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ABSTRACT

Sum-product networks (SPNs) are a recently proposed type of prob-

abilistic graphical models allowing complex variable interactions

while still granting efficient inference. In this paper we demonstrate

the suitability of SPNs for modeling log-spectra of speech signals

using the application of artificial bandwidth extension, i.e. artificially

replacing the high-frequency content which is lost in telephone sig-

nals. We use SPNs as observation models in hidden Markov models

(HMMs), which model the temporal evolution of log short-time

spectra. Missing frequency bins are replaced by the SPNs using

most-probable-explanation inference, where the state-dependent

reconstructions are weighted with the HMM state posterior. Ac-

cording to subjective listening and objective evaluation, our system

consistently and significantly improves the state of the art.

Index Terms— graphical models, SPN, HMM, speech band-

width extension

1. INTRODUCTION

Probabilistic graphical models (PGMs) [1, 2] enjoy great popular-

ity in the speech and signal processing communities. As an exam-

ple, hidden Markov models (HMMs) [3] are one of the most pop-

ular probabilistic models for modeling sequential data, with a vast

amount of applications, such as speech recognition/synthesis, natu-

ral language processing and bio-informatics. PGMs aim to trade-

off computational requirements of probabilistic inference and the

amount of statistical independence assumptions. However, while

most research in PGMs focuses on novel techniques for learning and

inference, application driven research usually restricts to more “sim-

plistic” models, like naive Bayes classifiers, HMMs, Gaussian mix-

ture models (GMMs), Markov random fields restricted to pair-wise

interactions, etc. The reason for this is that inference in these models

is conceptually simple and computationally tractable. The simplic-

ity of these models, however, sacrifices model-expressiveness and

possibly performance of the incorporating system.

In [4, 5, 6] and related work, novel types of probabilistic models

emerged which allow to control the inference cost during learning

but still modeling complex variable dependencies. Using the differ-

ential approach introduced in [4], inference is also conceptional easy

in these models. In this paper, we consider sum-product networks

(SPNs) introduced in [6]. SPNs can be interpreted as Bayesian net-

works with a deep hierarchical structure of latent variables with a

high degree of context-specific independence. In this way, SPNs

can model highly complex variable interactions with little or no con-

ditional independencies among the model variables. Furthermore,
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SPNs can be interpreted as a neural network representing an in-

ference machine, where inference is linear in the networks size,

i.e. in the number of nodes and edges in the network. To the best

of our knowledge, we describe the first application of SPNs to a

speech related task, namely artificial bandwidth extension (ABE) of

lowpass-filtered (telephone) speech. Motivated by the success of

SPNs on the task of image completion [6], we use SPNs to com-

plete the high frequency parts of log-spectrograms, lost due to the

telephone bandpass filter. Specifically, we use SPNs as observa-

tion models in HMMs modeling the temporal evolution of the log-

spectrum. To infer the marginal HMM state distributions we use

the forward-backward algorithm, where missing frequency bins are

marginalized by the SPN models. The high frequency bins are re-

constructed by most-probable-explanation inference [6], where the

reconstructions of the state-dependent SPNs are weighted by the

state posterior. The resulting log-spectrograms exhibit speech struc-

tures similar to the original wide-band speech, and the resynthesized

speech signals clearly exhibit an improved speech quality due to the

added high frequency content. Using log-spectral distortion as ob-

jective measure, we report consistent and significant improvement

over state-of-the-art methods.

The paper is organized as follows: In section 2 we review SPNs.

In section 3 we describe our approach for ABE using SPNs embed-

ded in an HMM. In section 4 we discusses resynthesis of time signals

from bandwidth extended log-spectrograms. In section 5 we present

our experiments and section 6 concludes the paper.

2. SUM-PRODUCT NETWORKS

Let Xm,m ∈ {1, . . .M} denote random variables and let xm be

an instantiation of Xm. We define X := {X1, . . . , XM} and x :=
{x1, . . . , xM}, and for any index set I ⊆ {1, . . . ,M} we define

XI := {Xm : m ∈ I} and xI := {xm : m ∈ I}.

