

A. Holzinger, I. Jurisica (Eds.): Knowledge Discovery and Data Mining, LNCS 8401, pp. 35–56, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Darwin or Lamarck?
Future Challenges in Evolutionary Algorithms

for Knowledge Discovery and Data Mining

Katharina Holzinger1, Vasile Palade2,3, Raul Rabadan4, and Andreas Holzinger1

1 Medical University Graz, Institute for Medical Informatics, Statistics and Documentation
Research Unit HCI, Graz, Austria

{k.holzinger,a.holzinger}@hci4all.at
2 Coventry University, Faculty of Engineering and Computing, Coventry, UK

vasile.palade@coventry.ac.uk
3 Oxford University, Department of Computer Science, Oxford, UK

4 Columbia University, Department of Systems Biology and
Department of Biomedical Informatics, New York, US

rabadan@dbmi.columbia.edu

Abstract. Evolutionary Algorithms (EAs) are a fascinating branch of
computational intelligence with much potential for use in many application
areas. The fundamental principle of EAs is to use ideas inspired by the
biological mechanisms observed in nature, such as selection and genetic
changes, to find the best solution for a given optimization problem. Generally,
EAs use iterative processes, by growing a population of solutions selected in a
guided random search and using parallel processing, in order to achieve a
desired result. Such population based approaches, for example particle swarm
and ant colony optimization (inspired from biology), are among the most
popular metaheuristic methods being used in machine learning, along with
others such as the simulated annealing (inspired from thermodynamics). In this
paper, we provide a short survey on the state-of-the-art of EAs, beginning with
some background on the theory of evolution and contrasting the original ideas
of Darwin and Lamarck; we then continue with a discussion on the analogy
between biological and computational sciences, and briefly describe some
fundamentals of EAs, including the Genetic Algorithms, Genetic Programming,
Evolution Strategies, Swarm Intelligence Algorithms (i.e., Particle Swarm
Optimization, Ant Colony Optimization, Bacteria Foraging Algorithms, Bees
Algorithm, Invasive Weed Optimization), Memetic Search, Differential
Evolution Search, Artificial Immune Systems, Gravitational Search Algorithm,
Intelligent Water Drops Algorithm. We conclude with a short description of the
usefulness of EAs for Knowledge Discovery and Data Mining tasks and present
some open problems and challenges to further stimulate research.

Keywords: Evolutionary Algorithms, Optimization, Nature inspired
computing, Knowledge Discovery, Data Mining.

36 K. Holzinger et al.

1 Introduction

The original idea behind the EAs goes back to the early days of computer science [1]
and started with some initial thoughts on adaptive systems introduced by John H.
Holland [2]. Since the 1980ies, EAs have been used to address optimization problems
due to their robustness and flexibility, especially in fields where traditional greedy
algorithms did not provide satisfactory results. A typical example can be found in [3]
in finding near-minimal phylogenetic trees from protein sequence data; a good Web-
based tool for the display, manipulation and annotation of such phylogenetic trees is
described in [4].

Traditional evolutionary paradigms are usually divided into two groups according
to the principle invoked to explain the biological change: While Lamarck (see section
3.3) proposed the inheritance of acquired characteristics; Darwin (see section 3.2)
underlines the role of selection on random genetic variation. A Lamarckian
Algorithm, for example, would have nothing to do with selection.

Rather than referring to Darwin's original work [5], computer scientists use terms
like “natural selection theory”, “natural genetics”, “the genetic theory of natural
selection”, etc., because EAs are inspired from the selection and genetic principles
observed in nature. However, EAs do not prove anything with respect to the
evolution in nature presumed in the original work by Darwin. So, a good question is
why are we speaking then of “evolutionary algorithms”?

One aim of this paper is to shortly introduce to computer scientists the original
work of Darwin, and to contrast these ideas to an earlier evolution theory of Lamarck,
which might be even less familiar to the computer science community, but which has
started to gain some popularity among researchers in evolutionary computing in
recent years. For example, a search in the Web of Science repository, with the words
“evolutionary algorithms” in the title, returns 1,886 results (as of February, 19, 2014).
The oldest contribution is a paper in Lecture Notes in Economics and Mathematical
Systems dating back to 1991 [6], which, interestingly, got no citation so far; the
newest is a contribution in the April 2014 issue of the Journal of Industrial
Management Optimization [7]; and the paper with the highest number of citations is
in the Nov. 1999 issue of the IEEE Transactions on Evolutionary Computation [8].

This paper is organized as follows: First, we define the key terms to ensure mutual
understanding. Then, we contrast the work of Darwin and Lamarck and focus on
some computational aspects, because it will be necessary to define a new terminology
for the Lamarckian version of an evolutionary algorithm. In the central part of the
paper, we describe the state-of-the-art in EAs, where we shortly describe the main
classes of current EA approaches. We finally stimulate a discussion on the use of EAs
for Knowledge Discovery and Data Mining tasks, by presenting current challenges in
the area and some new “hot ideas” that may inspire future research.

2 Glossary and Key Terms

Classification: Computational learning process to identify the class or category (from
a set of possible classes) to which a new observation belongs, on basis of a training
set containing observations whose category memberships are known.

 Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 37

Clustering: Grouping a set of objects in such a way that objects in the same group
(or cluster) are more similar to each other than to those in other groups (clusters).

Epigenetics: is the study of heritable changes in genes, not caused by changes in
the DNA. Whereas genetics is based on changes to the DNA sequence (the genotype),
the changes in gene expression or cellular phenotype of epigenetics have other causes,
therefore the prefix epi- (Greek: επί- outside) [9], [10].

Evolution: The change of inherited characteristics of biological populations over
successive generations.

Evolutionary Computation (EC): Subfield of computational intelligence that
involves mainly optimization with a metaheuristic or stochastic character inspired
from biological processes observed in nature.

Evolutionary Algorithm (EA): An algorithm that uses mechanisms inspired by
biological evolution, such as reproduction, mutation, recombination, and selection.

Genetic Algorithm (GA): Search heuristic that mimics the processes from natural
genetics to generate useful solutions in optimization and search problems.

Genetic Programming (GP): Set of genetic operations and a fitness function to
measure how well a computer program has performed a task, and used to optimize a
population of computer programs.

Knowledge Discovery (KDD): Exploratory analysis and modeling of data and the
organized process of identifying valid, novel, useful and understandable patterns from
data sets.

Machine Learning: The discipline concerned with methods and systems that can
built and used to learn from data; a subfield of computer science.

Multi-Objective Optimization: aka Pareto optimization, involves more objective
functions to be optimized simultaneously.

Optimization: is the selection of a best solution to a given problem (with regard to
some criteria) from a set of available alternatives.

Phylogenetic tree: is a branching tree diagram displaying the evolutionary
relationships among biological species [11], [12].

3 Background

3.1 Basic Principles

The fundamental principle of evolutionary algorithms is to use ideas inspired by
selection and genetic mechanisms observed in nature to find the best solution for a
given optimization problem. Consequently, EAs include a class of optimization
techniques that imitate natural selection principles and social behavior in nature, and
embrace genetic algorithms, swarm optimization algorithms, ant colony algorithms,
bacteria foraging algorithms, to name only a few.

