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Abstract

Segmentation of histopathology sections is an ubiquitous requirement in digital
pathology and due to the large variability of biological tissue, machine learning
techniques have shown superior performance over standard image processing meth-
ods. As part of the GlaS@MICCAI2015 colon gland segmentation challenge, we
present a learning-based algorithm to segment glands in tissue of benign and ma-
lignant colorectal cancer. Images are preprocessed according to the Hematoxylin-
Eosin staining protocol and two deep convolutional neural networks (CNN) are
trained as pixel classifiers. The CNN predictions are then regularized using a
figure-ground segmentation based on weighted total variation to produce the final
segmentation result. On two test sets, our approach achieves a tissue classification
accuracy of 98% and 94%, making use of the inherent capability of our system to
distinguish between benign and malignant tissue.

1 Introduction

The variability of glandular structures in biological tissue poses a challenge to auto-
mated analysis of histopathology slides. It has become a key requirement to quan-
titative morphology assessment and supporting cancer grading. Considering non-
pathological cases only, automated segmentation algorithms must already be able to
deal with significant variability in shape, size, location, texture and staining of glands.
Moreover, in pathological cases gland objects can tremendously differ from non-patho-
logical and benign glands, which further exacerbates finding a general solution to the
segmentation problem.

Previous work on gland segmentation in colon tissue has used graphical mod-
els [1, 2, 3] or textural features [4]. Others worked on segmentation in prostatic can-
cer tissue using an integrated low-, high-level and contextual segmentation model [5],
probabilistic Markov models [6], k-means clustering and region growing [7], spatial
association of nuclei to gland lumen [8, 9]. The reader is referred to the work of Sir-
inukunwattana et al. [3] for a more detailed description of work related to glandular

ar
X

iv
:1

51
1.

06
91

9v
1 

 [
cs

.C
V

] 
 2

1 
N

ov
 2

01
5

mailto:philipp.kainz@medunigraz.at


structure segmentation. Deep learning methods, especially convolutional neural net-
works (CNNs) [10], have found applications in biomedical image analysis for different
tasks: semantic segmentation [11], mitosis detection [12] and classification [13], and
blood cell counting [14].

(a) (b)

Fig. 1: Samples of (a) benign and (b) malignant colorectal cancer sections in the
Warwick-QU dataset. Ground truth labels in each image are available for each pixel and
overlaid in different colors for individual objects.
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In this work, we propose a learning-based strategy to semantically segment glands
in the Warwick-QU dataset, presented at the GlaS@MICCAI2015 challenge1. It
contains 161 annotated images of benign and malignant colorectal adenocarcinoma,
stained with Hematoxylin-Eosin (H&E) and scanned at 20× magnification. Fig. 1
shows some example images and their ground truth annotation. In each image, indi-
vidual objects are annotated with the same label, illustrated by the different colors.
To the challenge participants, information on whether an image shows benign or ma-
lignant tissue is only available in the training dataset. Three datasets were released
during the contest and the total number of non-overlapping images (benign/malignant)
in the training set, test set A and test set B is 85(37/48), 60(33/27), and 16(12/4),
respectively. These datasets further contained 795, 666, and 91 individual glands.

The contributions of our work are twofold: (i) we present a novel deep learning
scheme to generate classifier predictions for malignant and benign object and back-
ground pixels accompanied by a dedicated gland-separating refinement classifier that
is able to distinguish touching objects, which pose a challenge for later segmentation.
(ii) We use these classification results as the input for a simple, yet effective, glob-
ally optimal figure-ground segmentation approach based on a convex geodesic active
contour formulation that regularizes the classifier predictions according to a minimal
contour-length principle. Both technological contributions are described in section 2,
while the subsequent sections show and discuss the results of our novel approach ap-
plied to the datasets of the GlaS@MICCAI2015 challenge.

2 Methods

We present a segmentation method for Hematoxylin-Eosin (H&E) stained histopatho-
logical sections that proceeds in three steps: The raw RGB images are preprocessed to
extract a robust representation of the tissue structure. Subsequently, two classifiers are
trained to predict glands (Object-Net) and gland-separating structures (Separator-Net)
from the image. Finally, the outputs of the classifiers are combined and a figure-ground
segmentation based on weighted total variation is used to produce the segmentation
result.

