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Abstract. Evolutionary Algorithms (EAs) are a fascinating branch of 
computational intelligence with much potential for use in many application 
areas. The fundamental principle of EAs is to use ideas inspired by the 
biological mechanisms observed in nature, such as selection and genetic 
changes, to find the best solution for a given optimization problem. Generally, 
EAs use iterative processes, by growing a population of solutions selected in a 
guided random search and using parallel processing, in order to achieve a 
desired result. Such population based approaches, for example particle swarm 
and ant colony optimization (inspired from biology), are among the most 
popular metaheuristic methods being used in machine learning, along with 
others such as the simulated annealing (inspired from thermodynamics). In this 
paper, we provide a short survey on the state-of-the-art of EAs, beginning with 
some background on the theory of evolution and contrasting the original ideas 
of Darwin and Lamarck; we then continue with a discussion on the analogy 
between biological and computational sciences, and briefly describe some 
fundamentals of EAs, including the Genetic Algorithms, Genetic Programming, 
Evolution Strategies, Swarm Intelligence Algorithms (i.e., Particle Swarm 
Optimization, Ant Colony Optimization, Bacteria Foraging Algorithms, Bees 
Algorithm, Invasive Weed Optimization), Memetic Search, Differential 
Evolution Search, Artificial Immune Systems, Gravitational Search Algorithm, 
Intelligent Water Drops Algorithm. We conclude with a short description of the 
usefulness of EAs for Knowledge Discovery and Data Mining tasks and present 
some open problems and challenges to further stimulate research.  

Keywords: Evolutionary Algorithms, Optimization, Nature inspired 
computing, Knowledge Discovery, Data Mining. 
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1 Introduction 

The original idea behind the EAs goes back to the early days of computer science [1] 
and started with some initial thoughts on adaptive systems introduced by John H. 
Holland [2]. Since the 1980ies, EAs have been used to address optimization problems 
due to their robustness and flexibility, especially in fields where traditional greedy 
algorithms did not provide satisfactory results. A typical example can be found in [3] 
in finding near-minimal phylogenetic trees from protein sequence data; a good Web-
based tool for the display, manipulation and annotation of such phylogenetic trees is 
described in [4]. 

Traditional evolutionary paradigms are usually divided into two groups according 
to the principle invoked to explain the biological change: While Lamarck (see section 
3.3) proposed the inheritance of acquired characteristics; Darwin (see section 3.2) 
underlines the role of selection on random genetic variation. A Lamarckian 
Algorithm, for example, would have nothing to do with selection. 

Rather than referring to Darwin's original work [5], computer scientists use terms 
like “natural selection theory”, “natural genetics”, “the genetic theory of natural 
selection”, etc., because EAs are inspired from the selection and genetic principles 
observed in nature. However, EAs do not prove anything with respect to the 
evolution in nature presumed in the original work by Darwin. So, a good question is 
why are we speaking then of “evolutionary algorithms”? 

One aim of this paper is to shortly introduce to computer scientists the original 
work of Darwin, and to contrast these ideas to an earlier evolution theory of Lamarck, 
which might be even less familiar to the computer science community, but which has 
started to gain some popularity among researchers in evolutionary computing in 
recent years. For example, a search in the Web of Science repository, with the words 
“evolutionary algorithms” in the title, returns 1,886 results (as of February, 19, 2014). 
The oldest contribution is a paper in Lecture Notes in Economics and Mathematical 
Systems dating back to 1991 [6], which, interestingly, got no citation so far; the 
newest is a contribution in the April 2014 issue of the Journal of Industrial 
Management Optimization [7]; and the paper with the highest number of citations is 
in the Nov. 1999 issue of the IEEE Transactions on Evolutionary Computation [8]. 

This paper is organized as follows: First, we define the key terms to ensure mutual 
understanding. Then, we contrast the work of Darwin and Lamarck and focus on 
some computational aspects, because it will be necessary to define a new terminology 
for the Lamarckian version of an evolutionary algorithm. In the central part of the 
paper, we describe the state-of-the-art in EAs, where we shortly describe the main 
classes of current EA approaches. We finally stimulate a discussion on the use of EAs 
for Knowledge Discovery and Data Mining tasks, by presenting current challenges in 
the area and some new “hot ideas” that may inspire future research. 

2 Glossary and Key Terms 

Classification: Computational learning process to identify the class or category (from 
a set of possible classes) to which a new observation belongs, on basis of a training 
set containing observations whose category memberships are known. 



 Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 37 

 

Clustering: Grouping a set of objects in such a way that objects in the same group 
(or cluster) are more similar to each other than to those in other groups (clusters). 

Epigenetics: is the study of heritable changes in genes, not caused by changes in 
the DNA. Whereas genetics is based on changes to the DNA sequence (the genotype), 
the changes in gene expression or cellular phenotype of epigenetics have other causes, 
therefore the prefix epi- (Greek: επί- outside) [9], [10]. 

