑k−2
i=1 xi has to

be equal to v − 2 because the total length of the sequence, including one appearance of
node j (on the last place) and one appearance of node i (somewhere in the first v − 1
samplings), has to be v. The last thing we need to choose is the permutation of the
first v − 1 nodes in the sequence which can be done in

(
v−1

x1,...,xk−2,1

)
ways (taking into

consideration that node i appears only once). Summarizing, the probability of sampling
a sequence where the last node is j 6= i, node i appears exactly once in the first v − 1
sampled nodes and the rest k − 2 nodes that appear together with the node i before the
last node j are a1, a2, . . . , ak−2 and they appear x1, x2, . . . , xk−2 times is

pj

(
v − 1

x1, . . . , xk−2, 1

)
pi

k−2∏
r=1

(par)
xr .

As in Proposition 3.1, we now sum this up with respect to all the possible values of the
node j, all the possible sequences of k − 2 positive integers x1, x2, . . . , xk−2 that sum up
to v− 2 and all the subsets of N \ {i, j} of cardinality k− 2. This way we obtain the first
term in the expression for P(Ak(i) = 1, vk = v). The second scenario is the one where
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the node i is sampled the last. Here the situation is much simpler. The last node is fixed
to be i ∈ N and then we choose k− 1 nodes that appear before, and the number of times
they appear analogously as in Proposition 3.1. We immediately get the second term in
the expression for P(Ak(i) = 1, vk = v).
` > 2: Notice that in this case we don’t have two different scenarios because it is

impossible that the node i was sampled the last. As we explained in Proposition 3.1,
the last node can be sampled only once since we terminate sampling when we reach k
different nodes. Now we reason analogously as in the first scenario of the case ` = 1. The
only difference is that here node i appears ` times (in the first v − 1 samplings) so the
integers x1, x2, . . . , xk−2 have to satisfy

∑k−2
i=1 xi = v− `−1. Together with ` appearances

of the node i and one appearance of the last node, this gives v sampled nodes in total. �

Let b = (bi)i∈N ⊂ R be a sequence of real numbers. Denote with ‖b‖∞ = supi∈N |bi|
the supremum norm of the sequence b. The next result shows that if the probabilities
of sampling each of the nodes converge uniformly to zero then the number of samplings
needed to sample k different elements converges to k.

Lemma 3.4. Let (P (n))n∈N, P (n) = (p
(n)
i )i∈N, be a sequence of probability distributions on

N and let (kn)n∈N be a sequence of positive integers such that k2n
∥∥P (n)

∥∥
∞ −−−→n→∞

0. Then,

v
(P (n))
kn

/kn
P−−−→

n→∞
1. In particular, if for some fixed positive k ∈ N we have kn = k for all

n ∈ N, and
∥∥P (n)

∥∥
∞ −−−→n→∞

0, then we have that v(P
(n))

k

P−−−→
n→∞

k.

Proof. For simplicity, we denote v(n)kn
:= v

(P (n))
kn

. Since v(n)kn
is larger than or equal to kn,

it is sufficient to show that P(v
(n)
kn
/kn > 1) −−−→

n→∞
0. Denote by X(n)

i the random variable

representing the node sampled in the i-th sampling. Since the event {v(n)kn
/kn > 1}

happens if and only if some of the nodes sampled in the first kn samplings appear more
that once, we have

P(v
(n)
kn
/kn > 1)

= P(X
(n)
1 = X

(n)
2 ) + P(X

(n)
1 6= X

(n)
2 , X

(n)
3 ∈ {X(n)

1 , X
(n)
2 }) + · · ·

· · ·+ P(X
(n)
1 6= X

(n)
2 , X

(n)
3 /∈ {X(n)

1 , X
(n)
2 }, . . . , X

(n)
kn
∈ {X(n)

1 , X
(n)
2 , . . . , X

(n)
kn−1})

=
∑
i1∈N

(p
(n)
i1

)2 +
∑
i1∈N

∑
i2∈N
i2 6=i1

p
(n)
i1
p
(n)
i2

(p
(n)
i1

+ p
(n)
i2

)

+ . . .+
∑
i1∈N

∑
i2∈N
i2 6=i1

· · ·
∑

ikn−1∈N
ikn−1 6=i1
···

ikn−1 6=ikn−2

p
(n)
i1
p
(n)
i2
· · · p(n)ikn−1

kn−1∑
j=1

p
(n)
ij

6
∥∥P (n)

∥∥
∞

∑
i1∈N

p
(n)
i1

+ 2
∥∥P (n)

∥∥
∞

∑
i1∈N

∑
i2∈N

p
(n)
i1
p
(n)
i2

+ . . .+ (kn − 1)
∥∥P (n)

∥∥
∞

∑
i1∈N

∑
i2∈N

· · ·
∑

ikn−1∈N

p
(n)
i1
p
(n)
i2
· · · p(n)ikn−1

=
∥∥P (n)

∥∥
∞ (1 + 2 + · · ·+ kn − 1) 6 k2n

∥∥P (n)
∥∥
∞ .

By the assumption, the last term converges to zero when n goes to infinity, which is
exactly what we wanted to prove. �
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Remark 3.5. Let us investigate what happens when the sequence (P (n))n∈N is defined
by a Zipf law (see (2.6)) with parameter s > 0. Since each of the sequences (p

(n)
i )i∈N is

decreasing in i we have ∥∥P (n)
∥∥
∞ = p

(n)
1 =

1∑n
i=1

1
is

.

Notice that for all s 6 1 we have
∥∥P (n)

∥∥
∞ −−−→n→∞

0 because the series
∑∞

i=1
1
is

diverges
for those values of the parameter s. Hence, for a fixed integer k ∈ N, we have that
v
(P (n))
k

P−−−→
n→∞

k whenever s 6 1. Another important example is when sequence (kn)n∈N is
given by

kn = blog(n)c,
where for x ∈ R, bxc is the largest integer less than or equal to x. Using

n∑
i=1

1

is
∼

{
n1−s, s < 1,

log(n), s = 1,

we get, for s < 1, k2n
∥∥P (n)

∥∥
∞ −−−→n→∞

0 so we can apply Lemma 3.4 for this particular

choice of sequences (kn)n∈N and (P (n))n∈N.

In Lemma 3.4 we dealt with the behavior of the sequence of random variables (vP
(n)

kn
)n∈N

if the sequence (P (n))n∈N satisfies
∥∥P (n)

∥∥
∞ −−−→n→∞

0. Next, we study the case when the

sequence (P (n))n∈N converges in the supremum norm to another probability distribution
P (∞) on N. As before, for b = (bi)i∈N ⊂ R, we use the notation‖b‖∞ = supi∈N |bi| and we
write ‖b‖1 =

∑∞
i=1 |bi|.