Today, EAs field has grown to represent a big branch of computational intelligence
and machine learning research [13]. Evolutionary methods are used in many different
research fields such as medicine [14], genetics [15], or engineering [16], and there are
nearly countless application areas of EAs, due to their adaptive nature and ability in
solving difficult optimization problems [17], [18], [19].

38 K. Holzinger et al.

EAs scale well into high dimensions, are robust to noise and are in general a good
choice for problems where traditional methods do not provide a solid foundation.
However, due to the global search process of evolutionary methods, an optimal
solution within finite time cannot be guaranteed. Before we continue with recent
state-of-the-art on EAs, we will shortly look back into history first.

3.2 Darwin’s Theory

The theory of evolution, which Charles Darwin (1809–1882) presented in 1859 in his
book "On the origin of species" [5] can be summarized with a simple algorithm:
Mutation – variability – competition – selection – inheritance.

Fitness: A key concept in Darwinian evolution is the idea of fitness, or the
capability of organisms to survive and reproduce. Genomic variations in the form of
mutation or recombination could cause changes in fitness. Fitter organisms are
positively selected and their genomic information is inherited by their descendants.
The descendants inherit the selected variations and the phenotypic traits associated
with them. The phenotypic variability is then caused by inherited mutations in the
DNA sequence. Similar to individuals, there is also a competition among the alleles,
for the presence in the DNA of the population. Alleles are the possible genetic
variations of a gene that are present in the population. Depending on how successful
the carriers of this specific allele are, after several generations it will either be fixed or
die out – therefore, disappear from the gene pool. However, the success of an allele
carrier only depends on the allele, if it occurs phenotypically in morphological,
physiological or ethological terms, therefore, has an influence on appearance, body
function or behavior of the organism in question. Consequently, in Darwinism, the
evolution is only a secondary process. The organisms do not actively adapt to their
environment, but out of a variety of different characteristics and manifestations, the
ones that are selected are those that give their bearers an advantage in survival or
reproduction. As has already been emphasized above, what a central role the selection
plays in Darwinism, it is essential to look at the different types of selection:

Natural Selection: This is the selection by biotic or abiotic environmental factors.
Abiotic factors for example include climate, biotic factors include pressure from
predators. Darwin used the term as opposed to artificial selection and emphasized that
natural selection must end with the death or incapacity of reproduction of the
organism. “(…) for of the many individuals of any species which are periodically
born, but a small number can survive. I have called this principle, by which each
slight variation, if useful, is preserved, by the term of Natural selection (...)” [5].

Sexual Selection: In modern evolutionary biology, sexual selection is counted
among natural selection. Darwin himself described sexual selection as “less rigorous”
than natural selection because it does not decide over life and death, but on the
number of offspring, which is only indirectly crucial for the survival or success of a
species. Sexual selection is the competition within a species to reproduce, hence, the
efforts of the males to impress the females and the males fighting each other for the
right to mate. The structures and trades resulting from these processes do not always
coincide with natural selection, but often are even contradictory to it. Well known

 Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 39

examples of such structures are the tail feathers of a male peacock and the antlers of a
male deer. As for the survival of a species, however natural selection is the stronger
force.

Artificial Selection: Artificial selection occurs when humans select animals with
desired characteristics and breed them. The many breeds of dogs and horses are a
result of artificial selection.

Gene Selection: It is of great importance in modern evolutionary research, as
individual alleles compete for the maximum frequency in the population. In modern
evolutionary biology, gene selection has replaced the selection of individuals as
postulated in the theory of classical Darwinism, where individuals are selected
because of phenotypic characteristics.

Stabilizing selection: eliminates individuals with an extreme value of a specific
characteristic, for example size. A possible scenario would be a pond with fish in
different sizes, where the small fish are prayed on by birds and the large fish get
caught by fishermen. Therefore medium sized fish will become a majority within the
pond.

Distributive Selection: This is the exact opposite of stabilizing selection, because it
eliminates individuals with mediocre value of a certain characteristic. If we return to
our exemplary pond of fish, this time the medium sized fish will get prayed on by
bigger birds. On the other hand the extreme fish – the small and the big – will survive.

Directional Selection: This type of selection is particularly interesting and aimed at
one side of the extremes and the mediocre; e.g., in our exemplary pond directional
selection, if an otter preyed on small and medium sized fish. Thus, the chances of
survival increase for the fish with their size. The bigger the safer. Under such a kind
of selective pressure this species of fish will gradually increase in size.

Hard selection: This refers to selective pressure at which an individual is
eliminated if it does not reach a certain value, such as size or color. For example, all
fish bigger than 30 cm will be caught in the nets of fishermen.

Soft selection: This does not use an absolute value, but a ratio. In our fish example
soft selection would mean the biggest fish will be caught, no matter how big they are
exactly.

3.3 Lamarck’s Theory

However, Darwinism was not the only theory of evolution of the time. In addition to
the catastrophism of Georges Cuvier (1769–1832), there is also Lamarckism, which
states, unlike Darwinism, that selection is not the driving force of evolution, but the
inheritance of acquired characteristics or inherited “effort” of the organisms
themselves. Jean-Baptiste de Lamarck (1744–1829) assumed that appropriate
characteristics arise from the desire of the organisms to achieve them (strive for
perfection).

Unlike Darwinism, where evolution is only a result of competition and selection, in
Lamarckism the organisms themselves control evolution. This is accomplished
through practice, training, and the frequent use of specific organs. Lesser used organs,
however, wither with time. The most popular example to illustrate the idea

40 K. Holzinger et al.

Lamarckism is the evolution of the giraffe’s neck: The giraffe is striving to reach the
highest leaves, and stretched her neck. This acquired trait is inherited by her
descendants, who again stretch their necks. However, this very simple explanation of
a deliberate adaptation results in some questions from modern biological perspective:
Why should organisms have the desire to change? Can new structures be build trough
training? By what means is it decided which adaptions will be passed on? Why does
not an amputated leg get inherited? In biology, Lamarckism would be possible if there
was a mechanism that translates phenotypic changes into the sequence of the
responsible gene. However, Lamarckism should not be entirely rejected, as it can
provide some answers, especially in modern genetics and medicine. In epigenetics –
which very early dealt with questions of evolution [20],[21], it was found that there
are special traits which can be inherited without being part of the genetic code; That
would, for example, explain a possible higher function of the thumb in the upcoming
post-millennial younger generations (“Net Gen” [22]) due to frequent use of text
messaging on mobile phones, which is being allegedly claimed by some people, but
still to be confirmed. The possibility that acquired behavior or marks can be passed
from parents to children is in serious debate and the advent of epigenetics is hailed as
a profound shift in our understanding of inheritance, i.e. that genes also have a kind of
“memory” [23], [24], epigenetics being an upcoming hype in medical research [25],
with a very recent example in cancer research found here [26].