Evolution: The change of inherited characteristics of biological populations over 
successive generations. 

Evolutionary Computation (EC): Subfield of computational intelligence that 
involves mainly optimization with a metaheuristic or stochastic character inspired 
from biological processes observed in nature. 

Evolutionary Algorithm (EA): An algorithm that uses mechanisms inspired by 
biological evolution, such as reproduction, mutation, recombination, and selection. 

Genetic Algorithm (GA): Search heuristic that mimics the processes from natural 
genetics to generate useful solutions in optimization and search problems.  

Genetic Programming (GP): Set of genetic operations and a fitness function to 
measure how well a computer program has performed a task, and used to optimize a 
population of computer programs.  

Knowledge Discovery (KDD): Exploratory analysis and modeling of data and the 
organized process of identifying valid, novel, useful and understandable patterns from 
data sets.  

Machine Learning: The discipline concerned with methods and systems that can 
built and used to learn from data; a subfield of computer science.  

Multi-Objective Optimization: aka Pareto optimization, involves more objective 
functions to be optimized simultaneously.  

Optimization: is the selection of a best solution to a given problem (with regard to 
some criteria) from a set of available alternatives. 

Phylogenetic tree: is a branching tree diagram displaying the evolutionary 
relationships among biological species [11], [12]. 

3 Background 

3.1 Basic Principles 

The fundamental principle of evolutionary algorithms is to use ideas inspired by 
selection and genetic mechanisms observed in nature to find the best solution for a 
given optimization problem. Consequently, EAs include a class of optimization 
techniques that imitate natural selection principles and social behavior in nature, and 
embrace genetic algorithms, swarm optimization algorithms, ant colony algorithms, 
bacteria foraging algorithms, to name only a few.  

Today, EAs field has grown to represent a big branch of computational intelligence 
and machine learning research [13]. Evolutionary methods are used in many different 
research fields such as medicine [14], genetics [15], or engineering [16], and there are 
nearly countless application areas of EAs, due to their adaptive nature and ability in 
solving difficult optimization problems [17], [18], [19]. 
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EAs scale well into high dimensions, are robust to noise and are in general a good 
choice for problems where traditional methods do not provide a solid foundation. 
However, due to the global search process of evolutionary methods, an optimal 
solution within finite time cannot be guaranteed. Before we continue with recent 
state-of-the-art on EAs, we will shortly look back into history first. 

3.2 Darwin’s Theory 

The theory of evolution, which Charles Darwin (1809–1882) presented in 1859 in his 
book "On the origin of species" [5] can be summarized with a simple algorithm: 
Mutation – variability – competition – selection – inheritance. 

Fitness: A key concept in Darwinian evolution is the idea of fitness, or the 
capability of organisms to survive and reproduce. Genomic variations in the form of 
mutation or recombination could cause changes in fitness. Fitter organisms are 
positively selected and their genomic information is inherited by their descendants. 
The descendants inherit the selected variations and the phenotypic traits associated 
with them. The phenotypic variability is then caused by inherited mutations in the 
DNA sequence. Similar to individuals, there is also a competition among the alleles, 
for the presence in the DNA of the population. Alleles are the possible genetic 
variations of a gene that are present in the population. Depending on how successful 
the carriers of this specific allele are, after several generations it will either be fixed or 
die out – therefore, disappear from the gene pool. However, the success of an allele 
carrier only depends on the allele, if it occurs phenotypically in morphological, 
physiological or ethological terms, therefore, has an influence on appearance, body 
function or behavior of the organism in question. Consequently, in Darwinism, the 
evolution is only a secondary process. The organisms do not actively adapt to their 
environment, but out of a variety of different characteristics and manifestations, the 
ones that are selected are those that give their bearers an advantage in survival or 
reproduction. As has already been emphasized above, what a central role the selection 
plays in Darwinism, it is essential to look at the different types of selection:  

Natural Selection: This is the selection by biotic or abiotic environmental factors. 
Abiotic factors for example include climate, biotic factors include pressure from 
predators. Darwin used the term as opposed to artificial selection and emphasized that 
natural selection must end with the death or incapacity of reproduction of the 
organism.  “(…) for of the many individuals of any species which are periodically 
born, but a small number can survive. I have called this principle, by which each 
slight variation, if useful, is preserved, by the term of Natural selection (...)” [5]. 

Sexual Selection: In modern evolutionary biology, sexual selection is counted 
among natural selection. Darwin himself described sexual selection as “less rigorous” 
than natural selection because it does not decide over life and death, but on the 
number of offspring, which is only indirectly crucial for the survival or success of a 
species. Sexual selection is the competition within a species to reproduce, hence, the 
efforts of the males to impress the females and the males fighting each other for the 
right to mate. The structures and trades resulting from these processes do not always 
coincide with natural selection, but often are even contradictory to it. Well known 
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examples of such structures are the tail feathers of a male peacock and the antlers of a 
male deer. As for the survival of a species, however natural selection is the stronger 
force. 