Proposition 3.6. Let (P (n))n∈N, P (n) = (p
(n)
i )i∈N, be a sequence of probability distribu-

tions on N and let P (∞) = (p
(∞)
i )i∈N be a probability distribution on N. If∥∥P (n) − P (∞)

∥∥
∞ = sup

i∈N
|p(n)i − p

(∞)
i | −−−→

n→∞
0

then, for all fixed k ∈ N,

(A
(P (n))
k (i), v

(P (n))
k )

(d)−−−→
n→∞

(A
(P (∞))
k (i), v

(P (∞))
k ),

where
(d)−→ denotes convergence in distribution.

Proof. For simplicity, we denote v(n)k := v
(P (n))
k , v(∞)

k := v
(P (∞))
k , A(n)

k (i) := A
(P (n))
k (i) and

A
(∞)
k (i) := A

(P (∞))
k (i). Since we consider discrete random variables, the statement

(A
(n)
k (i), v

(n)
k )

(d)−−−→
n→∞

(A
(∞)
k (i), v

(∞)
k )

is equivalent to

P(A
(n)
k (i) = `, v

(n)
k = v) −−−→

n→∞
P(A

(∞)
k (i) = `, v

(∞)
k = v)

for all ` ∈ N∪{0} and all v ∈ N. As in the proof of Proposition 3.3, we consider separately
different values of the non-negative integer ` ∈ N ∪ {0}.
` = 0: Using Proposition 3.3, we have

|P(A
(n)
k (i) = 0, v

(n)
k = v)− P(A

(∞)
k (i) = 0, v

(∞)
k = v)|
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=

∣∣∣∣∣
∞∑
j=1
j 6=i

p
(n)
j

∑
x1+···+xk−1=v−1

x1,...,xk−1>1

(
v − 1

x1, . . . , xk−1

) ∑
A⊂N\{i,j}
|A|=k−1

(p(n)a1
)x1 · · · (p(n)ak−1

)xk−1

−
∞∑
j=1
j 6=i

p
(∞)
j

∑
x1+···+xk−1=v−1

x1,...,xk−1>1

(
v − 1

x1, . . . , xk−1

) ∑
A⊂N\{i,j}
|A|=k−1

(p(∞)
a1

)x1 · · · (p(∞)
ak−1

)xk−1

∣∣∣∣∣
6

∑
x1+···+xk−1=v−1

x1,...,xk−1>1

(
v − 1

x1, . . . , xk−1

)∣∣∣∣∣(
∞∑
j=1
j 6=i

p
(n)
j

∑
A⊂N\{i,j}
|A|=k−1

(p(n)a1
)x1 · · · (p(n)ak−1

)xk−1

)

−
( ∞∑

j=1
j 6=i

p
(∞)
j

∑
A⊂N\{i,j}
|A|=k−1

(p(∞)
a1

)x1 · · · (p(∞)
ak−1

)xk−1

)∣∣∣∣∣
=

∑
x1+···+xk−1=v−1

x1,...,xk−1>1

(
v − 1

x1, . . . , xk−1

)
|I(n)(x1, . . . xk−1)− I(∞)(x1, . . . xk−1)|,

with

I(n)(x1, . . . xk−1) :=
∞∑
j=1
j 6=i

p
(n)
j

∑
A⊂N\{i,j}
|A|=k−1

(p(n)a1
)x1 · · · (p(n)ak−1

)xk−1 ,

I(∞)(x1, . . . xk−1) :=
∞∑
j=1
j 6=i

p
(∞)
j

∑
A⊂N\{i,j}
|A|=k−1

(p(∞)
a1

)x1 · · · (p(∞)
ak−1

)xk−1 .

It remains to prove that |I(n)(x1, . . . xk−1) − I(∞)(x1, . . . xk−1)| −−−→
n→∞

0, uniformly for
all possible values of positive integers x1, x2, . . . xk−1. This is sufficient since the number
of partitions of integer v − 1 into k − 1 parts is finite and independent of n. Notice that
for every i, j ∈ N∑

A⊂N\{i,j}
|A|=k−1

(p(∞)
a1

)x1 · · · (p(∞)
ak−1

)xk−1 6
∑
A⊂N
|A|=k−1

p(∞)
a1
· · · p(∞)

ak−1
6

∞∑
a1=1

p(∞)
a1
· · ·

∞∑
ak−1=1

p(∞)
ak−1

= 1.

(3.4)
Clearly, the same is true when, instead of distribution P (∞), we consider the distribution
P (n). Due to convergence of these series, we can rewrite

I(n)(x1, . . . , xk−1)− I(∞)(x1, . . . , xk−1) =
( ∞∑

j=1
j 6=i

(p
(n)
j − p

(∞)
j )

∑
A⊂N\{i,j}
|A|=k−1

(p(n)a1
)x1 · · · (p(n)ak−1

)xk−1

)

+
( ∞∑

j=1
j 6=i

p
(∞)
j

∑
A⊂N\{i,j}
|A|=k−1

(
(p(n)a1

)x1 · · · (p(n)ak−1
)xk−1 − (p(∞)

a1
)x1 · · · (p(∞)

ak−1
)xk−1

))

=: S
(n)
1 (x1, . . . , xk−1) + S

(n)
2 (x1, . . . , xk−1).

For simplicity, we write S(n)
1 = S

(n)
1 (x1, . . . , xk−1) and S

(n)
2 = S

(n)
2 (x1, . . . , xk−1). It re-

mains to prove that S(n)
1 and S(n)

2 converge to 0 when n goes to infinity. Using Inequality
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(3.4) and Proposition 6.2 we have that

|S(n)
1 | 6

∞∑
j=1

|p(n)j − p
(∞)
j | · 1 −−−→

n→∞
0.

To treat the term S
(n)
2 we use Lemma 6.1, in the second line, and Proposition 6.2, in the

last line, to obtain

|S(n)
2 | 6

∞∑
j=1
j 6=i

p
(∞)
j

∑
A⊂N\{i,j}
|A|=k−1

∣∣∣(p(n)a1
)x1 · · · (p(n)ak−1

)xk−1 − (p(∞)
a1

)x1 · · · (p(∞)
ak−1

)xk−1

∣∣∣
6

∞∑
j=1

p
(∞)
j

∑
A⊂N
|A|=k−1

∣∣∣∣∣∣
k−1∑
r=1

(p(n)a1
)x1 · · · (p(n)ar−1

)xr−1

(
(p(n)ar )xr − (p(∞)

ar )xr

)
·

· (p(∞)
ar+1

)xr+1 · · · (p(∞)
ak−1

)xk−1

∣∣∣
6

k−1∑
r=1

∞∑
a1=1

· · ·
∞∑

ak−1=1

(p(n)a1
)x1 · · · (p(n)ar−1

)xr−1

∣∣∣(p(n)ar )xr − (p(∞)
ar )xr

∣∣∣ ·
· (p(∞)

ar+1
)xr+1 · · · (p(∞)

ak−1
)xk−1

6
k−1∑
r=1

∞∑
ar=1

∣∣∣(p(n)ar )xr − (p(∞)
ar )xr

∣∣∣
=

k−1∑
r=1

∞∑
ar=1

∣∣∣p(n)ar − p
(∞)
ar

∣∣∣ ∣∣∣(p(n)ar )xr−1 + (p(n)ar )xr−2(p(∞)
ar ) + · · ·+ (p(∞)

ar )xr−1
∣∣∣

6 (k − 1)xr

∞∑
j=1

∣∣∣p(n)j − p
(∞)
j

∣∣∣ 6 vk
∞∑
j=1

∣∣∣p(n)j − p
(∞)
j

∣∣∣ −−−→
n→∞

0.