2.1 Preprocessing H&E Slides

Prior to classification, the RGB images are preprocessed as shown in Fig. 2. A stan-
dard color deconvolution [15] is performed for the specific H&E staining used in the
provided dataset2. It separates tissue components according to their staining, empha-
sizes the structure and inherently performs data whitening. The first (red) channel
of the deconvolved RGB image contains most of the tissue structure information, so
the other channels can be omitted. In order to account for different staining contrasts
and lighting conditions during image acquisition, contrast limited adaptive histogram
equalization (CLAHE) [17] is applied.

1http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/research/bic/glascontest/
2We used the H&E 2 setting in the implementation of G. Landini, available in Fiji [16].
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Fig. 2: Preprocessing of the RGB images. Color deconvolution [15] separates the
Hematoxylin-Eosin stained tissue components. The red channel of the deconvolved image
is processed by CLAHE [17] and taken as input to the pixel classifiers.

2.2 Learning Pixel Classifiers

Given the large variability of both benign and malignant tissue in the Warwick-QU
dataset, we opted for CNNs due to their recently shown convincing performance in
pixelwise classification of histopathology images [12] and to learn a rich set of features
directly from images.

The general architecture of both CNNs is motivated by a classical LeNet-5 architec-
ture [18] and consists of K = 7 (k = 1, . . . ,K) layers: four convolutional layers (Convk)
for feature learning and three fully connected (FCk) layers as feature classifier, see
Fig. 3. The rectified linear unit (ReLU) nonlinearity (f(x) = max(0,x)) is used as
the activation function throughout all layers in the networks. All convolutional layers
consist of a set of learnable square 2D filters with pixel stride 1, followed by ReLU
activation. Subsampling (max-pooling) layers (Subk, 2×2), accounting for translation
invariance, are used after the first three convolutional layers and are counted as part of
the convolutional layer. The final pixelwise classification of an input image is obtained
by sliding a window over the image, and classifying the center pixel of that window.

For training minibatch stochastic gradient descent (MBSGD) with momentum,
weight decay, and dropout regularization is used to minimize a negative log-likelihood
loss function.

2.2.1 Object-Net: Classifying Gland Objects

The goal of the Object-Net is to predict the probability of a pixel belonging to a gland or
background. One could now define a binary classification problem, but malignant and
benign tissue express express unique features, which are not found in the other tissue
type, and which can thus complicate the learning problem. We therefore formulate
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an alternative, four-class classification problem, in which we distinguish (L = 4, with
l = 0, ...,L− 1): background benign (C0), gland benign (C1), background malignant
(C2), and gland malignant (C3). In order to do that it is necessary to transform
the provided ground truth labels to reflect benignity and malignancy as well. The
annotation images are binarized and a new label is assigned to pixels belonging to
each class Cl, see Fig. 4.

The input to the CNN is an image patch I(x) of size 101× 101 pixels, centered
at an image location x = (u,v)>, where x ∈ Ω and Ω denotes the image domain. A
given patch I(x) is convolved with 80 filters (11×11) in the first convolutional layer,
in the second layer with 96 filters (7× 7), in the third layer with 128 filters (5× 5),
and in the last layer with 160 filters (3×3), see Fig. 3(a). The three subsequent fully
connected layers FC5-FC7 of the classifier contain 1024, 512, and four output units,
respectively. The output of FC7 is fed into a softmax function, producing the center
pixel’s probability distribution over the labels. The probability for each class l is stored
in a corresponding map ICl(x).

Conv3	
128@16x16	

Sub1	
80@46x46	

Conv2	
96@40x40	

Sub2 	
96@20x20	

Input	
101x101	
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max-pooling	
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7x7	

convolutions	
3x3	

max-pooling	
2x2	

convolutions	
5x5	

FC6	
512	

FC5	
1024	

full connection	

Output	
FC7	

4	

(a) Object-Net architecture
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512	
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(b) Separator-Net architecture

Fig. 3: CNN classifier architectures of (a) the Object-Net and (b) the Separator-
Net. Both architectures have K = 7 (k = 1, . . . ,K) layers, are identical in the number of
convolutional (Convk), max-pooling (Subk), and fully connected (FCk) layers, but differ in
convolution kernel size, size and number of the feature maps, as well as number of output
units. The probability distribution over L labels of the center pixel x = (u,v)> (marked as red
cross in the input patch) is predicted by the CNNs.