Artificial Selection: Artificial selection occurs when humans select animals with 
desired characteristics and breed them. The many breeds of dogs and horses are a 
result of artificial selection. 

Gene Selection: It is of great importance in modern evolutionary research, as 
individual alleles compete for the maximum frequency in the population. In modern 
evolutionary biology, gene selection has replaced the selection of individuals as 
postulated in the theory of classical Darwinism, where individuals are selected 
because of phenotypic characteristics. 

Stabilizing selection: eliminates individuals with an extreme value of a specific 
characteristic, for example size. A possible scenario would be a pond with fish in 
different sizes, where the small fish are prayed on by birds and the large fish get 
caught by fishermen. Therefore medium sized fish will become a majority within the 
pond.  

Distributive Selection: This is the exact opposite of stabilizing selection, because it 
eliminates individuals with mediocre value of a certain characteristic. If we return to 
our exemplary pond of fish, this time the medium sized fish will get prayed on by 
bigger birds. On the other hand the extreme fish – the small and the big – will survive. 

Directional Selection: This type of selection is particularly interesting and aimed at 
one side of the extremes and the mediocre; e.g., in our exemplary pond directional 
selection, if an otter preyed on small and medium sized fish. Thus, the chances of 
survival increase for the fish with their size. The bigger the safer. Under such a kind 
of selective pressure this species of fish will gradually increase in size. 

Hard selection: This refers to selective pressure at which an individual is 
eliminated if it does not reach a certain value, such as size or color. For example, all 
fish bigger than 30 cm will be caught in the nets of fishermen.  

Soft selection: This does not use an absolute value, but a ratio. In our fish example 
soft selection would mean the biggest fish will be caught, no matter how big they are 
exactly. 

3.3 Lamarck’s Theory 

However, Darwinism was not the only theory of evolution of the time. In addition to 
the catastrophism of Georges Cuvier (1769–1832), there is also Lamarckism, which 
states, unlike Darwinism, that selection is not the driving force of evolution, but the 
inheritance of acquired characteristics or inherited “effort” of the organisms 
themselves. Jean-Baptiste de Lamarck (1744–1829) assumed that appropriate 
characteristics arise from the desire of the organisms to achieve them (strive for 
perfection).  

Unlike Darwinism, where evolution is only a result of competition and selection, in 
Lamarckism the organisms themselves control evolution. This is accomplished 
through practice, training, and the frequent use of specific organs. Lesser used organs, 
however, wither with time. The most popular example to illustrate the idea 
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Lamarckism is the evolution of the giraffe’s neck: The giraffe is striving to reach the 
highest leaves, and stretched her neck. This acquired trait is inherited by her 
descendants, who again stretch their necks. However, this very simple explanation of 
a deliberate adaptation results in some questions from modern biological perspective: 
Why should organisms have the desire to change? Can new structures be build trough 
training? By what means is it decided which adaptions will be passed on? Why does 
not an amputated leg get inherited? In biology, Lamarckism would be possible if there 
was a mechanism that translates phenotypic changes into the sequence of the 
responsible gene. However, Lamarckism should not be entirely rejected, as it can 
provide some answers, especially in modern genetics and medicine. In epigenetics – 
which very early dealt with questions of evolution [20],[21], it was found that there 
are special traits which can be inherited without being part of the genetic code; That 
would, for example, explain a possible higher function of the thumb in the upcoming 
post-millennial younger generations (“Net Gen” [22]) due to frequent use of text 
messaging on mobile phones, which is being allegedly claimed by some people, but 
still to be confirmed. The possibility that acquired behavior or marks can be passed 
from parents to children is in serious debate and the advent of epigenetics is hailed as 
a profound shift in our understanding of inheritance, i.e. that genes also have a kind of 
“memory” [23], [24], epigenetics being an upcoming hype in medical research [25], 
with a very recent example in cancer research found here [26]. 

4 Brief Survey on Evolutionary Algorithms 

4.1 Why Evolutionary Algorithms? 

Due to the adaptive and robust nature of performing a global instead of a local search 
for solutions in the search space, which improves their handling of interactions 
between attributes [27], methods based on evolutionary algorithms are being used in a 
wide array of different research fields. They are mostly used for traditional KDD 
tasks, such as clustering and classification as well as for optimization. Another benefit 
of evolutionary methods is the possibility of using them for multi-objective 
optimization, making them well suited for many real-world use-cases where 
simultaneous optimization of several objectives is of importance [28]. There are many 
different algorithms in the universe of evolutionary methods, but the most prevalent 
are genetic algorithms and genetic programming which we describe in section 4.4. 