` > 2: Again using Proposition 3.3, we have

|P(A
(n)
k (i) = `, v

(n)
k = v)− P(A

(∞)
k (i) = `, v

(∞)
k = v)|

=

∣∣∣∣∣
∞∑
j=1
j 6=i

p
(n)
j

∑
x1+···+xk−2=v−`−1

x1,...,xk−2>1

(
v − 1

x1, . . . , xk−2, `

)
(p

(n)
i )`

∑
A⊂N\{i,j}
|A|=k−2

(p(n)a1
)x1 · · · (p(n)ak−2

)xk−2

−
∞∑
j=1
j 6=i

p
(∞)
j

∑
x1+···+xk−2=v−`−1

x1,...,xk−2>1

(
v − 1

x1, . . . , xk−2, `

)
(p

(∞)
i )`

∑
A⊂N\{i,j}
|A|=k−2

(p(∞)
a1

)x1 · · · (p(∞)
ak−2

)xk−2

∣∣∣∣∣
6

∑
x1+···+xk−2=v−`−1

x1,...,xk−2>1

(
v − 1

x1, . . . , xk−2, `

)∣∣∣∣∣
∞∑
j=1
j 6=i

(p
(n)
j (p

(n)
i )` − p(∞)

j (p
(∞)
i )`)

∑
A⊂N\{i,j}
|A|=k−2

(p(n)a1
)x1· · · (p(n)ak−2

)xk−2

+
∞∑
j=1
j 6=i

p
(∞)
j (p

(∞)
i )`

∑
A⊂N\{i,j}
|A|=k−2

(
(p(n)a1

)x1 · · · (p(n)ak−2
)xk−2 − (p(∞)

a1
)x1 · · · (p(∞)

ak−2
)xk−2

) ∣∣∣∣∣.
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To show that the above expression converges to zero as n tends to infinity it remains to
verify that

∞∑
j=1
j 6=i

|p(n)j (p
(n)
i )` − p(∞)

j (p
(∞)
i )`| −−−→

n→∞
0.

To obtain this, we can use the same arguments as in the previous case. Again, introducing
a middle term leads to
∞∑
j=1
j 6=i

|p(n)j (p
(n)
i )` − p(∞)

j (p
(∞)
i )`| =

∞∑
j=1
j 6=i

|p(n)j (p
(n)
i )` − p(n)j (p

(∞)
i )` + p

(n)
j (p

(∞)
i )` − p(∞)

j (p
(∞)
i )`|

6 |(p(n)i )` − (p
(∞)
i )`|

∞∑
j=1

p
(n)
j + (p

(∞)
i )`

∞∑
j=1

|p(n)j − p
(∞)
j |

6 |p(n)i − p
(∞)
i ||(p

(n)
i )`−1 + (p

(n)
i )`−2p

(∞)
i + · · ·+ (p

(∞)
i )`−1|+

∞∑
j=1

|p(n)j − p
(∞)
j |

6 ` ·
∥∥P (n) − P (∞)

∥∥
∞ +

∥∥P (n) − P (∞)
∥∥
1
.

Applying again Proposition 6.2 we get the desired result.
` = 1: The above argument stays the same for ` = 1. Hence, the difference of the first

terms in the expressions for P(A
(n)
k (i) = 1, v

(n)
k = v) and P(A

(∞)
k (i) = 1, v

(∞)
k = v) (see

(3.3)) goes to zero. The difference of the second terms can be handled similarly as in
the case ` = 0; the situation is even simpler due to the absence of the initial sum. This
concludes the proof of this proposition. �

Corollary 3.7. Let (P (n))n∈N, P (n) = (p
(n)
i )i∈N, be a sequence of probability distributions

on N and let P (∞) = (p
(∞)
i )i∈N be a probability distribution on N. We assume that g ≡ 1.

If
∥∥P (n) − P (∞)

∥∥
∞ = supi∈N |p

(n)
i − p

(∞)
i | −−−→

n→∞
0, then for all i ∈ N and all fixed k ∈ N

A
(P (n))
k (i)

(d)−−−→
n→∞

A
(P (∞))
k (i), (3.5)

v
(P (n))
k

(d)−−−→
n→∞

v
(P (∞))
k , (3.6)

V
(P (n))
k (p

(n)
i ) −−−→

n→∞
V

(P (∞))
k (p

(∞)
i ), (3.7)

where V (P (n))
k (p

(n)
i ) = E[A

(P (n))
k (i)/v

(P (n))
k ], n ∈ N ∪ {∞}, is the voting power of the node

i in the case g ≡ 1.

Proof. Convergence in (3.5) and (3.6) follows directly from Proposition 3.6 using the
continuous mapping theorem (see [5, Theorem 3.2.4]) applied to projections Π1,Π2 :
R2 → R, Πi(x1, x2) = xi, i = 1, 2. To prove the convergence in (3.7), let us first define
the bounded and continuous function

φ : [0,∞)× [1,∞)→ R, φ(x, y) = min

{
x

y
, 1

}
.

Therefore, combining Proposition 3.6 with [5, Theorem 3.2.3] we get

E
[
φ
(
A

(P (n))
k (i), v

(P (n))
k

)]
−−−→
n→∞

E
[
φ
(
A

(P (∞))
k (i), v

(P (∞))
k

)]
. (3.8)
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Notice that we always have A(P )
k (i) 6 v

(P )
k since the random variable A(P )

k (i) counts the
number of times the node i was sampled until k different nodes were sampled and the
random variable v(P )

k counts the total number of samplings until k distinct elements were
sampled. Hence,

φ
(
A

(P )
k (i), v

(P )
k

)
=
A

(P )
k (i)

v
(P )
k

.

Combining the latter with (3.8) and using V (P (n))
k (p

(n)
i ) = E[A

(P (n))
k (i)/v

(P (n))
k ], n ∈ N ∪

{∞}, we obtain (3.7). �

4. Asymptotic fairness

We start this section with the case k = 2, i.e., we sample until we get two different
nodes. This small choice of k allows us to perform analytical calculations and prove some
facts rigorously. We prove that the voting scheme (id, 1) is robust to merging but not
fair. We also show that the more the node splits, the more voting power it can gain.
However, with this procedure, the voting power does not grow to 1, but a limit strictly
less than 1.