4 Brief Survey on Evolutionary Algorithms

4.1 Why Evolutionary Algorithms?

Due to the adaptive and robust nature of performing a global instead of a local search
for solutions in the search space, which improves their handling of interactions
between attributes [27], methods based on evolutionary algorithms are being used in a
wide array of different research fields. They are mostly used for traditional KDD
tasks, such as clustering and classification as well as for optimization. Another benefit
of evolutionary methods is the possibility of using them for multi-objective
optimization, making them well suited for many real-world use-cases where
simultaneous optimization of several objectives is of importance [28]. There are many
different algorithms in the universe of evolutionary methods, but the most prevalent
are genetic algorithms and genetic programming which we describe in section 4.4.

4.2 Biological Sciences versus Computational Sciences

Darwin explains in his book “The Origin of Species by Means of Natural Selection, or
the Preservation of Favoured Races in the Struggle for Life” [5] the diversity and
complexity of living organisms: Beneficial traits resulting from random variation are
favored by natural selection, i.e. individuals with beneficial traits have better chances
to survive, procreate and multiply, which may also be captured by the expression
differential reproduction. In order to understand evolutionary algorithms, some basic

 Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 41

notions are important, which will highlight the applicability of biological principles to
computer science. Good resources for further details are: [13], which is also available
in German [29], and [30], [31], [32], [33].

Evolutionary algorithms operate on a search space ܵ, where ܵ denotes a given set.
Points are assigned via an objective function ݂. In the context of evolutionary
algorithms, this is usually called fitness function ݂: ܵ ՜ ܴ, where ܴ is the set of
arbitrary possible fitness values, and the evolutionary algorithm operates on a
collection of points from ܵ, called a population ܲ. Each member of the population
(points in the search space) is called individual. A number ߤ א Գ is used to denote
the size of the population, i.e. ߤ ൌ |ܲ|.

A population is a multiset over ܵ, i.e., it may contain multiple copies of
individuals. Since the population changes from generation to generation, we denote
the population at the t-th generation as ௧ܲ. Choosing the first population, ଴ܲ, at the
beginning is called initialization.

Table 1. Biology vs Computing: basic evolutionary notions in the biological vs. computational
sciences; compare with Kruse et al. (2013) [13]

42 K. Holzinger et al.

For each member ݔ of the population, its fitness ݂ሺݔሻ is computed and stored. The
first step in each generation is to select some individuals from the population that will
be used to create new points in the search space. These individuals are referred to as
parents. This process is called selection for reproduction. Often this selection is done
fitness-based, i.e., the chances of individuals to become parents increase with their
fitness. Then some random variation is applied to the parents, where small changes
are more likely than large changes [30].

4.3 Foundations of Evolutionary Algorithms

As already mentioned, the basic idea of an evolutionary algorithm is to apply
evolutionary principles to generate increasingly better solution candidates in order to
solve an optimization problem. This may be achieved by evolving a population of
solution candidates by random variation and fitness-based selection of the next
generation. According to [13], an EA requires the following building blocks:

• an encoding for the solution candidates,
• a method to create an initial population,
• a fitness function to evaluate the individual solutions (chromosomes),
• a selection method on the basis of the fitness function,
• a set of genetic operators to modify chromosomes,
• a termination criterion for the search, and
• values for various parameters.

The (natural) selection process of biological evolution can be simulated by a

method for selecting candidate solutions according to their fitness, i.e., to select the
parents of offspring that are transferred to the next generation. Such a selection
method may simply transform the fitness values into a selection probability, such that
better individuals have higher chances of getting chosen for the next generation. The
random variation of chromosomes can be simulated by so-called genetic operators
that modify and recombine chromosomes, for example, mutation, which randomly
changes individual genes, and crossover, which exchanges parts of the chromosomes
of parent individuals to produce offspring. While biological evolution is unbounded,
we need a criterion to decide when to stop the process in order to retrieve a final
solution. Such a criterion may be, for example, that the algorithm is terminated (1)
after a user-specified number of generations have been created, (2) there has been no
improvement (of the best solution candidate) for a user-specified number of
generations, or (3) a user-specified minimum solution quality has been obtained. To
complete the specification of an evolutionary algorithm, we have to choose the values
of several parameters, which include, for example, the size of the population to
evolve, the fraction of individuals that is chosen from each population to produce
offsprings, the probability of a mutation occurring in an individual etc. [13]. The
general procedure of such an evolutionary algorithm may look as presented in table 2:

 Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 43

Table 2. General Scheme of an Evolutionary Algorithm

procedure evolutionary algorithm;

begin

 t ← 0; (* initialize the generation counter *)
 initialize pop(t);(* create the initial population *)

 evaluate pop(t); (* and evaluate it (compute fitness) *)

 while not termination criterion do (* loop until termination *)

 t ← t+1; (* count the created generation *)

select pop(t)from pop(t-1);(*select individuals

based on fitness*)

 alter pop(t); (* apply genetic operators *)

 evaluate pop(t); (* evaluate the new population *)

 end

end

4.4 Types of Evolutionary Algorithms

4.4.1 Genetic Algorithms (GA)
Genetic algorithms (GAs) are a machine learning method inspired from genetic and
selection mechanisms found in nature [34], which conduct a randomized and parallel
search for solutions that optimize a predefined fitness function [35].

In nature, the genetic information is defined in a quaternary code, based on the four
nucleotides Adenine, Cytosine, Guanine and Thymine, stringed together in a DNA
sequence, which forms the basis of the genetic code [36]. In transferring this structure
to computer science, it seems natural to base all encodings on the ultimately binary
structure of information in a computer. That is, we use chromosomes that are bit
strings, to encode problem solutions, and exactly this is the distinctive feature of
genetic algorithms [37]. The algorithm performs a global search in the space of
solution candidates, where the space consists of data vectors. The first step is to
initialize the solution candidate space with randomly generated individual solutions.
At each iteration, the available candidates are mutated or crossed with other solutions
in order to create new candidates. At the end of each iteration, every individual
solution candidate is evaluated using a predefined fitness function. Consequently, the
fitness function is the core part of every evolutionary algorithm, and designed to find
out which solutions are the best fits for the problem. Once each individual has been
evaluated, the least fit candidates get dismissed, leaving only the best available
solutions in the population. This is Darwin’s principle of survival of the fittest in
solving computing problems. The loop of iterations is repeated until a predefined
stopping criterion has been reached. Stopping criteria can vary in their definition from
just the number of iterations to go through to a certain threshold of fitness value that
has to be reached within the solution space. For more details on GAs refer to [38],
[39], [40].

44 K. Holzinger et al.

4.4.2 Genetic Programming (GP)
Genetic programming (GP) differs from genetic algorithms mainly in the form of the
input and output values the algorithm needs and produces [41]. In the case of GP, the
values are not simple data points, but parts of functions or programs. The goal is to
find a procedure which solves the given problem in the most efficient way. The
algorithm itself works in the same way as described in the section above, where
initially there is a randomly generated space of candidate solutions (random programs
in this case), which are evolved using mutation and crossover processes, generating
new program trees. The end result is supposed to be a function or a program, which
can be used to solve a specific type of problem. An example of linear genetic
programming applied to medical classification problems from a benchmark database
compared with results obtained by neural networks can be found in [42].