An SPN is an acyclic directed graph whose internal nodes are

sum and product nodes. Each internal node recursively calculates

its value from the values of its child nodes: sum nodes calculate

a non-negatively weighted sum of the values of their child nodes,

where the non-negative weights are associated with the emanating

edges of the sum node. Product nodes calculate the product of their

child nodes’ values. While SPNs generally can have multiple roots

[7], in this paper we assume SPNs with a single root. The value of

the root node is the output of the SPN, while the input of the SPN

is provided by its leave nodes. In [6], the leaves of an SPN were

defined to be indicator nodes of discrete random variables, such that

the SPN represents the network polynomial of a Bayesian network

[4]. In [8, 7] the concept of SPN leaves was generalized such that

they represent tractable distributions over single variables, or (small)

sets of variables. More precisely, when N is a leave of an SPN, then



the value of N for some input x is N(x) := pN (xsc(N)), where the

scope sc(N) ⊆ {1, . . . ,m} are the indices of variables associated

with N , and pN is a tractable distribution over Xsc(N). pN can

either be a probability mass function (PMF) or a probability density

function (PDF). Generally, there are several leave nodes with the

same scope, representing a collection of distributions over the same

variables. This view of SPN leaves subsumes the definition using

indicator nodes in [6], since an indicator function is a special case of

a PMF, assigning all probability mass to a single state.

Concerning some internal node N , i.e. a sum or a product node,

we define sc(N) :=
⋃

C∈ch(N) sc(C), where ch(N) denotes the

children of N . Let R denote the root node of the SPN, and assume

w.l.o.g. that sc(R) = {1, . . . ,M}. Then an SPN defines a probabil-

ity distribution over X as pSPN(x) ∝ R(x), i.e. by its normalized

output. In order to perform efficient inference (e.g. marginaliza-

tion, most-probable explanation, conditional marginals) using for-

ward and backprop passes [4], an SPN should be valid [6]. A suffi-

cient condition for validity is when the SPN is complete and decom-

posable, defined as follows [6]:

• Completeness: For any two children C,C′ of any sum node,

it must hold that sc(C) = sc(C′).

• Decomposability: For any two children C,C′ of any product

node, it must hold that sc(C) ∩ sc(C′) = ∅.

When an SPN is complete and decomposable, and when the non-

negative weights are normalized to 1 for each sum node, then the

output is already normalized and pSPN(x) = R(x). A complete

and decomposable SPN can be naturally interpreted as a recursively

defined distribution: product nodes serve as cross-overs of distri-

butions with non-overlapping scope, where the product represents a

local (context-specific) independence assumption; sum nodes repre-

sent mixtures of distributions, dissolving independence assumptions

[8, 7]. Since sum nodes represent mixture distributions, one can

associate a latent discrete random variable with each sum node, se-

lecting the mixture component, where the associated weights can be

interpreted as component priors [6]. The latent variable interpreta-

tion opens the door for the expectation-maximization algorithm, and

variants thereof.

In [6], an algorithm was proposed for learning SPNs on data or-

ganized as a rectangular array (e.g. images). Starting with the whole

rectangle (the root rectangle), the algorithm recursively performs all

decompositions into two sub-rectangles along the x and y dimen-

sions, respectively, using a certain step size (resolution). Rectangles

of size 1 (pixels) are not split further. The root rectangle is equipped

with a single sum node, representing the distribution over all vari-

ables. Each non-root rectangle R, containing more than one vari-

able, is equipped with ρ sum nodes, representing ρ mixture distribu-

tions over the variables contained in R. Each rectangle containing

exactly one variable is equipped with γ Gaussian probability density

nodes, which are the leaves of the SPN. The means of the Gaussian

nodes are set to the γ quantile means of the corresponding variables,

calculated from the training set, and the standard deviation is set to

1. If R′ and R′′ are two rectangles generated by some split of R,

then for each combination of nodes N ′, N ′′, where N ′ comes from

R′ and N ′′ comes from R′′, a product node is generated and con-

nected as parent of N ′ and N ′′. The so-generated product nodes are

connected as child of each sum node in R. The weights of this SPN

are trained by a type of hard (winner-take-all) EM, with a sparseness

penalty, penalizing evocation of non-zero weights.

In [9, 8, 7], further algorithms were proposed which do not rely

on rectangular organization of data.

3. BANDWIDTH EXTENSION USING SUM-PRODUCT

NETWORKS

In [6], SPNs were used to recover missing (covered) parts of face im-

ages. Translated to the audio domain, specifically to the ABE prob-

lem, this corresponds to recover high frequencies from the telephone

band. In this paper, we modify the HMM-based framework for ABE

[10, 11] and incorporate SPNs for modeling the observations.