Proposition 4.1. We consider the voting scheme (id, 1) and let (mi)i∈N be the weight
distribution of the nodes. Let P = (pi)i∈N be the corresponding probability distribution on
N, let r ∈ N, i a node, and k = 2. Then, for every r-splitting m

i
(r)
1
, . . . ,m

i
(r)
r
> 0 of the

node i, we have that

V
(P )
k (mi) <

r∑
j=1

V
(P̂r,i)
k (m

i
(r)
j

). (4.1)

In other words, the voting scheme (id, 1) is robust to merging, but not robust to splitting.
The difference of the voting power after splitting and before splitting reaches its maximum
for

m
i
(r)
j

=
mi

r
, j ∈ {1, 2, . . . , r}.

Furthermore, for this particular r-splitting, we have that the sequence( r∑
j=1

V
(P̂r,i)
k (m

i
(r)
j

)

)
− V (P )

k (mi)


r∈N

is strictly increasing and has a limit strictly less than 1.

Proof. Denote with Yi = A
(P )
2 (i) the number of times that the node i was sampled from

the distribution P until we sampled 2 different nodes, and with Yij = A
(P̂r,i)
2 (i

(r)
j ), j ∈

{1, 2, . . . , r}, the number of times the node i(r)j was sampled from the distribution P̂r,i

until we sampled 2 different nodes. We also write V (mi) := V
(P )
k (mi) and V (r)(m

i
(r)
j

) :=

V
(P̂r,i)
k (m

i
(r)
j

). Using these notations, we have

V (mi) =
∑

u∈N\{i}

∞∑
yu=1

P(Yi = 1, Yu = yu) · 1

1 + yu
+

∑
u∈N\{i}

∞∑
yi=1

P(Yi = yi, Yu = 1) · yi
1 + yi

= pi
∑

u∈N\{i}

∞∑
yu=1

pyuu ·
1

1 + yu
+

∑
u∈N\{i}

pu

∞∑
yi=1

pyii ·
yi

1 + yi
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= pi
∑

u∈N\{i}

(
− log(1− pu)

pu
− 1

)
+ (1− pi) ·

pi
1−pi + log(1− pi)

pi

= −pi
∑

u∈N\{i}

(
log(1− pu)

pu
+ 1

)
+

(1− pi) log(1− pi)
pi

+ 1.

Similarly, for j ∈ {1, 2, . . . , r} we have

V (r)(m
i
(r)
j

) =
∑

u∈N\{i}

∞∑
yu=1

P(Yij = 1, Yu = yu) · 1

1 + yu

+
r∑

`=1
6̀=j

∞∑
yi`=1

P(Yij = 1, Yil = yi`) ·
1

1 + yi`

+
∑

u∈N\{i}

∞∑
yij=1

P(Yij = yij , Yu = 1) ·
yij

1 + yij

+
r∑

`=1
6̀=j

∞∑
yij=1

P(Yij = yij , Yil = 1) ·
yij

1 + yij

= −p̂
i
(r)
j

∑
u∈N\{i}

(
log(1− pu)

pu
+ 1

)
− p̂

i
(r)
j

r∑
`=1
`6=j

 log(1− p̂
i
(r)
l

)

p̂
i
(r)
l

+ 1


+

(1− p̂
i
(r)
j

) log(1− p̂
i
(r)
j

)

p̂
i
(r)
j

+ 1.

Combining the above calculations, we obtain

r∑
j=1

V (r)(m
i
(r)
j

)− V (mi) = −
r∑

j=1

p
i
(r)
j

∑
u∈N\{i}

(
log(1− pu)

pu
+ 1

)
−

r∑
j=1

r∑
`=1
` 6=j

p̂
i
(r)
j

log(1− p̂
i
(r)
l

)

p̂
i
(r)
l

−
r∑

j=1

p
i
(r)
j

(r − 1) +
r∑

j=1

(1− p̂
i
(r)
j

) log(1− p̂
i
(r)
j

)

p̂
i
(r)
j

+ r

+ pi
∑

u∈N\{i}

(
log(1− pu)

pu
+ 1

)
− (1− pi) log(1− pi)

pi
− 1

=
r∑

j=1

log(1− p̂
i
(r)
j

)

p̂
i
(r)
j

1− p̂
i
(r)
j
−

r∑
`=1
`6=j

p̂
i
(r)
`

+ r − 1− pi(r − 1)

− (1− pi) log(1− pi)
pi

= (1− pi)

(r − 1) +
r∑

j=1

log(1− p̂
i
(r)
j

)

p̂
i
(r)
j

− log(1− pi)
pi

 .
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We take x1, x2, . . . xr ∈ (0, 1) such that
∑r

j=1 xj = 1 and set

p̂
i
(r)
j

= pi · xj, j ∈ {1, . . . , r}.

This gives us
r∑

j=1

V (r)(m
i
(r)
j

)− V (mi) = (1− pi)

(r − 1) +
r∑

j=1

log(1− pixj)
pixj

− log(1− pi)
pi

 .
Define

φ(x1, . . . , xr) := (r − 1) +
r∑

j=1

log(1− pixj)
pixj

− log(1− pi)
pi

.

First,we need to show that φ(x1, x2, . . . , xr) > 0 for all x1, x2, . . . , xr ∈ (0, 1) such that∑r
j=1 xj = 1. Using Proposition 6.3 repeatedly (r − 1 times), we get

φ(x1, . . . , xr) = (r − 2) +

(
1 +

log(1− pix1)
pix1

+
log(1− pix2)

pix2

)
+

r∑
j=3

log(1− pixj)
pixj

− log(1− pi)
pi

> (r − 2) +
log(1− pi(x1 + x2))

pi(x1 + x2)
+

r∑
j=3

log(1− pixj)
pixj

− log(1− pi)
pi

= (r − 3) +

(
1 +

log(1− pi(x1 + x2))

pi(x1 + x2)
+

log(1− pix3)
pix3

)
+

r∑
j=4

log(1− pixj)
pixj

− log(1− pi)
pi

> (r − 3) +
log(1− pi(x1 + x2 + x3))

pi(x1 + x2 + x3)
+

r∑
j=4

log(1− pixj)
pixj

− log(1− pi)
pi

...
...

...

> 1 +
log(1− pi

∑r−1
j=1 xj)

pi
∑r−1

j=1 xj
+

log(1− pixr)
pixr

− log(1− pi)
pi

> 0.

The second claim of this proposition is that the expression
r∑

j=1

V (r)(m
i
(r)
j

)− V (mi)

reaches its maximum for p̂
i
(r)
j

= pi
r
, j ∈ {1, 2, . . . , r}. This follows directly from Lemma

6.4, where we show that φ attains its unique maximum for (x1, . . . , xr) = (1
r
, . . . , 1

r
).