4.2 Biological Sciences versus Computational Sciences 

Darwin explains in his book “The Origin of Species by Means of Natural Selection, or 
the Preservation of Favoured Races in the Struggle for Life” [5] the diversity and 
complexity of living organisms: Beneficial traits resulting from random variation are 
favored by natural selection, i.e. individuals with beneficial traits have better chances 
to survive, procreate and multiply, which may also be captured by the expression 
differential reproduction. In order to understand evolutionary algorithms, some basic 
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notions are important, which will highlight the applicability of biological principles to 
computer science. Good resources for further details are: [13], which is also available 
in German [29], and [30], [31], [32], [33]. 

Evolutionary algorithms operate on a search space ܵ, where ܵ denotes a given set. 
Points are assigned via an objective function ݂. In the context of evolutionary 
algorithms, this is usually called fitness function ݂: ܵ ՜ ܴ, where ܴ is the set of 
arbitrary possible fitness values, and the evolutionary algorithm operates on a 
collection of points from ܵ, called a population ܲ. Each member of the population 
(points in the search space) is called individual. A number ߤ א  Գ is used to denote 
the size of the population, i.e. ߤ ൌ |ܲ|. 

A population is a multiset over ܵ, i.e., it may contain multiple copies of 
individuals. Since the population changes from generation to generation, we denote 
the population at the t-th generation as ௧ܲ. Choosing the first population, ଴ܲ, at the 
beginning is called initialization.  

Table 1. Biology vs Computing: basic evolutionary notions in the biological vs. computational 
sciences; compare with Kruse et al. (2013) [13] 
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For each member ݔ of the population, its fitness ݂ሺݔሻ is computed and stored. The 
first step in each generation is to select some individuals from the population that will 
be used to create new points in the search space. These individuals are referred to as 
parents. This process is called selection for reproduction. Often this selection is done 
fitness-based, i.e., the chances of individuals to become parents increase with their 
fitness. Then some random variation is applied to the parents, where small changes 
are more likely than large changes [30].  

4.3 Foundations of Evolutionary Algorithms 

As already mentioned, the basic idea of an evolutionary algorithm is to apply 
evolutionary principles to generate increasingly better solution candidates in order to 
solve an optimization problem. This may be achieved by evolving a population of 
solution candidates by random variation and fitness-based selection of the next 
generation. According to [13], an EA requires the following building blocks: 

 
• an encoding for the solution candidates, 
• a method to create an initial population, 
• a fitness function to evaluate the individual solutions (chromosomes), 
• a selection method on the basis of the fitness function, 
• a set of genetic operators to modify chromosomes, 
• a termination criterion for the search, and 
• values for various parameters. 

 
The (natural) selection process of biological evolution can be simulated by a 

method for selecting candidate solutions according to their fitness, i.e., to select the 
parents of offspring that are transferred to the next generation. Such a selection 
method may simply transform the fitness values into a selection probability, such that 
better individuals have higher chances of getting chosen for the next generation. The 
random variation of chromosomes can be simulated by so-called genetic operators 
that modify and recombine chromosomes, for example, mutation, which randomly 
changes individual genes, and crossover, which exchanges parts of the chromosomes 
of parent individuals to produce offspring. While biological evolution is unbounded, 
we need a criterion to decide when to stop the process in order to retrieve a final 
solution. Such a criterion may be, for example, that the algorithm is terminated (1) 
after a user-specified number of generations have been created, (2) there has been no 
improvement (of the best solution candidate) for a user-specified number of 
generations, or (3) a user-specified minimum solution quality has been obtained. To 
complete the specification of an evolutionary algorithm, we have to choose the values 
of several parameters, which include, for example, the size of the population to 
evolve, the fraction of individuals that is chosen from each population to produce 
offsprings, the probability of a mutation occurring in an individual etc. [13]. The 
general procedure of such an evolutionary algorithm may look as presented in table 2:  
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Table 2. General Scheme of an Evolutionary Algorithm 

procedure evolutionary algorithm; 

begin 

 t ← 0; (* initialize the generation counter *) 
 initialize pop(t);(* create the initial population *) 

 evaluate pop(t); (* and evaluate it (compute fitness) *) 

 while not termination criterion do (* loop until termination *) 

    t ← t+1; (* count the created generation *) 

select pop(t)from pop(t-1);(*select individuals 

based on fitness*) 

    alter pop(t); (* apply genetic operators *) 

    evaluate pop(t); (* evaluate the new population *) 

 end   

end 

4.4 Types of Evolutionary Algorithms 

4.4.1 Genetic Algorithms (GA) 
Genetic algorithms (GAs) are a machine learning method inspired from genetic and 
selection mechanisms found in nature [34], which conduct a randomized and parallel 
search for solutions that optimize a predefined fitness function [35].  