4.4.3 Evolution Strategies (ES)
Evolution Strategies (ES) are a stochastic approach to numerical optimization that
shows good optimization performance in general and which goes attempt to imitate
principles of organic evolution in the field of parameter optimization [43]. In order to
improve the "self-adaptive" property of strategy parameters, Ohkura et al. (2001) [44]
proposed an extended ES called Robust Evolution Strategy (RES), which has
redundant neutral strategy parameters and which adopts new mutation mechanisms in
order to utilize selectively neutral mutations to improve the adaptability of strategy
parameters, a similar approach was proposed in [45] and more details can be found in
[46], [47], [48].

4.4.4 Swarm Intelligence (SI)
Swarm intelligence (SI) studies the collective behavior of self-organized systems
composed of many individuals interacting locally with each other and with their
environment, using decentralized control to achieve their goals. Swarm-based systems
have been developed in response to the observed success and efficiency of such
swarms in nature [49].

Approaches that came out as a result of studying the collective behavior of
populations of “simple agents”, i.e. individuals with limited abilities without central
control, can be employed in many different areas. They have been inspired by the
behavior of certain species of animals, especially social insects (ants, bees) and
animals that live and search for food in swarms, flocks, herds or packs (fish, birds,
deer, wolves, rabbits etc.) and also bacteria. Such swarms can find the shortest paths
to food sources, they can build complex nests like bee hives, hunt for prey (for
example, packs of wolves), and protect themselves against predators [13]. In joint
efforts, these animals are often able to solve complex problems – demonstrating
collective intelligence [50]. This is a recent and important research area in computer
science [51] which can be applied for many purposes, a prominent example being the
NASA crater finding [52] using human collective intelligence [53], [54].

 Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 45

Particle Swarm Optimization (PSO)
Particle swarm optimization (PSO) is an evolutionary computation technique
developed by Eberhart & Kennedy in 1995 [55], the concept being originated from
the simulation of a simplified social system, i.e. to graphically simulate the graceful
but unpredictable choreography of a bird flock.

Initial simulations were modified to incorporate nearest-neighbor velocity
matching, eliminate ancillary variables, and incorporate multidimensional search and
acceleration by distance. At some point in the evolution of this algorithm, it was
realized that the conceptual model was an optimizer. Through a process of trial and
error, a number of parameters extraneous to optimization were eliminated from the
algorithm, resulting in a very simple implementation [56], similar to a genetic
algorithm, where the system is initialized with a population of random solutions.

Unlike GAs, there is no mutation operator, although each potential solution is also
assigned a randomized velocity, and the potential solutions, called particles, are then
"flown" through the problem space. Each particle keeps track of its personal best
position in the problem space, which is associated with the best fitness value of the
particle found so far. Another "best" value that is tracked by the particle swarm
optimizer is the overall best value, and its location, obtained by any particle in the
population [57], [58] – the so-called “global best”.

Ant Colony Optimization (ACO)
Ants do not possess a great deal of intelligence by themselves, but collectively a
colony of ants performs sophisticated tasks such as finding the shortest path to food
sources and sharing this information with other ants by depositing pheromone. Ant
Colony Optimization (ACO) models the collective intelligence of ants, which are
transformed into optimization techniques [59]. ACO was introduced by Dorigo et al.
(1991) [60], [61] as a novel nature-inspired metaheuristic for the solution of hard
combinatorial optimization (CO) problems. Such metaheuristics are approximate
algorithms used to obtain satisfactory solutions to hard CO problems in a reasonable
amount of computational time. Other examples of such metaheuristics are tabu search,
simulated annealing, and evolutionary computation [62]. More details can be found in
[63], [64] and a recent example can be found in [65]. A prominent example as a data
mining algorithm is the Ant-Miner (Ant-colony-based data miner), aiming at
extracting classification rules from data. This algorithm was inspired by both research
on the behavior of real ant colonies and known data mining concepts [66].

Bacteria Foraging Algorithms (BFA)
Foraging theory is based on the assumption that animals search for and obtain
nutrients in a way that maximizes their energy intake E per unit time T spent foraging.
The Escherichia coli bacterium is probably the best understood microorganism and
much what is known cytokinesis in bacteria has come from studies with E. coli, and
efforts to understand fundamental processes in this organism continue to intensify
[67]. When E. coli grows, it gets longer, then divides in the middle into two so-called
“daughters.” Given sufficient food and held at the temperature of the human gut (one
place where they live) of 37° C, this bacterium can synthesize and replicate

46 K. Holzinger et al.

everything it needs to make a copy of itself in about 20 minutes. Hence, the growth of
a population of bacteria is exponential, with a relatively short time to double [68]. The
foraging behavior of E. coli can be used by analogy in the Bacteria Foraging
Algorithms (BFA) to solve global optimization problems [69]. An example of an
electrical engineering application of the BFA can be found in [70]. An approach
applied in human psychology is the Information Foraging Theory by Pirolli & Card
(1999) [71]; this assumes that people try to modify their information seeking
strategies to maximize their rate in gaining valuable information. The adaptation
analysis develops information patch models, which deal with time allocation and
information filtering; information scent models, which address the identification of
information value from proximal cues; and information diet models, which address
decisions about the selection and pursuit of information items. The theory has been
used to study e.g. the “surf behaviour” on the Web [72], but has also been used for
data mining [73], and for knowledge discovery in the biomedical domain [74].

Bees Algorithm (BA)
The population-based search algorithm called the Bees Algorithm (BA) mimics the
food foraging behaviour of a swarm of honey bees and was proposed by Pham et al.
(2006) [75]. In its basic version, the algorithm performs a kind of neighbourhood
search combined with random search, and can be used for combinatorial optimisation
as well as functional optimisation [76]. BAs are also meta-heuristics, which try to
model the natural behavior of bees in food foraging, such as mechanisms like waggle
dance to optimally locate food sources and to search for new ones [77]. Basturk &
Karaboga (2007), [78] proposed the Artificial Bee Colony (ABC) algorithm for
constrained optimization problems. The idea is that the collective intelligence of bee
swarms consists of three components: food sources, employed bees, and unemployed
bees; the latter further segregated into onlookers and scouts. This results into three
main phases of ABC: employed phase, onlooker phase, and scout phase.A recent
work described the integration of Artificial Bee Colony (ABC) and Bees Algorithm
(BA) to an ABC–BA algorithm which performs better than each single one [79].

Invasive Weed Optimization (IWO)
The Invasive Weed Optimization Algorithm (IWO) was proposed by Mehrabian &
Lucas (2006) [80], as an ecologically inspired metaheuristic that mimics the process
of weeds colonization and distribution, which is capable of solving multi-
dimensional, linear and nonlinear optimization problems with appreciable efficiency.
Moreover, the IWO can also be used in the validation of reached optima and in the
development of regularization terms and non-conventional transfer functions that do
not necessarily provide gradient information [81]. A recent example of IWO for
knowledge discovery purposes can be found in [82], .