Denote with

τr(pi) = (1− pi)φ
(

1

r
, . . . ,

1

r

)
= (1− pi)

(r − 1) +
r∑

j=1

log(1− pi
r

)
pi
r

− log(1− pi)
pi


= (1− pi)

[
r +

r2 log(1− pi
r

)

pi
− log(1− pi)

pi
− 1

]
.
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By Proposition 6.5 we have that the sequence (τr(pi))r∈N is strictly increasing and

τ(pi) = lim
r→∞

τr(pi) = (1− pi)
(
−pi

2
− log(1− pi)

pi
− 1

)
.

�

Remark 4.2. We consider the function τ : (0, 1)→ R defined by

τ(m) = (1−m)

(
−m

2
− log(1−m)

m
− 1

)
.

This function describes the gain in voting power a node with initial weight m can achieve
by splitting up into infinitely many nodes. As Figure 2 shows, this maximal gain in voting
power is bounded. The function τ attains maximum at m∗ ≈ 0.82 and the maximum is
τ(m∗) ≈ 0.12. This means that a node that initially has around 82% of the total amount of
mana can obtain the biggest gain in the voting power (by theoretically splitting into infinite
number of nodes) and this gain is approximately 0.12. Loosely speaking, if a voting power
of a node increases by 0.12, this means that during the querying, the proportion of queries
that are addressed to this particular node increases by around 12%.

(m∗, τ(m∗))

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

Figure 2. Graph of the function τ .

Corollary 4.3. Let m(n) be a sequence of weight distributions with corresponding prob-
ability distributions (P (n))n∈N, P (n) = (p

(n)
i )i∈N on N. Let m(∞) be a weight distribution

such that for its corresponding probability distributions P (∞) = (p
(∞)
i )i∈N we have that∥∥P (n) − P (∞)

∥∥
∞ = sup

i∈N
|p(n)i − p

(∞)
i | −−−→

n→∞
0.

Furthermore, we consider a sequence of r-splittings m(n)

i
(r)
1

, . . . ,m
(n)

i
(r)
r

> 0 of a node i such

that m(n)

i
(r)
j

−−−→
n→∞

m
(∞)

i
(r)
j

, j ∈ {1, 2, . . . , r}, for some r-splitting m(∞). Then, for k = 2 we

have

lim
n→∞

( r∑
j=1

V
(P̂

(n)
r,i )

k (p̂
(n)

i
(r)
j

)

)
− V (P (n))

k (p
(n)
i )


=

(
r∑

j=1

V
(P̂

(∞)
r,i )

k (p̂
(∞)

i
(r)
j

)

)
− V (P (∞))

k (p
(∞)
i ) > 0.
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Proof. The convergence follows directly from Corollary 3.7, and the strict positivity of
the limit follows from Proposition 4.1. �

Remark 4.4. Corollary 4.3 implies that if k = 2 and if the sequence of weight distribu-
tions (P (n))n∈N converges to a non-trivial probability distribution on N, the voting scheme
(id, 1) is not asymptotically fair. Applying this result to the sequence of Zipf distributions
defined in (2.6), we see that for s > 1, and k = 2, the voting scheme is not asymptotically
fair. Simulations suggest, see Figures 4 and 8, that for higher values of k the difference
in voting power of the node i before and after the splitting does not converge to zero as
the number of nodes in the network grows to infinity.

In the following proposition we give a condition on the sequence of weight distributions
(P (n))n∈N under which the voting scheme (id, 1) is asymptotically fair for any choice of
the parameter k.

Theorem 4.5. Let k be a positive integer and m(n) be a sequence of weight distri-
butions with corresponding probability distributions (P (n))n∈N, P (n) = (p

(n)
i )i∈N on N.

We assume that
∥∥P (n)

∥∥
∞ −−−→n→∞

0. Furthermore, we consider a sequence of r-splittings

m
(n)

i
(r)
1

, . . . ,m
(n)

i
(r)
r

> 0 of a given node i such that m(n)

i
(r)
j

−−−→
n→∞

m
(∞)

i
(r)
j

, j ∈ {1, 2, . . . , r}, for

some r-splitting m(∞). Then,∣∣∣∣∣∣
(

r∑
j=1

V
(P̂

(n)
r,i )

k (p̂
(n)

i
(r)
j

)

)
− V (P (n))

k (p
(n)
i )

∣∣∣∣∣∣ −−−→n→∞
0,

i.e., the voting scheme (id, 1) is asymptotically fair if the sequence of weight distributions
converges in the supremum norm to 0.

Proof. For simplicity, we write P (n)
r := P̂

(n)
r,i , v

(n)
k := v

(P (n))
k and v

(n)
k,r := v

(P
(n)
r )

k ; recall
that the random variable v(P )

k counts the number of samplings with replacement from the
distribution P until k different elements are sampled. The main idea of the proof is to
couple the random variables v(n)k and v

(n)
k,r . We sample simultaneously from probability

distributions P (n) and P (n)
r and construct two different sequences of elements that both

terminate once they contain k different elements. We do that in the following way: we
sample an element from the distribution P (n). If the sampled element is not i, we just
add this element to both sequences that we are constructing and then sample the next
element. If the element i is sampled, then we add i to the first sequence, but to the second
sequence we add one of the elements i(r)1 , . . . , i

(r)
r according to the probability distribution

(p
(n)

i
(r)
1

/p
(n)
i , . . . , p

(n)

i
(r)
r

/p
(n)
i ). Now, the second sequence will terminate not later than the first

one since the second sequence always has at least the same amount of different elements
as the first sequence. This is a consequence of the fact that, each time the element i is
sampled, we add one of the r elements i(r)1 , i

(r)
2 , . . . , i

(r)
r to the second sequence while we

just add i to the first sequence, see Figure 3.
Denote with

K
(n)
k := v

(n)
k − v

(n)
k,r .

Since v(n)k > v
(n)
k,r , we have K(n)

k > 0. We also introduce the random variable

L
(n)
k := A

(P (n))
k (i)−

r∑
j=1

A
(P

(n)
r )

k (i
(r)
j ),
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First sequence:

v
(n)
k︷ ︸︸ ︷

? ? ? i ? i . . . ? ? i ? ? i ? i ? . . . ? ? i ? ?︸ ︷︷ ︸
K

(n)
k

Second sequence: ? ? ? i(r)r ? i
(r)
1 . . . ? ? i

(r)
2 ?︸ ︷︷ ︸

v
(n)
k,r

Figure 3. Coupling of random variables v(n)k and v(n)k,r .

where A(P )
k (i) is defined as in (2.2). The random variable L(n)

k is measuring the difference
in the number of times the node i appears in the first sequence and the number of
times nodes i(r)1 , i

(r)
2 , . . . , i

(r)
r appear in the second sequence. At the time when the second

sequence terminates, the number of times the node i appeared in the first sequence is the
same as the number of times that nodes i(r)1 , i

(r)
2 , . . . , i

(r)
r appeared in the second sequence,

see Figure 3. Since the length of the first sequence is always larger than or equal to the
length of the second sequence, it can happen that the element i is sampled again before
the k-th different element appears in the first sequence. Therefore, L(n)

k > 0. Clearly,
L
(n)
k 6 K

(n)
k because K(n)

k counts all the extra samplings we need to sample k different
elements in the first sequence, while L(n)

k counts only those extra samplings in which
the element i was sampled. Notice that if the element i is not sampled before the k-th
different element appears or if i is the k-th different element, then K(n)

k = L
(n)
k = 0.