In nature, the genetic information is defined in a quaternary code, based on the four 
nucleotides Adenine, Cytosine, Guanine and Thymine, stringed together in a DNA 
sequence, which forms the basis of the genetic code [36]. In transferring this structure 
to computer science, it seems natural to base all encodings on the ultimately binary 
structure of information in a computer. That is, we use chromosomes that are bit 
strings, to encode problem solutions, and exactly this is the distinctive feature of 
genetic algorithms [37]. The algorithm performs a global search in the space of 
solution candidates, where the space consists of data vectors. The first step is to 
initialize the solution candidate space with randomly generated individual solutions. 
At each iteration, the available candidates are mutated or crossed with other solutions 
in order to create new candidates. At the end of each iteration, every individual 
solution candidate is evaluated using a predefined fitness function. Consequently, the 
fitness function is the core part of every evolutionary algorithm, and designed to find 
out which solutions are the best fits for the problem. Once each individual has been 
evaluated, the least fit candidates get dismissed, leaving only the best available 
solutions in the population. This is Darwin’s principle of survival of the fittest in 
solving computing problems. The loop of iterations is repeated until a predefined 
stopping criterion has been reached. Stopping criteria can vary in their definition from 
just the number of iterations to go through to a certain threshold of fitness value that 
has to be reached within the solution space. For more details on GAs refer to [38], 
[39], [40]. 
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4.4.2 Genetic Programming (GP) 
Genetic programming (GP) differs from genetic algorithms mainly in the form of the 
input and output values the algorithm needs and produces [41]. In the case of GP, the 
values are not simple data points, but parts of functions or programs. The goal is to 
find a procedure which solves the given problem in the most efficient way. The 
algorithm itself works in the same way as described in the section above, where 
initially there is a randomly generated space of candidate solutions (random programs 
in this case), which are evolved using mutation and crossover processes, generating 
new program trees. The end result is supposed to be a function or a program, which 
can be used to solve a specific type of problem. An example of linear genetic 
programming applied to medical classification problems from a benchmark database 
compared with results obtained by neural networks can be found in [42].  

4.4.3 Evolution Strategies (ES) 
Evolution Strategies (ES) are a stochastic approach to numerical optimization that 
shows good optimization performance in general and which goes attempt to imitate 
principles of organic evolution in the field of parameter optimization [43]. In order to 
improve the "self-adaptive" property of strategy parameters, Ohkura et al. (2001) [44] 
proposed an extended ES called Robust Evolution Strategy (RES), which has 
redundant neutral strategy parameters and which adopts new mutation mechanisms in 
order to utilize selectively neutral mutations to improve the adaptability of strategy 
parameters, a similar approach was proposed in [45] and more details can be found in 
[46], [47], [48]. 

4.4.4 Swarm Intelligence (SI) 
Swarm intelligence (SI) studies the collective behavior of self-organized systems 
composed of many individuals interacting locally with each other and with their 
environment, using decentralized control to achieve their goals. Swarm-based systems 
have been developed in response to the observed success and efficiency of such 
swarms in nature [49]. 

Approaches that came out as a result of studying the collective behavior of 
populations of “simple agents”, i.e. individuals with limited abilities without central 
control, can be employed in many different areas. They have been inspired by the 
behavior of certain species of animals, especially social insects (ants, bees) and 
animals that live and search for food in swarms, flocks, herds or packs (fish, birds, 
deer, wolves, rabbits etc.) and also bacteria. Such swarms can find the shortest paths 
to food sources, they can build complex nests like bee hives, hunt for prey (for 
example, packs of wolves), and protect themselves against predators [13]. In joint 
efforts, these animals are often able to solve complex problems – demonstrating 
collective intelligence [50]. This is a recent and important research area in computer 
science [51] which can be applied for many purposes, a prominent example being the 
NASA crater finding [52] using human collective intelligence [53], [54]. 
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Particle Swarm Optimization (PSO) 
Particle swarm optimization (PSO) is an evolutionary computation technique 
developed by Eberhart & Kennedy in 1995 [55], the concept being originated from 
the simulation of a simplified social system, i.e. to graphically simulate the graceful 
but unpredictable choreography of a bird flock. 

Initial simulations were modified to incorporate nearest-neighbor velocity 
matching, eliminate ancillary variables, and incorporate multidimensional search and 
acceleration by distance. At some point in the evolution of this algorithm, it was 
realized that the conceptual model was an optimizer. Through a process of trial and 
error, a number of parameters extraneous to optimization were eliminated from the 
algorithm, resulting in a very simple implementation [56], similar to a genetic 
algorithm, where the system is initialized with a population of random solutions.  

Unlike GAs, there is no mutation operator, although each potential solution is also 
assigned a randomized velocity, and the potential solutions, called particles, are then 
"flown" through the problem space. Each particle keeps track of its personal best 
position in the problem space, which is associated with the best fitness value of the 
particle found so far. Another "best" value that is tracked by the particle swarm 
optimizer is the overall best value, and its location, obtained by any particle in the 
population [57], [58] – the so-called “global best”. 