In the HMM-based system [10] time signals are processed in

frames with some overlap, yielding a total number of T frames. For

each frame, the spectral envelope of the high-band is modeled us-

ing cepstral coefficients obtained from linear prediction (LP). On a

training set, these coefficients are clustered using the LBG algorithm

[12]. The temporally ordered cluster indices are used as hidden state

sequence of an HMM, whose prior and transition probabilities can

be estimated using the observed frequency estimates. For each hid-

den state, an observation GMM is trained on features taken from the

low-band (see [10] for details about these features). In the test phase,

the high frequency components and therefore the hidden states of the

HMM are missing. For each time frame, the marginal probability of

the hidden state is inferred using the forward-backward algorithm

[3]. For real-time capable systems, the backward-messages have to

be obtained from a limited number of λ ≥ 0 look-ahead frames.

Using the hidden state posterior, an MMSE estimate of the high-

band cepstral coefficients is obtained [10], which together with the

periodogram of the low-band yield estimates of the wide-band cep-

stral coefficients. To extend the excitation signal to the high-band,

the low-band excitation is modulated either with a fixed frequency

carrier, or with a pitch-dependent carrier. According to [10] and re-

lated ABE literature, the results are quite insensitive to the method

of extending the excitation.

In this paper, we use the log-spectra of the time frames as obser-

vations, where redundant frequency bins are discarded. Let S(t, f)
be the f th frequency bin of the tth time-frame of the full-band signal,

t ∈ {1, . . . , T}, f ∈ {1, . . . , F}, where F is the number of fre-

quency bins and St = (S(t, 1), . . . , S(t, F ))T . We cluster the log-

spectra {S1:T } of training speech using the LBG algorithm, and use

the cluster indices as hidden states of an HMM. On each cluster, we

train an SPN, yielding state-dependent models over the log-spectra.

For training SPNs, we use the algorithm proposed in [6] requiring

that the data is organized as rectangular array; here the data is a

1 × F rectangular array. We used ρ = 20 sum nodes per rectangle

and γ = 20 Gaussian PDF nodes per variable (see section 2). This

values were chosen as an “educated guess” and not cross-validated.

Similar as in [6], we use a coarse resolution of 4, i.e. rectangles of

height larger than 4 are split with a stepsize of 4.

For ABE we simulate narrow-band telephone speech [13] by ap-

plying a bandpass filter with stop frequencies 50Hz and 4000 Hz.

Let S̄(t, f) be the time-frequency bins of the telephone filtered sig-

nal, and S̄t = (S̄(t, 1), . . . , S̄(t, F ))T . Within the telephone band,

we can assume that S(t, f) ≈ S̄(t, f), while some of the lowest and

the upper half of the frequency bins in S̄t are lost. To perform infer-

ence in the HMM, this requires that the missing data is marginalized

in the state-dependent models, which can be done efficiently in SPNs

[6]. More precisely, Gaussian PDF nodes corresponding to unob-

served frequency bins, constantly return value 1. In this way, these

variables are marginalized by the SPN in the upward-pass. The out-

put probabilities serve as observation likelihoods and are processed

by the forward-backward algorithm [3]. This delivers the marginals

p(Yt|et), where Yt is the hidden HMM variable in the the tth time

frame, and et is the observed data up to time frame t, i.e. all fre-

quency bins in the telephone band, for all time frames 1, . . . , (t+λ).
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Fig. 1. Illustration of the HMM with SPN observation models. State-

dependent SPNs are symbolized by triangles with a circle on top.

For the forward-backward algorithm, frequency bins marked with

“?” (missing) are marginalized out by the SPNs.

An illustration of the modified HMM used in this paper is given in

Figure 1.

Following [6], we use most-probable-explanation (MPE) infer-

ence for recovering the missing spectrogram content, where we re-

construct the high-band only. Let Ŝt,k = (Ŝt,k(1), . . . Ŝt,k(F ))T be

the MPE-reconstruction of the tth time frame, using the SPN depend-

ing on the kth HMM-state. Then we use the following bandwidth-

extended log-spectrogram

Ŝ(t, f) =

{

S̄(t, f) if f < f ′

∑K
k=1 p(Yt = k|et)Ŝt,k(f) o.w.

(1)

where f ′ corresponds to 4000Hz.

4. RECONSTRUCTING TIME SIGNALS

To synthesize a time-signal from the bandwidth extended log-

spectrogram, we need to associate a phase spectrum to the esti-

mated magnitude spectrum eŜ(t,f). The problem of recovering a

time-domain signal given a modified magnitude appears in many

speech applications, such as single-channel speech enhancement

[14, 15, 16], single-channel source separation [17, 18, 19, 20] and

speech signal modification [21, 22]. These signal modifications

are solely employed in spectral amplitude domain while the phase

information of the desired signal is not available. A typical approach

is to use the observed (noisy) phase spectrum or to replace it with an

enhanced/estimated phase.