Let

Y
(n)
k := A

(P (n))
k (i) and Y

(n)
k,r :=

r∑
j=1

A
(P

(n)
r )

k (i
(r)
j ).

Then

V
(P (n))
k (p

(n)
i ) = E

[
Y

(n)
k

v
(n)
k

]
,

r∑
j=1

V
(P

(n)
r )

k (p
(n)

i
(r)
j

) = E

Y (n)
k,r

v
(n)
k,r

 and Y
(n)
k = Y

(n)
k,r + L

(n)
k .

Combining this with v(n)k = v
(n)
k,r +K

(n)
k , we have∣∣∣∣∣

(
r∑

j=1

V
(P

(n)
r )

k (p
(n)

i
(r)
j

)

)
− V (P (n))

k (p
(n)
i )

∣∣∣∣∣ =

∣∣∣∣∣∣E
Y (n)

k,r

v
(n)
k,r

− Y
(n)
k

v
(n)
k

∣∣∣∣∣∣ =

∣∣∣∣∣∣E
Y (n)

k,r

v
(n)
k,r

−
Y

(n)
k,r + L

(n)
k

v
(n)
k,r +K

(n)
k

∣∣∣∣∣∣
=

∣∣∣∣∣∣E
Y (n)

k,r (v
(n)
k,r +K

(n)
k )− (Y

(n)
k,r + L

(n)
k )v

(n)
k,r

v
(n)
k,r (v

(n)
k,r +K

(n)
k )

∣∣∣∣∣∣ =

∣∣∣∣∣∣E
 Y

(n)
k,r K

(n)
k

v
(n)
k,r (v

(n)
k,r +K

(n)
k )
− L

(n)
k

v
(n)
k,r +K

(n)
k

∣∣∣∣∣∣
6 E

Y (n)
k,r

v
(n)
k,r

· 1

v
(n)
k,r +K

(n)
k

·K(n)
k +

1

v
(n)
k,r +K

(n)
k

· L(n)
k

 .
Denote with

Zn :=
Y

(n)
k,r

v
(n)
k,r

· 1

v
(n)
k,r +K

(n)
k

·K(n)
k +

1

v
(n)
k,r +K

(n)
k

· L(n)
k .
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It remains to prove that E[Zn] −−−→
n→∞

0. Since Y (n)
k,r 6 v

(n)
k,r , k 6 v

(n)
k,r , and L

(n)
k 6 K

(n)
k we

have
Zn 6 min{2K(n)

k , 2}.

By Lemma 3.4 we have that v(n)k

P−−−→
n→∞

k and v
(n)
k,r

P−−−→
n→∞

k (notice that
∥∥P (n)

r

∥∥
∞ 6∥∥P (n)

∥∥
∞). Therefore,

K
(n)
k = v

(n)
k − v

(n)
k,r

P−−−→
n→∞

0.

This implies that Zn
P−−−→

n→∞
0. Since Zn ≤ 2 we have that limn→∞ E[Zn] = 0. �

Remark 4.6. The above proposition shows that
∥∥P (n)

∥∥
∞ −−−→n→∞

0 is a sufficient condition
to ensure asymptotic fairness, regardless of the value of the parameter k ∈ N. Applying
this result to the sequence of probability distributions (P (n))n∈N defined by the Zipf ’s law
(see (2.6)) we see that for s 6 1 the voting scheme (id, 1) is asymptotically fair.

5. Simulations and conjectures

In this section, we present some numerical simulations to complement our theoretical
results. We are interested in the rate of convergence in the asymptotic fairness, Theorem
4.5, and want to support some conjectures for the situation where our theoretical results
do not apply.

We always consider a Zipf law for the nodes’ weight distribution; see Relation (2.6).
The reasons for this assumption are presented in Subsection 2.2. We always consider the
voting scheme (id, 1).

Figure 4 presents results of a Monte-Carlo simulation for a Zipf distribution with
parameter s ∈ {0.8, 1.1} and different network sizes on the x-axis. For real-world appli-
cations we expect values of k to be at least 20, see also [12], and set, therefore, the sample
size to k = 20. The y-axis shows the gain in voting power for the heaviest node splitting
into two nodes of equal weight. For each choice of network size, we performed 1 000 000
simulations and use the empirical average as an estimator for the gain in voting power.
The gray zone corresponds to the confidence interval of level 0.95. Let us note that to
decrease the variance of the estimation, we couple, as in the proof of Theorem 4.5, the
sampling in the original network with the sampling in the network after splitting.

Theorem 4.5 and Remark 4.6 state that if the Zipf parameter s 6 1 the voting scheme
is asymptotically fair, i.e., the difference of the voting power after the splitting and before
the splitting of a node i ∈ N goes to zero as the number of nodes in the network increases.
The left-hand side of Figure 4 indicates the speed of convergence for s = 0.8. The right-
hand side of Figure 4 indicates that for s = 1.1 the voting scheme is not asymptotically
fair. Corollary 4.3 states that for k = 2, if the sequence of weight distributions (P (n))n∈N
converges to a non-trivial probability distribution on N, the voting scheme (id, 1) is not
asymptotically fair.

Conjecture 5.1. Let m(n) be a sequence of weight distributions with corresponding prob-
ability distributions (P (n))n∈N, P (n) = (p

(n)
i )i∈N on N. Let m(∞) be a weight distribution

such that for its corresponding probability distribution P (∞) = (p
(∞)
i )i∈N we have that∥∥P (n) − P (∞)

∥∥
∞ = sup

i∈N
|p(n)i − p

(∞)
i | −−−→

n→∞
0.
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Figure 4. Increase in voting power for fixed k = 20, varying N , and two
different values of s.

Furthermore, we consider a sequence of r-splittings m(n)

i
(r)
1

, . . . ,m
(n)

i
(r)
r

> 0 of a node i such

that m(n)

i
(r)
j

−−−→
n→∞

m
(∞)

i
(r)
j

, j ∈ {1, 2, . . . , r}, for some r-splitting m(∞). Then, for any choice

of k ∈ N

lim
n→∞

( r∑
j=1

V
(P̂

(n)
r,i )

k (p̂
(n)

i
(r)
j

)

)
− V (P (n))

k (p
(n)
i )


=

(
r∑

j=1

V
(P̂

(∞)
r,i )

k (p̂
(∞)

i
(r)
j

)

)
− V (P (∞))

k (p
(∞)
i ) > 0.