Ant Colony Optimization (ACO) 
Ants do not possess a great deal of intelligence by themselves, but collectively a 
colony of ants performs sophisticated tasks such as finding the shortest path to food 
sources and sharing this information with other ants by depositing pheromone. Ant 
Colony Optimization (ACO) models the collective intelligence of ants, which are 
transformed into optimization techniques [59]. ACO was introduced by Dorigo et al. 
(1991) [60], [61] as a novel nature-inspired metaheuristic for the solution of hard 
combinatorial optimization (CO) problems. Such metaheuristics are approximate 
algorithms used to obtain satisfactory solutions to hard CO problems in a reasonable 
amount of computational time. Other examples of such metaheuristics are tabu search, 
simulated annealing, and evolutionary computation [62]. More details can be found in 
[63], [64] and a recent example can be found in [65]. A prominent example as a data 
mining algorithm is the Ant-Miner (Ant-colony-based data miner), aiming at 
extracting classification rules from data. This algorithm was inspired by both research 
on the behavior of real ant colonies and known data mining concepts [66]. 

Bacteria Foraging Algorithms (BFA) 
Foraging theory is based on the assumption that animals search for and obtain 
nutrients in a way that maximizes their energy intake E per unit time T spent foraging. 
The Escherichia coli bacterium is probably the best understood microorganism and 
much what is known cytokinesis in bacteria has come from studies with E. coli, and 
efforts to understand fundamental processes in this organism continue to intensify 
[67]. When E. coli grows, it gets longer, then divides in the middle into two so-called 
“daughters.” Given sufficient food and held at the temperature of the human gut (one 
place where they live) of 37° C, this bacterium can synthesize and replicate 
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everything it needs to make a copy of itself in about 20 minutes. Hence, the growth of 
a population of bacteria is exponential, with a relatively short time to double [68]. The 
foraging behavior of E. coli can be used by analogy in the Bacteria Foraging 
Algorithms (BFA) to solve global optimization problems [69]. An example of an 
electrical engineering application of the BFA can be found in [70]. An approach 
applied in human psychology is the Information Foraging Theory by Pirolli & Card 
(1999) [71]; this assumes that people try to modify their information seeking 
strategies to maximize their rate in gaining valuable information. The adaptation 
analysis develops information patch models, which deal with time allocation and 
information filtering; information scent models, which address the identification of 
information value from proximal cues; and information diet models, which address 
decisions about the selection and pursuit of information items. The theory has been 
used to study e.g. the “surf behaviour” on the Web [72], but has also been used for 
data mining [73], and for knowledge discovery in the biomedical domain [74]. 

Bees Algorithm (BA) 
The population-based search algorithm called the Bees Algorithm (BA) mimics the 
food foraging behaviour of a swarm of honey bees and was proposed by Pham et al. 
(2006) [75]. In its basic version, the algorithm performs a kind of neighbourhood 
search combined with random search, and can be used for combinatorial optimisation 
as well as functional optimisation [76]. BAs are also meta-heuristics, which try to 
model the natural behavior of bees in food foraging, such as mechanisms like waggle 
dance to optimally locate food sources and to search for new ones [77]. Basturk & 
Karaboga (2007), [78] proposed the Artificial Bee Colony (ABC) algorithm for 
constrained optimization problems. The idea is that the collective intelligence of bee 
swarms consists of three components: food sources, employed bees, and unemployed 
bees; the latter further segregated into onlookers and scouts. This results into three 
main phases of ABC: employed phase, onlooker phase, and scout phase.A recent 
work described the integration of Artificial Bee Colony (ABC) and Bees Algorithm 
(BA) to an ABC–BA algorithm which performs better than each single one [79]. 

Invasive Weed Optimization (IWO) 
The Invasive Weed Optimization Algorithm (IWO) was proposed by Mehrabian & 
Lucas (2006) [80], as an ecologically inspired metaheuristic that mimics the process 
of weeds colonization and distribution, which is capable of solving multi-
dimensional, linear and nonlinear optimization problems with appreciable efficiency. 
Moreover, the IWO can also be used in the validation of reached optima and in the 
development of regularization terms and non-conventional transfer functions that do 
not necessarily provide gradient information [81]. A recent example of IWO for 
knowledge discovery purposes can be found in [82], . 

4.4.5 Memetic Algorithms (MA) 
Memetic algorithms (MA) are amongst the growing areas in evolutionary 
computation and were inspired by Richard Dawkins’ meme [83]; an implementation 
of an “selfish gene algorithm” can be found here [84]. The term MA is widely used as 
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a synergy of evolutionary or any other population-based approach with separate 
individual learning or local improvement procedures for search problems [85]. MAs 
are often also referred to as Baldwinian evolutionary algorithms (see [86] about the 
Baldwin effect), Lamarckian EAs, cultural algorithms, or genetic local search. 