4.4.5 Memetic Algorithms (MA)
Memetic algorithms (MA) are amongst the growing areas in evolutionary
computation and were inspired by Richard Dawkins’ meme [83]; an implementation
of an “selfish gene algorithm” can be found here [84]. The term MA is widely used as

 Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 47

a synergy of evolutionary or any other population-based approach with separate
individual learning or local improvement procedures for search problems [85]. MAs
are often also referred to as Baldwinian evolutionary algorithms (see [86] about the
Baldwin effect), Lamarckian EAs, cultural algorithms, or genetic local search.

A novel correlation based memetic framework (MA-C), which is a combination of
a genetic algorithm (GA) and local search (LS) using correlation based filter ranking
has been proposed in [87]: The local filter method fine-tunes the population of GA
solutions by adding or deleting features based on Symmetrical Uncertainty (SU)
measures. Such approaches have many possibilities for the use in real-world
problems, particularly in bio-computing and data mining for high-dimensional
problems [88]. Amongst a very recent meta-heuristic is the Grey Wolf Optimizer
(GWO), which mimics the leadership hierarchy and hunting mechanism of grey
wolves (canis lupus) in nature [89].

4.4.6 Differential Evolution Search
An example of Differential Evolution (DE) search is the Artificial Bee Colony (ABC)
algorithm, mentioned in section 4.3.4. Its main idea is that the algorithm makes use of
differential evolution operators to update the information on the food source in order
to enhance the local search ability at the stage of onlooker bees, and a chaotic
sequence is introduced to the differential mutation operator for this purpose.
Simulation results show that this algorithm, introducing chaotic differential evolution
search, is a promising one in terms of convergence rate and solution accuracy,
compared to the ABC algorithm [90]. A memetic DE algorithm, that utilizes a chaotic
local search (CLS) with a shrinking strategy, in order to improve the optimizing
performance of the canonical DE by exploring a huge search space in the early run
phase to avoid premature convergence can be found in [91].

4.4.7 Artificial Immune Systems (AIS)
Artificial immune systems (AIS) developed by Farmer et al. (1986) [92], can be
defined as adaptive computational systems inspired from immunology, i.e. by the
observed immune functions, principles and mechanisms. The idea was that the
immune system as highly evolved biological system, is able to identify (and
eliminate) foreign substances [93]. Consequently, it must be able to determine
between gens and antigens, which requires a powerful capability of learning, memory
and pattern recognition. The development and application domains of AIS follow
those of soft computing paradigms [94], such as artificial neural networks (ANN) and
fuzzy systems (FS). A framework which discusses the suitability of AIS as a soft
computing paradigm that integrate AIS with other approaches, focusing on ANN, EA
and FS has been proposed by [95].

4.4.8 Gravitational Search Algorithm (GSA)
Gravitational Search Algorithms (GSA) are based on the analogy with the law of
gravity and mass interactions: the search agents are a collection of masses which
interact with each other based on the Newtonian gravity and the laws of motion [96].

48 K. Holzinger et al.

GSA falls also under the category of metaheuristics as general search strategies that,
at the exploitation stage, exploit areas of the solution space with high quality solutions
and, at the exploration stage, move to unexplored areas of the solution space [97].
GSA is a stochastic population-based metaheuristic that was originally designed for
solving continuous optimization problems.

The Binary Gravitational Search Algorithm (BGSA) is a new variant for discrete
optimization problems, and experimental results confirm its efficiency in solving
various nonlinear benchmark problems [98].

A recent work on a Discrete Gravitational Search Algorithm (DGSA) to solve
combinatorial optimization problems [99] can be found in [97].

4.4.9 Intelligent Water Drops Algorithm (IWD)
A natural river often finds optimal paths among a number of different possible paths
in its ways from the source to destination. These near optimal or optimal (natural)
paths are obtained by the actions and reactions that occur among the water drops and
between the water drops and the riverbeds.

The Intelligent Water Drops (IWD) algorithm is a new population-based
optimisation algorithm inspired from observing natural water drops flowing in rivers.
The authors of [100] tested this algorithm to find solutions of the n-queen puzzle with
a simple local heuristic, solved the travelling salesman problem (TSP) and tested it
with multiple knapsack problems (MKP) in which near-optimal or optimal solutions
were obtained [101].

There are various application areas for IWD thinkable, e.g. Agarwal et al. (2012)
[102], propose the use of IWD as an optimised code coverage algorithm by using
dynamic parameters for finding all the optimal paths using basic properties of natural
water drops. A recent example application is in using IWD for solving multi-objective
job-shop scheduling: Niu et al. (2013) customized it to find the best compromising
solutions (Pareto non-dominance set) considering multiple criteria, namely make-
span, tardiness and mean flow time of schedules, and proved that the customized IWD
algorithm can identify the Pareto non-dominance schedules efficiently.

5 Evolutionary Algorithms for Knowledge Discovery and Data
Mining

5.1 Classification and Clustering with EAs

In traditional data mining tasks, evolutionary algorithms can easily be used for both
classification and clustering as well as for data preparation in the form of attribute
generation and selection [27].

Classification is a central application for EAs, where they can be used for
classification rule mining. These rules can be of different complexity and forms. In
some cases, a whole set of rules is the goal, where interactions between the rules play
an important role, whereas it is also possible to mine independent rules for
classification. For details on the topic of classification rule mining, please refer to
[27] and [103]. A very recent work, which shows that the implementation of

 Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 49

evolutionary algorithms in machine learning can be achieved without extensive effort,
meaning much experimentation can be performed quickly in order to discover novel
areas where genetic algorithms can complement machine learning algorithms to
achieve better classification results [104].

Clustering analysis is another application area for EAs to knowledge discovery tasks.
There are different approaches to this problem, which are discussed in detail in [103].
The most important criteria when performing clustering analysis using EAs is the
representation of solution candidates as well as the fitness evaluation, which can be a
problematic issue considering the complexity of evaluating unsupervised knowledge
discovery methods in general.

5.2 Advantages and Disadvantages

EAs have certain pros and cons as general optimization methods, including when they
are used for knowledge discovery and data mining tasks, as shown in Table 3.