We take a closer look at the distribution of the increase in voting power in the above
setting. Figures 5 and 6 present density estimations, with a gaussian kernel, of the density
of the increase in voting power. Again we simulated each data point 1 000 000 times. The
density’s multimodality should be explained by the different possibilities the heaviest
node before and after splitting can be chosen. Figure 6 explains well the asymptotic
fairness; the probability of having only a small change in voting power converges to 0 as
the number of participants grows to infinity. Figure 7 compares the densities for different
choices of s in a network of 1000 nodes.

The last figures also show that even in the case where a splitting leads to an increase
on average of the voting power, the splitting can also lead to less influence in a single
voting round.

We kept the sample size k = 20 in the previous simulations. Increasing the sample size
increases the quality of the voting, however with the price of a higher message complexity.
Figure 8 compares the increase in voting power for different values of k and s. We can
see that an increase of k increases the fairness of the voting scheme and that for some
values of k the increase in voting power may even be negative.

Figure 9 presents density estimations of the increase of voting power. We can see the
different behaviors in the more decentralized setting, s < 1, and the centralized setting,
s > 1. In the first case, it seems that the density converges to a point mass in 0, whereas
in the second case, the limit may be described by a Gaussian density. A QQ-plot supports
this first visual impression in Figure 10.
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Figure 5. Density estimation for increase in voting power for two choices
of network sizes. (k = 20, s = 1.1).

Figure 6. Density estimation for increase in voting power for two choices
of network sizes. (k = 20, s = 0.8). The right-hand side is a zoom of the
left-hand side.

Figure 7. Density estimation for increase in voting power for two choices
of the Zipf parameter s for a network size of 1000 nodes and k = 20.

While the study of the actual distribution of the increase in voting power is out of the
scope of this paper we think that the following questions might be of interest.
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Figure 8. Mean increase in voting power for different values of the sample
size k, two different values of s, and a network size of 1000 nodes.

Figure 9. Density estimation for increase in voting power for two choices
of the Zipf parameter s for a network size of 1000 nodes and two choices of
k.

Question 5.2. In what way can the distribution of the increase in voting power be de-
scribed?

Question 5.3. What kind of characteristics of the distribution of the increase in voting
power are important for the voting scheme and its applications.

Recall that we only considered the change in voting power of the heaviest node that
splits into two nodes of equal weight until now.

The goal of the next two simulations, see Figures 11 and 12, is to inspect what happens
with the voting power of a node when it splits into more than just two nodes.

For the simulation shown in Figure 11, we fix the value of the parameter k and we vary
the value of the parameter s. In Proposition 4.1 we showed that for k = 2, a node always
gains voting power with splitting. This result holds without any additional assumptions
on the weight distribution of the nodes in the network. We run simulations with k = 20
and we split the heaviest node into r nodes; r ranging from 2 to 200. We keep the
network size equal to 1000 and vary the parameter s in the set {0.8, 1, 1.1, 1.5, 2}. For
each different value of the parameter s we ran 100 000 simulations of the voting scheme
(id, 1). Several conjectures can be made from Figure 11. It seems that if the parameter
k is equal to 20, we can even have a drop in the voting power for small values of the
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Figure 10. QQ-plots of the increase in voting power against a Gaussian
distribution for different choices of k and s = 1.1 in a network of size 1000.

Figure 11. The effect of multiple splitting on the voting power of a node
for k = 20 and different s in a network of size 1000.

parameter r. This drop appears to be more significant the bigger the parameter s is. But
if we split into more nodes (we set r to be sufficiently high), it seems that splitting gives
us more voting power, and the gain is bigger for values of s larger than 1. This suggests
that it is possible to have robustness to splitting into r nodes for r smaller than some
threshold δ, and robustness to merging of r nodes for r > δ.

The simulations presented in Figure 12 show the change of the voting power of a node
after it splits into multiple nodes for different values of the parameters k and s. As in
the previous simulation, we consider a network size of 1000 and assume that the first
node splits into r different nodes (where r is again ranging from 2 to 200). For each
combination of values of parameters k and s, we ran 100 000 simulations. Our results
suggest that for s 6 1, we always gain voting power with additional splittings. On the
other hand, if s > 1 then the voting power’s behavior depends even more on the precise
value of k. It seems that for small k, we still cannot lose voting power by splitting, but
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for k sufficiently large it seems that there is a region where the increase in voting power
is negative.

Figure 12. The effect of multiple splitting on the voting power of the
heaviest node in a network of size 1000 (s ∈ {0.8, 1.1, 1.5, 2}, k ∈
{5, 10, 15, 20}).

Question 5.4. How does the increase in voting power of the heaviest node depends on k,
s, and N? For which choices of these parameters the increase in voting power is negative?

The above simulation study is far from complete, but we believe that our results already
show the model’s richness. In the simulations, we only split the heaviest node.
Question 5.5. How does the increase in voting power of the node of rank M depends on
M , k, s, and N?

In a more realistic model, not only one but all nodes may simultaneously optimize
their voting power. This is particularly interesting in situations that are not robust to
splitting. We believe that it is reasonable that nodes may adapt their strategy from time
to time to optimize their voting power in such a situation. This simultaneous splitting
or merging of the nodes may lead to a periodic behavior of the nodes or convergence to
a stable situation, where none of the nodes has an incentive to split or merge.
Question 5.6. Construct a multi-player game where the aim is to maximize the voting
power. Do the corresponding weights always converge to a situation in which the voting
scheme is fair?
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6. Appendix

In this section, we provide proofs of several results that we use throughout the paper.

6.1. Auxiliary results for Section 3. The first result is proved by induction.

Lemma 6.1. Let w ∈ N and let a1, a2, . . . , aw, b1, b2, . . . , bw ∈ R, then

(a1a2 · · · aw)− (b1b2 · · · bw) =
w∑

j=1

a1a2 · · · aj−1(aj − bj)bj+1 · · · bw.

Proposition 6.2. Let (P (n))n∈N, P (n) = (p
(n)
i )i∈N, be a sequence of probability distri-

butions on N, and let P (∞) = (p
(∞)
i )i∈N be a probability distribution on N. Then, the

following statements are equivalent:

(a)
∥∥P (n) − P (∞)

∥∥
∞ = supi∈N |p

(n)
i − p

(∞)
i | −−−→

n→∞
0,

(b)
∥∥P (n) − P (∞)

∥∥
1

=
∑∞

i=1 |p
(n)
i − p

(∞)
i | −−−→

n→∞
0.

Proof. (b)⇒ (a): This follows immediately from supi∈N |p
(n)
i −p

(∞)
i | 6

∑∞
i=1 |p

(n)
i −p

(∞)
i |.