A novel correlation based memetic framework (MA-C), which is a combination of 
a genetic algorithm (GA) and local search (LS) using correlation based filter ranking 
has been proposed in [87]: The local filter method fine-tunes the population of GA 
solutions by adding or deleting features based on Symmetrical Uncertainty (SU) 
measures. Such approaches have many possibilities for the use in real-world 
problems, particularly in bio-computing and data mining for high-dimensional 
problems [88]. Amongst a very recent meta-heuristic is the Grey Wolf Optimizer 
(GWO), which mimics the leadership hierarchy and hunting mechanism of grey 
wolves (canis lupus) in nature [89]. 

4.4.6 Differential Evolution Search 
An example of Differential Evolution (DE) search is the Artificial Bee Colony (ABC) 
algorithm, mentioned in section 4.3.4. Its main idea is that the algorithm makes use of 
differential evolution operators to update the information on the food source in order 
to enhance the local search ability at the stage of onlooker bees, and a chaotic 
sequence is introduced to the differential mutation operator for this purpose. 
Simulation results show that this algorithm, introducing chaotic differential evolution 
search, is a promising one in terms of convergence rate and solution accuracy, 
compared to the ABC algorithm [90]. A memetic DE algorithm, that utilizes a chaotic 
local search (CLS) with a shrinking strategy, in order to improve the optimizing 
performance of the canonical DE by exploring a huge search space in the early run 
phase to avoid premature convergence can be found in [91]. 

4.4.7 Artificial Immune Systems (AIS) 
Artificial immune systems (AIS) developed by Farmer et al. (1986) [92], can be 
defined as adaptive computational systems inspired from immunology, i.e. by the 
observed immune functions, principles and mechanisms. The idea was that the 
immune system as highly evolved biological system, is able to identify (and 
eliminate) foreign substances [93]. Consequently, it must be able to determine 
between gens and antigens, which requires a powerful capability of learning, memory 
and pattern recognition. The development and application domains of AIS follow 
those of soft computing paradigms [94], such as artificial neural networks (ANN) and 
fuzzy systems (FS). A framework which discusses the suitability of AIS as a soft 
computing paradigm that integrate AIS with other approaches, focusing on ANN, EA 
and FS has been proposed by [95]. 

4.4.8 Gravitational Search Algorithm (GSA) 
Gravitational Search Algorithms (GSA) are based on the analogy with the law of 
gravity and mass interactions: the search agents are a collection of masses which 
interact with each other based on the Newtonian gravity and the laws of motion [96]. 
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GSA falls also under the category of metaheuristics as general search strategies that, 
at the exploitation stage, exploit areas of the solution space with high quality solutions 
and, at the exploration stage, move to unexplored areas of the solution space [97]. 
GSA is a stochastic population-based metaheuristic that was originally designed for 
solving continuous optimization problems.  

The Binary Gravitational Search Algorithm (BGSA) is a new variant for discrete 
optimization problems, and experimental results confirm its efficiency in solving 
various nonlinear benchmark problems [98].  

A recent work on a Discrete Gravitational Search Algorithm (DGSA) to solve 
combinatorial optimization problems [99] can be found in [97].  

4.4.9 Intelligent Water Drops Algorithm (IWD) 
A natural river often finds optimal paths among a number of different possible paths 
in its ways from the source to destination. These near optimal or optimal (natural) 
paths are obtained by the actions and reactions that occur among the water drops and 
between the water drops and the riverbeds.  

The Intelligent Water Drops (IWD) algorithm is a new population-based 
optimisation algorithm inspired from observing natural water drops flowing in rivers. 
The authors of [100] tested this algorithm to find solutions of the n-queen puzzle with 
a simple local heuristic, solved the travelling salesman problem (TSP) and tested it 
with multiple knapsack problems (MKP) in which near-optimal or optimal solutions 
were obtained [101].  

There are various application areas for IWD thinkable, e.g. Agarwal et al. (2012) 
[102], propose the use of IWD as an optimised code coverage algorithm by using 
dynamic parameters for finding all the optimal paths using basic properties of natural 
water drops. A recent example application is in using IWD for solving multi-objective 
job-shop scheduling: Niu et al. (2013) customized it to find the best compromising 
solutions (Pareto non-dominance set) considering multiple criteria, namely make-
span, tardiness and mean flow time of schedules, and proved that the customized IWD 
algorithm can identify the Pareto non-dominance schedules efficiently. 

5 Evolutionary Algorithms for Knowledge Discovery and Data 
Mining 

5.1 Classification and Clustering with EAs 

In traditional data mining tasks, evolutionary algorithms can easily be used for both 
classification and clustering as well as for data preparation in the form of attribute 
generation and selection [27].  

 
Classification is a central application for EAs, where they can be used for 
classification rule mining. These rules can be of different complexity and forms. In 
some cases, a whole set of rules is the goal, where interactions between the rules play 
an important role, whereas it is also possible to mine independent rules for 
classification. For details on the topic of classification rule mining, please refer to 
[27] and [103]. A very recent work, which shows that the implementation of 
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evolutionary algorithms in machine learning can be achieved without extensive effort, 
meaning much experimentation can be performed quickly in order to discover novel 
areas where genetic algorithms can complement machine learning algorithms to 
achieve better classification results [104]. 