Table 3. Advantages and Disadvantages of EAs

Advantages Disadvantages
Robust to noise EA methods do not guarantee finding of an

optimal solution in finite time
Deals well with attribute interaction Domain specific knowledge has to be explicitly

added using external processes
Comparatively easy to implement Optimization runtime not constant, variance

between best- and worst-case can differ greatly
Well suited for multi-objective optimization Computational complexity can be an issue
Good scalability due to parallelization Fitness-function needs to be specified, otherwise

EAs do not work
Very flexible (widely usable) Slower than greedy algorithms in many cases
Good option for problems without a traditional
best practice method

Not the first choice if a traditional method already
solves the problem in an efficient way

Good amount of programming libraries available
Small amount of specific mathematical
knowledge necessary for using EAs

Suitable for efficiently solving NP-hard problems

5.3 Available Software and Programming Libraries

There is a broad range of different software packages and libraries available for using
EAs in KDD and DM tasks, The list below contains only the most well-known
examples:

WEKA - http://www.cs.waikato.ac.nz/ml/weka
KEEL - http://www.keel.es
SolveIT - http://www.solveitsoftware.com
MCMLL - http://mcmll.sourceforge.net
Jenetics - http://jenetics.sourceforge.net
Jenes - http://jenes.intelligentia.it

50 K. Holzinger et al.

jMetal - http://jmetal.sourceforge.net
JGAP - http://jgap.sourceforge.net
epochX - http://www.epochx.org
SAS - https://www.sas.com
Discipulus - http://www.rmltech.com
XpertRule - http://www.attar.com
MATLAB GA-Toolbox http://www.mathworks.com/discovery/
genetic-algorithm

6 Open Problems and Challenges

Evolutionary algorithms, by default, are so called “blind” methods, which means that
the used operators do not use or depend on domain specific knowledge. While this
feature enriches their generality, it is in most cases a negative factor compared to
methods making use of existing relevant knowledge within the domain [103]. This
aspect can however be remedied by introducing mechanisms such as a preceding local
search into the execution of evolutionary algorithms, and enriching the fitness
function with domain specific data.

Another shortcoming of evolutionary approaches for knowledge discovery tasks is
that they do not guarantee an optimal solution in finite time. They also do not
guarantee constant optimization runtimes and the differences between the best and
worst case scenarios are usually larger than for most traditional optimization methods,
making EAs a suboptimal choice for real-time systems [105].

Computational complexity can, as with all other KDD methods, also be an issue.
However with the increase of processing power as well as the possibility to easily
parallelize evolutionary methods, especially in combination with cloud services and
the island model [105], the issue should be, at most, of a temporary nature.

7 Future Work

A specific area of future research, according to [103], should be the application of
genetic programming for data mining tasks. There have been attempts to create generic
rule induction algorithms using GP [106], [107], but they are still comparatively under-
discovered and under-used within the domain of knowledge discovery.

Biology has traditionally been a source of inspiration for evolutionary algorithms. In
most organisms, evolution proceeds in small steps by random mutations and in large
steps by horizontal events (recombination, reassortments, gene transfer and
hybridizations). Horizontal events combine the genetic information from two or more
organisms to generate a new one that incorporate alleles from parental strains. Whilst
mutations allow efficient local searches in the fitness landscape, horizontal events
combine information from fit individuals exploring larger regions of search space.
Humans and eukaryotes in general recombine during meiosis, retroviruses during
retrotranscription, each presenting different ways of combining genetic information.
Segmented viruses, viruses with more than one chromosome as influenza, combine
genetic information through reassortments, a process where a new individual is created

 Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 51

by exchange of chromosomes between two or more parental strains. This is the very
effective process behind influenza pandemics that could allow viruses to jump from
one host to another and rapidly propagate in the new population. Such mechanisms, and
others, are found in nature and represent different strategies to go beyond mutations
with distinct advantages. Each of these evolutionary strategies can be used to address
different problems – but it needs much further research, testing and experimenting.

References

1. Box, G.E.: Evolutionary operation: A method for increasing industrial productivity.
Applied Statistics 6(2), 81–101 (1957)

2. Holland, J.H.: Outline for a Logical Theory of Adaptive Systems. J. ACM 9(3), 297–314
(1962)

3. Hendy, M.D., Penny, D.: Branch an Bound Algorithms to determine minimal
Evolutionary Trees. Mathematical Biosciences 59(2), 277–290 (1982)

4. Letunic, I., Bork, P.: Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree
display and annotation. Bioinformatics 23(1), 127–128 (2007)

5. Darwin, C.: On the origin of species by means of natural selection, or the preservation of
favoured races in the struggle for life. John Murray, London (1859)

6. Hoffmeister, F.: Scalable Parallelism by Evolutionary Algorithms. Lecture Notes in
Economics and Mathematical Systems 367, 177–198 (1991)

7. Cheng, A., Lim, C.C.: Optimizing System-On-Chip verifications with multi-objective
genetic evolutionary algorithms. Journal of Industrial and Management
Optimization 10(2), 383–396 (2014)

8. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study
and the Strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4),
257–271 (1999)

9. Waddington, C.H.: Canalization of development and the inheritance of acquired
characters. Nature 150(3811), 563–565 (1942)

10. Trygve, T.: Handbook of Epigenetics. Academic Press, San Diego (2011)
11. Fitch, W.M., Margoliash, E.: Construction of phylogenetic trees. Science 155(760),

279–284 (1967)
12. Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing

phylogenetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)
13. Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., Held, P.:

Computational Intelligence: A Methodological Introduction. Springer, Heidelberg (2013)
14. Lollini, P.-L., Motta, S., Pappalardo, F.: Discovery of cancer vaccination protocols with a

genetic algorithm driving an agent based simulator. BMC Bioinformatics 7(1), 352 (2006)
15. Ritchie, M.D., Motsinger, A.A., Bush, W.S., Coffey, C.S., Moore, J.H.: Genetic

programming neural networks: A powerful bioinformatics tool for human genetics.
Applied Soft Computing 7(1), 471–479 (2007)

16. Winstein, K., Balakrishnan, H.: TCP ex Machina: Computer-Generated Congestion
Control. In: ACM SIGCOMM, pp. 123–134. ACM (2013)

17. Gen, M., Cheng, R.: Genetic algorithms and engineering optimization. John Wiley &
Sons (2000)

18. Rafael, B., Oertl, S., Affenzeller, M., Wagner, S.: Music segmentation with genetic
algorithms. In: 20th International Workshop on Database and Expert Systems
Application, DEXA 2009, pp. 256–260. IEEE (2009)

52 K. Holzinger et al.

19. Soupios, P., Akca, I., Mpogiatzis, P., Basokur, A., Papazachos, C.: Application of Genetic
Algorithms in Seismic Tomography. In: EGU General Assembly Conference Abstracts,
p. 1555 (2010)

20. Waddington, C.H.: Epigenetics and Evolution. Symposia of the Society for Experimental
Biology 7, 186–199 (1953)

21. Jablonka, E.: Epigenetic inheritance and evolution: The Lamarckian dimension. Oxford
University Press, Oxford (1999)

22. Tapscott, D.: Grown Up Digital: How the Net Generation is Changing Your World HC.
Mcgraw-Hill (2008)

23. Bird, A.: Perceptions of epigenetics. Nature 447(7143), 396–398 (2007)
24. Handel, A., Ramagopalan, S.: Is Lamarckian evolution relevant to medicine? BMC

Medical Genetics 11(1), 73 (2010)
25. Kiberstis, P.A.: All Eyes on Epigenetics. Science 335(6069), 637 (2012)
26. Emmert-Streib, F., de Matos Simoes, R., Glazko, G., McDade, S., Haibe-Kains, B.,