In order to recover phase information for ABE, we use the it-

erative algorithm proposed by Griffin and Lim (GL) [23]. Let j ∈
{0, . . . , J} be an iteration index, and Ĉ(j) be a complex valued ma-

trix generated in the jth iteration. Let |Ĉ(0)(t, f)| = eŜ(t,f) and

6 Ĉ
(0)(t, f) =

{

6 C̄(f, t) 1 ≤ f ≤ f ′

0 o.w.,
(2)

where C̄ is the complex spectrogram of the bandpass filtered input

signal. Within the telephone band, phase information is considered

reliable and copied from the input. Outside the narrow-band phase is

initialized with zero. Note that in general Ĉ(0) is not a valid spectro-

gram since a time signal whose STFT equals Ĉ(0) might not exist.

The jth iteration of the GL algorithm is given by

Ĉ
(j) = |Ĉ(0)| ⊗ e

i6 G(Ĉ(j−1))
, (3)

G(C) = STFT(STFT−1(C)), (4)

where ⊗ denotes the Hadamard product. At each iteration, the

magnitude of the approximate STFT Ĉ(j) is set to the magni-

tude |Ĉ(0)| estimated by the SPN while temporal coherence of the

signal is enforced by the operator G(·) (see e.g. [22] for more de-

tails). The estimated time signal sj at the jth iteration is given by

sj = STFT−1
(

Ĉ(j)
)

. At each iteration, the mean square error be-

tween |STFT(sj)| and |Ĉ(0)| is reduced [23]. In our experiments,

we set the number of iterations J = 100, which appeared to be

sufficient for convergence.

5. EXPERIMENTS

We used 2 baselines in our experiments. The first baseline is the

method proposed in [10], based on the vocal tract filter model using

linear prediction. We used 64 HMM states and 16 components per

state-dependent GMM, which performed best in [10]. We refer as

HMM-LP to this baseline. The second baseline is almost identical

to our method, where we replaced the SPN with a Gaussian mixture

model with 256 components with diagonal covariance matrices. For

training GMMs, we ran the EM algorithm for maximal 100 itera-

tions and using 3 random restarts. Inference using the GMM model

works the same way as described in section 3, since a GMM can be

formulated as an SPN with a single sum node [7]. We refer as HMM-

GMM to this baseline. To our method, we refer as HMM-SPN. For

HMM-GMM and HMM-SPN, we used the same clustering of log-

spectra using a codebook size of 64.

We used time-frames of 512 samples length, with 75% over-

lap, which using a sampling frequency of 16 kHz corresponds to a

frame length of 32ms and a frame rate of 8ms. Before applying

the FFT, the frames were weighted with a Hamming window. For

the forward-backward algorithm we used a look-ahead of λ = 3
frames, which corresponds to the minimal delay introduced by the

75% frame-overlap. We performed our experiments on the GRID

corpus [24], where we used the test speakers with numbers 1, 2, 18,

and 20, referred to as s1, s2, s18, and s20, respectively. Speakers

s1 and s2 are male, and s18 and s20 are female. We trained speaker

dependent and speaker independent models. For speaker dependent

models we used 10 minutes of speech of the respective speaker. For

speaker independent models we used 10 minutes of speech obtained

from the remaining 30 speakers of the corpus, each speaker provid-

ing approximately 20 seconds of speech. For testing we used 50
utterances per test speaker, not included in the training set.

Fig. 2 shows log-spectrograms of a test utterance of speaker s18
and the bandwidth extended signals by HMM-LP, HMM-GMM and

HMM-SPN, using speaker dependent models. We see that HMM-LP

succeeds in reconstructing a harmonic structure for voiced sounds.

However, we see that fricative and plosive sounds are not well

captured. The reconstruction by HMM-GMM is blurry and does

not recover the harmonic structure of the original signal well, but

partly recovers high-frequency content related to consonants. The

HMM-SPN method recovers a natural high frequency structure,

which largely resembles the original full-band signal: the harmonic

structure appears more natural than the one delivered by HMM-LP

and consonant sounds seem to be better detected and reconstructed

than by HMM-GMM. According to informal listening tests1, the vi-

sual impression corresponds to the listening experience: the signals

delivered by HMM-SPN clearly enhance the high-frequency content

1Formal listening tests were out of the scope of the paper. All ABE sig-
nals, the full-band and the narrow-band telephone signals can be obtained as
WAV files from http://www2.spsc.tugraz.at/people/peharz/ABE/



(a) Original full bandwidth (b) Reconstruction HMM-LP

(c) Reconstruction HMM-GMM (d) Reconstruction HMM-SPN

Fig. 2. Log-spectrogram of the utterance “Bin green at zed 5 now”,

spoken by s18. (a): original full bandwidth signal. (b): ABE result

of HMM-LP [10]. (c): ABE result of HMM-GMM (this paper). (d):

ABE results of HMM-SPN (this paper).