 
Clustering analysis is another application area for EAs to knowledge discovery tasks. 
There are different approaches to this problem, which are discussed in detail in [103]. 
The most important criteria when performing clustering analysis using EAs is the 
representation of solution candidates as well as the fitness evaluation, which can be a 
problematic issue considering the complexity of evaluating unsupervised knowledge 
discovery methods in general. 

5.2 Advantages and Disadvantages 

EAs have certain pros and cons as general optimization methods, including when they 
are used for knowledge discovery and data mining tasks, as shown in Table 3. 

Table 3. Advantages and Disadvantages of EAs 

Advantages Disadvantages 
Robust to noise EA methods do not guarantee finding of an 

optimal solution in finite time 
Deals well with attribute interaction Domain specific knowledge has to be explicitly 

added using external processes 
Comparatively easy to implement Optimization runtime not constant, variance 

between best- and worst-case can differ greatly 
Well suited for multi-objective optimization Computational complexity can be an issue 
Good scalability due to parallelization Fitness-function needs to be specified, otherwise 

EAs do not work 
Very flexible (widely usable) Slower than greedy algorithms in many cases 
Good option for problems without a traditional  
best practice method 

Not the first choice if a traditional method already 
solves the problem in an efficient way 

Good amount of programming libraries available  
Small amount of specific mathematical 
knowledge necessary for using EAs 

 

Suitable for efficiently solving NP-hard problems  
 

 

5.3 Available Software and Programming Libraries 

There is a broad range of different software packages and libraries available for using 
EAs in KDD and DM tasks, The list below contains only the most well-known 
examples: 

WEKA - http://www.cs.waikato.ac.nz/ml/weka 
KEEL - http://www.keel.es 
SolveIT - http://www.solveitsoftware.com 
MCMLL - http://mcmll.sourceforge.net 
Jenetics - http://jenetics.sourceforge.net 
Jenes - http://jenes.intelligentia.it 
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jMetal - http://jmetal.sourceforge.net 
JGAP - http://jgap.sourceforge.net 
epochX - http://www.epochx.org 
SAS - https://www.sas.com 
Discipulus - http://www.rmltech.com 
XpertRule - http://www.attar.com 
MATLAB GA-Toolbox http://www.mathworks.com/discovery/ 
genetic-algorithm 

6 Open Problems and Challenges 

Evolutionary algorithms, by default, are so called “blind” methods, which means that 
the used operators do not use or depend on domain specific knowledge. While this 
feature enriches their generality, it is in most cases a negative factor compared to 
methods making use of existing relevant knowledge within the domain [103]. This 
aspect can however be remedied by introducing mechanisms such as a preceding local 
search into the execution of evolutionary algorithms, and enriching the fitness 
function with domain specific data. 

Another shortcoming of evolutionary approaches for knowledge discovery tasks is 
that they do not guarantee an optimal solution in finite time. They also do not 
guarantee constant optimization runtimes and the differences between the best and 
worst case scenarios are usually larger than for most traditional optimization methods, 
making EAs a suboptimal choice for real-time systems [105]. 

Computational complexity can, as with all other KDD methods, also be an issue. 
However with the increase of processing power as well as the possibility to easily 
parallelize evolutionary methods, especially in combination with cloud services and 
the island model [105], the issue should be, at most, of a temporary nature. 

7 Future Work 

A specific area of future research, according to [103], should be the application of 
genetic programming for data mining tasks. There have been attempts to create generic 
rule induction algorithms using GP [106], [107], but they are still comparatively under-
discovered and under-used within the domain of knowledge discovery. 

Biology has traditionally been a source of inspiration for evolutionary algorithms. In 
most organisms, evolution proceeds in small steps by random mutations and in large 
steps by horizontal events (recombination, reassortments, gene transfer and 
hybridizations). Horizontal events combine the genetic information from two or more 
organisms to generate a new one that incorporate alleles from parental strains. Whilst 
mutations allow efficient local searches in the fitness landscape, horizontal events 
combine information from fit individuals exploring larger regions of search space. 
Humans and eukaryotes in general recombine during meiosis, retroviruses during 
retrotranscription, each presenting different ways of combining genetic information. 
Segmented viruses, viruses with more than one chromosome as influenza, combine 
genetic information through reassortments, a process where a new individual is created 
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by exchange of chromosomes between two or more parental strains. This is the very 
effective process behind influenza pandemics that could allow viruses to jump from 
one host to another and rapidly propagate in the new population. Such mechanisms, and 
others, are found in nature and represent different strategies to go beyond mutations 
with distinct advantages. Each of these evolutionary strategies can be used to address 
different problems – but it needs much further research, testing and experimenting.  
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