Holzinger, A., Dehmer, M., Campbell, F.: Functional and genetic analysis of the colon
cancer network. BMC Bioinformatics 15(suppl. 6), S6 (2014)

27. Freitas, A.A.: A survey of evolutionary algorithms for data mining and knowledge
discovery. In: Advances in Evolutionary Computing, pp. 819–845. Springer (2003)

28. Coello Coello, C.A., Lechuga, M.S.: MOPSO: A proposal for multiple objective particle
swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation
(CEC 2002), pp. 1051–1056. IEEE (2002)

29. Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Ruß, G., Steinbrecher, M.:
Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale
Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze Vieweg+Teubner,
Wiesbaden (2011)

30. Jansen, T.: Analyzing evolutionary algorithms: The computer science perspective.
Springer Publishing Company (2013) (incorporated)

31. Yu, X., Gen, M.: Introduction to evolutionary algorithms. Springer, Heidelberg (2010)
32. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer, Berlin (2010)
33. De Jong, K.A.: Evolutionary computation: A unified approach. MIT press, Cambridge

(2006)
34. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach.

Learn. 3(2), 95–99 (1988)
35. Mitchell, T.M.: Machine learning, p. 267. McGraw-Hill, Boston (1997)
36. Forrest, S.: Genetic algorithms: Principles of natural selection applied to computation.

Science 261(5123), 872–878 (1993)
37. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE

Transactions on Systems Man and Cybernetics 16(1), 122–128 (1986)
38. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley Reading, MA (1989)
39. Mitchell, M.: An Introduction to Genetic Algorithms (Complex Adaptive Systems).

MIT Press, Cambridge (1998)
40. Coley, D.A.: An introduction to Genetic Algorithms for Scientists and Engineers. World

Scientific Publishing, Singapore (1999)
41. Koza, J.R.: Genetic programming as a means for programming computers by natural

selection. Statistics and Computing 4(2), 87–112 (1994)
42. Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neural

networks in medical data mining. IEEE Transactions on Evolutionary Computation 5(1),
17–26 (2001)

 Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 53

43. Bäck, T., Hoffmeister, F., Schwefel, H.P.: A survey of evolution strategies. In:
Proceedings of the 4th International Conference on Genetic Algorithms, pp. 2-9 (1991)

44. Ohkura, K., Matsumura, Y., Ueda, K.: Robust evolution strategies. Applied
Intelligence 15(3), 153–169 (2001)

45. Huhse, J., Zell, A.: Evolution Strategy with Neighborhood Attraction–A Robust Evolution
Strategy. In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2001, pp. 1026–1033 (2001)

46. Auger, A., Hansen, N.: Theory of Evolution Strategies: A new perspective. In: Auger, A.,
Doerr, B. (eds.) Theory of Randomized Search Heuristics: Foundations and Recent
Developments, pp. 289–325. World Scientific Publishing, Singapore (2011)

47. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies–A comprehensive introduction.
Natural Computing 1(1), 3–52 (2002)

48. Beyer, H.-G.: The theory of evolution strategies. Springer, Heidelberg (2001)
49. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: Swarm intelligence for data

mining. Mach. Learn. 82(1), 1–42 (2011)
50. Franks, N.R., Pratt, S.C., Mallon, E.B., Britton, N.F., Sumpter, D.J.T.: Information flow,

opinion polling and collective intelligence in house-hunting social insects. Philosophical
Transactions of the Royal Society of London Series B-Biological Sciences 357(1427),
1567–1583 (2002)

51. Kennedy, J.F., Eberhart, R.C.: Swarm intelligence. Morgan Kaufmann, San Francisco
(2001)

52. van’t Woud, J., Sandberg, J., Wielinga, B.J.: The Mars crowdsourcing experiment:
Is crowdsourcing in the form of a serious game applicable for annotation in a
semantically-rich research domain? In: 2011 16th International Conference on Computer
Games (CGAMES), pp. 201–208. IEEE (2011)

53. Woolley, A.W., Chabris, C.F., Pentland, A., Hashmi, N., Malone, T.W.: Evidence for a
Collective Intelligence Factor in the Performance of Human Groups. Science 330(6004),
686–688 (2010)

54. Bonabeau, E.: Decisions 2.0: The power of collective intelligence. MIT Sloan
Management Review 50(2), 45–52 (2009)

55. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: IEEE
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, MHS 1995 (1995)

56. Eberhart, R., Simpson, P., Dobbins, R.: Computational intelligence PC tools. Academic
Press Professional, Inc. (1996)

57. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In:
1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational
Cybernetics and Simulation, pp. 4104–4108. IEEE (1997)

58. Eberhart, R.C., Shi, Y.H.: Particle swarm optimization: Developments, applications and
resources. IEEE, New York (2001)

59. Sim, K.M., Sun, W.H.: Ant colony optimization for routing and load-balancing: Survey
and new directions. IEEE Trans. Syst. Man Cybern. Paart A-Syst. Hum. 33(5), 560–572
(2003)

60. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In:
Proceedings of the First European Conference on Artificial Life, vol. 142, pp. 134–142
(1991)

61. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to
the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1),
53–66 (1997)

54 K. Holzinger et al.

62. Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical Computer
Science 344(2-3), 243–278 (2005)

63. Colorni, A., Dorigo, M., Maniezzo, V.: An Investigation of some Properties of an “Ant
Algorithm”. In: Parallel Problem Solving from Nature Conference (PPSN), pp. 509–520.
Elsevier (1992)

64. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization - Artificial ants as a
computational intelligence technique. IEEE Computational Intelligence Magazine 1(4),
28–39 (2006)

65. Chen, Y.J., Wong, M.L., Li, H.B.: Applying Ant Colony Optimization to configuring
stacking ensembles for data mining. Expert Systems with Applications 41(6), 2688–2702
(2014)

66. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony optimization
algorithm. IEEE Transactions on Evolutionary Computation 6(4), 321–332 (2002)

67. de Boer, P.A.J.: Advances in understanding E. coli cell fission. Current Opinion in
Microbiology 13(6), 730–737 (2010)

68. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control Systems 22(3), 52–67 (2002)

69. Kim, D.H., Abraham, A., Cho, J.H.: A hybrid genetic algorithm and bacterial foraging
approach for global optimization. Inf. Sci. 177(18), 3918–3937 (2007)

70. Tripathy, M., Mishra, S., Lai, L.L., Zhang, Q.P.: Transmission loss reduction based on
FACTS and bacteria foraging algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K.,
Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193,
pp. 222–231. Springer, Heidelberg (2006)

71. Pirolli, P., Card, S.: Information foraging. Psychological Review 106(4), 643–675 (1999)
72. Pirolli, P.: Rational analyses of information foraging on the Web. Cognitive

Science 29(3), 343–373 (2005)
73. Liu, J.M., Zhang, S.W., Yang, J.: Characterizing Web usage regularities with information

foraging agents. IEEE Transactions on Knowledge and Data Engineering 16(5), 566–584
(2004)