(a) ⇒ (b): Let ε > 0. Choose n0 = n0(ε) such that
n0∑
i=1

p
(∞)
i > 1− ε. (6.1)

This can be done because P (∞) is a probability distribution on N. Furthermore, let
n1 = n1(ε, n0) ∈ N be such that for every n > n1 we have∥∥P (n) − P (∞)

∥∥
∞ <

ε

n0

. (6.2)

Using this we get for all n > n1:
n0∑
i=1

|p(n)i − p
(∞)
i | 6 n0 ·

∥∥P (n) − P (∞)
∥∥
∞ < n0 ·

ε

n0

= ε. (6.3)

On the other hand, we have that for all n > n1:
∞∑

i=n0+1

p
(n)
i < ε+

n0∑
i=1

(p
(∞)
i − p(n)i ) 6 ε+

n0∑
i=1

|p(∞)
i − p(n)i | < 2ε, (6.4)

where in the first inequality we used equation (6.1) together with the fact that
∑∞

i=1 p
(n)
i =

1 and in the last inequality we used equation (6.3). Combining Equations (6.4) and (6.1)
we get

∞∑
i=n0+1

|p(n)i − p
(∞)
i | 6

∞∑
i=n0+1

p
(n)
i +

∞∑
i=n0+1

p
(∞)
i < 2ε+ ε = 3ε, (6.5)

for all n > n1. Finally, we have∥∥P (n) − P (∞)
∥∥
1

=

n0∑
i=1

|p(n)i − p
(∞)
i |+

∞∑
i=n0+1

|p(n)i − p
(∞)
i | < ε+ 3ε = 4ε,

where we used equations (6.3) and (6.5). This proves that
∥∥P (n) − P (∞)

∥∥
1
−−−→
n→∞

0 as-

suming that
∥∥P (n) − P (∞)

∥∥
∞ −−−→n→∞

0, which is exactly what we wanted to prove. �
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6.2. Auxiliary results for Section 4.

Proposition 6.3. Let x, y > 0 such that x+ y < 1. Then

1 +
log(1− x)

x
+

log(1− y)

y
>

log(1− (x+ y))

x+ y
. (6.6)

Proof. Define

g(x, y) := 1 +
log(1− x)

x
+

log(1− y)

y
− log(1− (x+ y))

x+ y
.

We now show that g(x, y) > 0 for all x, y > 0 such that x + y < 1. Let y ∈ (0, 1) be
arbitrary but fixed. Notice that

lim
x→0

g(x, y) = 0.

Hence, to prove that g(x, y) > 0 for all x ∈ (0, 1− y) (for fixed y) it is sufficient to show
that x 7→ g(x, y) is strictly increasing on (0, 1− y). We have

∂g

∂x
(x, y) =

log(1− (x+ y))

(x+ y)2
+

1

(x+ y)(1− (x+ y))
− log(1− x)

x2
− 1

x(1− x)

= h(x+ y)− h(x)

for

h(x) :=
log(1− x)

x2
+

1

x(1− x)
.

Therefore, it is enough to show that h(x) is a strictly increasing function on (0, 1) since
then (for y ∈ (0, 1) and x ∈ (0, 1− y)) we would have ∂g

∂x
(x, y) = h(x+ y)−h(x) > 0. We

verify that h(x) is strictly increasing on (0, 1) by showing that h′(x) > 0 on (0, 1). We
have that

h′(x) =
1

x3

(
x(3x− 2)

(1− x)2
− 2 log(1− x)

)
.

Hence, it remains to prove that

log(1− x) <
x(3x− 2)

2(1− x)2
. (6.7)

One way to see this is to prove that

log(1− x) < −x− x2

2
<
x(3x− 2)

2(1− x)2
. (6.8)

As this is basic analysis we omit the details. �

Lemma 6.4. Let p ∈ (0, 1) and let D = {x1, x2, . . . , xr ∈ (0, 1) :
∑r

j=1 xj = 1}. The
function g : D → R defined by

g(x1, x2, . . . , xr) =
r∑

j=1

log(1− pxj)
pxj

has a unique maximum on the set D at the point (x1, x2, . . . , xr) = (1
r
, 1
r
, . . . , 1

r
).

The proof of Lemma 6.4 is a standard application of Lagranges’s multiplier and omitted.
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Proposition 6.5. Let p ∈ (0, 1) and let

τr(p) = (1− p)

[
r +

r2 log(1− p
r
)

p
− log(1− p)

p
− 1

]
.

Then, the sequence (τr(p))r∈N is an increasing sequence for all p ∈ (0, 1) and it holds that

τ(p) = lim
r→∞

τr(p) = (1− p)
(
−p

2
− log(1− p)

p
− 1

)
.

Proof. Let us first show that the sequence (τr(p))r∈N is strictly increasing. For this, it is
sufficient to show that for p ∈ (0, 1) the function

φ(x) := x+
x2 log(1− p

x
)

p

is strictly increasing on [1,∞), because the sequence (τr(p))r∈N satisfies τr(p) = (1 −
p)(φ(r)− φ(1)). We will show that φ′(x) > 0 for all x ∈ [1,∞). We have

φ′(x) = 1 +
2x log(1− p

x
)

p
+

x

x− p
.

Since limx→∞ φ
′(x) = 0 and φ′(x) is a continuous function on [1,∞), it is now enough to

show that φ′(x) is strictly decreasing on [1,∞) to be able to conclude that φ′(x) > 0 for
all x ∈ [1,∞). Observe that

φ′′(x) =
2

p
log

(
1− p

x

)
+

2x− 3p

(x− p)2
.

We can now check that φ′′(x) < 0 on [1,∞):

φ′′(x) < 0⇔ 2

p
log

(
1− p

x

)
<

3p− 2x

(x− p)2

⇔ log

(
1− p

x

)
<

p
x

(
3 p
x
− 2
)

2
(
1− p

x

)2 .
Since p ∈ (0, 1) and x ∈ [1,∞), we have p/x ∈ (0, 1) so the desired inequality follows
from (6.7). Hence, φ′(x) is decreasing and we have that φ′(x) > 0 on [1,∞), which is
exactly what we wanted to prove.

Let us now calculate the limit of the sequence (τr(p))r∈N. Notice that

τr(p) = (1− p)

1 +
log(1− p

r
)

p
r

1
r

− log(1− p)
p

− 1

 . (6.9)

Applying L’Hospital’s rule twice, we obtain

lim
x→0+

1 + log(1−px)
px

x
= lim

x→0+

−p2x
1−px − p log(1− px)

p2x2
= lim

x→0+

− p3x
(1−px)2

2p2x
= −p

2
.

Plugging this in Equation (6.9) we obtain

τ(p) = lim
r→∞

τr(p) = (1− p)
(
−p

2
− log(1− p)

p
− 1

)
,

which concludes the proof. �
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