Table 1. Average LSD using speaker-dependent models.

s1 s2 s18 s20

HMM-LP 7.13 7.57 6.48 6.41

HMM-GMM 3.18 2.93 2.28 2.82

HMM-SPN 3.12 2.84 2.15 2.59

and sound more natural than the signals delivered by HMM-LP and

HMM-GMM. HMM-GMM and HMM-SPN both deliver a more

realistic extension for fricative and plosive sounds. However, this

introduces also a some high frequency noise. According to our lis-

tening experience, these artifacts are less severe for the HMM-SPN

signals.

For an objective evaluation, we use the log-spectral distortion

(LSD) in the high-band [10]. Given an original signal and an ABE

reconstruction, we perform Lth-order LPC analysis for each frame,

where L = 9. This yields (L + 1)-dimensional coefficient vectors

aτ and âτ of the original and the reconstructed signals, respectively,

where τ is the frame index. The spectral envelope modeled by a

generic LPC coefficient vector a = (a0, . . . , aL)
t is given as

Ea(e
jΩ) =

σ

|
∑L

k=0 ake−jkΩ|
, (5)

where σ is the square-root of the variance of the LPC-analyzed sig-

nal. The LSD for the τ th frame, in high-band is calculated as

LSDτ =

√

∫ π

ν
(20 logEaτ (e

jΩ)− 20 logEâτ (e
jΩ))2 dΩ

π − ν
, (6)

where ν = π 4000
fs/2

, fs being the sampling frequency. The LSD at

utterance level is given as the average of LSDτ over all frames.

Tables 1 and 2 show the LSD of all three methods for the speaker

dependent and speaker independent scenarios, respectively, averaged

over the 50 test sentences. For each speaker, we see a clear ranking

Table 2. Average LSD using speaker-independent models.

s1 s2 s18 s20

HMM-LP 7.12 7.66 6.60 6.34

HMM-GMM 3.62 4.46 3.82 3.60

HMM-SPN 3.42 3.85 3.05 3.36

of the three method, and that the HMM-SPN method always per-

forms best. All differences are significant at a 0.95 confidence level,

according to a paired one-sided t-test.

6. DISCUSSION

We demonstrated that SPNs are a promising probabilistic model for

speech, applying them to the ill-posed problem of artificial band-

width extension. Motivated by the success of SPNs on the also

ill-posed and related problem of image completion, we used SPNs

as observation models in HMMs, modeling the temporal evolution

of log short-time spectra. While the model is trained on full-band

speech, the fact that the high and very low frequencies are miss-

ing in telephone signals is naturally treated by marginalization of

missing frequency bins. Recovering the missing high frequencies,

is naturally treated by MPE inference. The resulting system clearly

improves the state of the art both in subjective listening tests and ob-

jective performance evaluation using the log-spectral distortion mea-

sure.

This performance improvement comes at a increased computa-

tional cost. The trained observation SPNs have 136 layers and tens

of thousand of nodes and parameters. Therefore, bandwidth exten-

sion using our HMM-SPN approach currently takes about 1−2 min-

utes computation time per utterance on a standard desktop computer,

using a non-optimized Matlab/C++-based prototype. Inference us-

ing the HMM-GMM model requires approximately 0.5− 1 minutes

per utterance; inference in the HMM-LP model requires some sec-

onds. Therefore, although we designed the overall system to be real-

time capable (small HMM look-ahead), it is currently not suitable

for a real-time application implemented on a low-energy embedded

system. For non-real-time systems, e.g. for offline processing of tele-

phone speech databases, the approach presented here is appropriate.

The basic motivation in this paper, however, was to demonstrate the

applicability of SPNs for modeling speech; according to prior studies

[6, 8], SPNs are able to express complex interaction with comparable

little inference time. Therefore one can conjecture that an ABE sys-

tem with classical graphical models, expressing a similar amount of

dependencies as the used SPNs, would have an overall computation

time in the range of hours.

The system presented in this paper is trained in a two-step ap-

proach, i.e. (i) clustering the training data which delivers the HMM

states and statistics, and (ii) subsequent training of state-dependent

observation models. Incorporating state-sequence modeling directly

into SPN training, similar as in dynamic graphical models, is a in-

teresting future research direction. Finally, future directions for re-

search on SPN-based speech models are further speech related ap-

plications, such as packet loss concealment, (single channel) source

separation, and speech enhancement.
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