74. Goodwin, J.C., Cohen, T., Rindflesch, T.: Discovery by scent: Discovery browsing
system based on the Information Foraging Theory. In: Gao, J., Dubitzky, W., Wu, C.,
Liebman, M., Alhaij, R., Ungar, L., Christianson, A., Hu, X. (eds.) 2012 IEEE
International Conference on Bioinformatics and Biomedicine Workshops. IEEE,
New York (2012)

75. Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The bees algorithm-a
novel tool for complex optimisation problems. In: Proceedings of the 2nd Virtual
International Conference on Intelligent Production Machines and Systems (IPROMS
2006), pp. 454–459 (2006)

76. Pham, D.T., Castellani, M.: The Bees Algorithm: Modelling foraging behaviour to solve
continuous optimization problems. Proceedings of the Institution of Mechanical Engineers
Part C-Journal of Mechanical Engineering Science 223(12), 2919–2938 (2009)

77. Ozbakir, L., Baykasoglu, A., Tapkan, P.: Bees algorithm for generalized assignment
problem. Applied Mathematics and Computation 215(11), 3782–3795 (2010)

78. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm. Journal of global optimization 39(3),
459–471 (2007)

79. Tsai, H.C.: Integrating the artificial bee colony and bees algorithm to face constrained
optimization problems. Inf. Sci. 258, 80–93 (2014)

 Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 55

80. Mehrabian, A.R., Lucas, C.: A novel numerical optimization algorithm inspired from
weed colonization. Ecological Informatics 1(4), 355–366 (2006)

81. Giri, R., Chowdhury, A., Ghosh, A., Das, S., Abraham, A., Snasel, V.: A Modified
Invasive Weed Optimization Algorithm for training of feed- forward Neural Networks.
In: 2010 IEEE International Conference on Systems, Man and Cybernetics (SMC 2010),
pp. 3166–3173 (2010)

82. Huang, H., Ding, S., Zhu, H., Xu, X.: Invasive Weed Optimization Algorithm for
Optimizating the Parameters of Mixed Kernel Twin Support Vector Machines. Journal of
Computers 8(8) (2013)

83. Dawkins, R.: The selfish gene. Oxford University Press, Oxford (1976)
84. Corno, F., Reorda, M.S., Squillero, G.: The selfish gene algorithm: a new evolutionary

optimization strategy. In: Proceedings of the 1998 ACM Symposium on Applied
Computing, pp. 349–355. ACM (1998)

85. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in
memetic algorithms for multiobjective permutation flowshop scheduling. IEEE
Transactions on Evolutionary Computation 7(2), 204–223 (2003)

86. Simpson, G.G.: The Baldwin Effect. Evolution 7(2), 110–117 (1953)
87. Kannan, S.S., Ramaraj, N.: A novel hybrid feature selection via Symmetrical Uncertainty

ranking based local memetic search algorithm. Knowledge-Based Systems 23(6),
580–585 (2010)

88. Molina, D., Lozano, M., Sanchez, A.M., Herrera, F.: Memetic algorithms based on local
search chains for large scale continuous optimisation problems: MA-SSW-Chains. Soft
Computing 15(11), 2201–2220 (2011)

89. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf Optimizer. Advances in Engineering
Software 69, 46–61 (2014)

90. Yin, J., Meng, H.: Artificial bee colony algorithm with chaotic differential evolution
search. Computer Engineering and Applications 47(29), 27–30 (2011)

91. Jia, D.L., Zheng, G.X., Khan, M.K.: An effective memetic differential evolution
algorithm based on chaotic local search. Inf. Sci. 181(15), 3175–3187 (2011)

92. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and
machine learning. Physica D: Nonlinear Phenomena 22(1), 187–204 (1986)

93. Parham, P.: The Immune System, 3rd edn. Garland Science, Taylor and Francis,
New York (2009)

94. Dasgupta, D., Yu, S.H., Nino, F.: Recent Advances in Artificial Immune Systems: Models
and Applications. Applied Soft Computing 11(2), 1574–1587 (2011)

95. de Castro, L.N., Timmis, J.I.: Artificial immune systems as a novel soft computing
paradigm. Soft Computing 7(8), 526–544 (2003)

96. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: A Gravitational Search Algorithm.
Inf. Sci. 179(13), 2232–2248 (2009)

97. Dowlatshahi, M.B., Nezamabadi-Pour, H., Mashinchi, M.: A discrete gravitational search
algorithm for solving combinatorial optimization problems. Inf. Sci. 258, 94–107 (2014)

98. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: BGSA: Binary gravitational search
algorithm. Natural Computing 9(3), 727–745 (2010)

99. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

100. Shah-Hosseini, H.: The intelligent water drops algorithm: A nature-inspired swarm-based
optimization algorithm. International Journal of Bio-Inspired Computation 1(1-2), 71–79
(2009)

101. Shah-Hosseini, H.: Problem solving by intelligent water drops. IEEE, New York (2007)

56 K. Holzinger et al.

102. Agarwal, K., Goyal, M., Srivastava, P.R.: Code coverage using intelligent water drop
(IWD). International Journal of Bio-Inspired Computation 4(6), 392–402 (2012)

103. Maimon, O., Rokach, L. (eds.): Data Mining and Knowledge Discovery Handbook.
Springer, New York (2010)

104. Holzinger, A., Blanchard, D., Bloice, M., Holzinger, K., Palade, V., Rabadan, R.: Darwin,
Lamarck, or Baldwin: Applying Evolutionary Algorithms to Machine Learning
Techniques. In: World Intelligence Congress (WIC). IEEE (2014) (in print)

105. Whitley, D.: An overview of evolutionary algorithms: Practical issues and common
pitfalls. Information and Software Technology 43(14), 817–831 (2001)

106. Pappa, G.L., Freitas, A.A.: Discovering new rule induction algorithms with grammar-
based genetic programming. In: Soft Computing for Knowledge Discovery and Data
Mining, pp. 133–152. Springer (2008)

107. Pappa, G.L., Freitas, A.A.: Evolving rule induction algorithms with multi-objective
grammar-based genetic programming. Knowledge and Information Systems 19(3),
283–309 (2009)

	Darwin or Lamarck? Future Challenges in Evolutionary Algorithms for Knowledge Discovery and Data Mining
	1 Introduction
	2 Glossary and Key Terms
	3 Background
	3.1 Basic Principles
	3.2 Darwin’s Theory
	3.3 Lamarck’s Theory

	4 Brief Survey on Evolutionary Algorithms
	4.1 Why Evolutionary Algorithms?
	4.2 Biological Sciences versus Computational Sciences
	4.3 Foundations of Evolutionary Algorithms
	4.4 Types of Evolutionary Algorithms

	5 Evolutionary Algorithms for Knowledge Discovery and Data Mining
	5.1 Classification and Clustering with EAs
	5.2 Advantages and Disadvantages
	5.3 Available Software and Programming Libraries

	6 Open Problems and Challenges
	7 Future Work
	References