5



(a) (b)

Fig. 4: Ground truth transformation for learning the four-class classification on the
preprocessed images with the Object-Net. The first row shows a benign case, the second
row shows a malignant case. (a) Preprocessed images with overlaid individual ground truth
object annotations. (b) Provided annotations were transformed into four labels for benign
background (C0), benign gland (C1), malignant background (C2) and malignant gland (C3).

2.2.2 Separator-Net: Classifying Gland-separating Structures

Initial experiments have shown that taking pixelwise predictions only from the Object-
Net were insufficient in order to separate very close gland objects. Hence, a second
CNN, the Separator-Net, is trained to predict structures in the image that are sepa-
rating such objects. This learning problem is formulated as binary classification task.

As depicted in Fig. 3(b), the CNN structure is similar to the Object-Net: a given
input image patch I(x) of size 101× 101 pixels is convolved with 64 filters (9× 9) in
the first convolutional layer, in the second layer with 96 filters (7× 7), in the third
layer with 128 filters (5× 5), and in the last layer with 160 filters (3× 3). The three
subsequent fully connected layers FC5-FC7 of the classifier contain 1024, 512, and two
output units, respectively. The output of the last layer (FC7) is fed into a softmax
function to produce the probability distribution over the labels for the center pixel.
The probability for a pixel x belonging to a gland-separating structure is stored in the
corresponding probability map S(x).

2.2.3 Refining CNN Outputs

Once all probability maps have been obtained, the Object-Net predictions ICl(x) are re-
fined with the Separator-Net predictions S(x) to emphasize the gland borders and pre-
vent merging of close objects. The subsequent figure-ground segmentation algorithm
requires a single foreground and background map to produce the final segmentation
result, so outputs are combined as follows.

The foreground probability map pfg is constructed by

pfg(x) = max


 ∑
l∈{1,3}

ICl(x)

−ρS(x),0

 , (1)
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where ρ ∈ [0,1] controls the influence of the refinements done by the separator predic-
tions. Similarly, evaluating Eq. (2) produces the background probability map:

pbg(x) = min


 ∑
l∈{0,2}

ICl(x)

 +ρS(x),1

 . (2)

2.3 Total Variation Segmentation

To generate a final segmentation, the following continuous non-smooth energy func-
tional Eseg(u) [19, 20] is minimized:

min
u
Eseg(u) = min

u

∫
Ω
g(x)|∇u(x)|dx+λ

∫
Ω
u(x) ·w(x)dx

s.t. u ∈ Cbox = {u : u(x) ∈ [0,1], ∀x ∈ Ω}
(3)

where Ω denotes the image domain and u ∈ C1 : Ω 7→ R is smooth. The first term
denotes the g-weighted total variation (TV) semi-norm which is a reformulation of the
geodesic active contour energy [21]. The edge function g(x) is defined as

g(x) = e−α‖∇I(x)‖β , α,β > 0, (4)

where ∇I(x) is the gradient of the input image, thus attracting the segmentation
towards large gradients. The second term in Eq. (3) is the data term with w describing
a weighting map. The values in w have to be chosen negative if u should be foreground
and positive if u should be background. If values in w are set to zero, the pure weighted
TV energy is minimized seeking for a minimal contour length segmentation. We use the
refined outputs from the previous classification step (Eqs. (1) and (2)) and introduce
a threshold τ to ensure a minimum class confidence in a map p:

p(x) =
{

0 if p(x)< τ

w(x) otherwise
. (5)

The weighting map w is derived by applying the logit transformation:

w(x) =
{
−(log(pfg(x))− log(1−pfg(x))) if pfg(x)> pbg(x)
log(pbg(x))− log(1−pbg(x)) if pfg(x)≤ pbg(x)

. (6)

The regularization parameter λ defines the trade-off between our data term and the
weighted TV semi-norm. The stated convex problem in Eq. (3) can be solved for its
global optimum efficiently using the primal-dual algorithm [22], which can be imple-
mented very efficiently using NVidia CUDA, thus making use of the parallel computing
power of recent GPUs. As the segmentation u is continuous, the final segmentation is
achieved by thresholding u with a value of 0.5. We optimize the free parameters α,
β and λ by performing a grid search in a suitable range of these values (α ∈ [0.5,15],
β ∈ [0.35,0.95] and λ ∈ [0.01,10]), where all 85 annotated training images are used to
tune these parameters based on the Dice coefficient.
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2.4 Implementation Details

2.4.1 Training Dataset Sampling

For the sake of execution speed when using a sliding window approach, the images are
rescaled to half resolution prior to classification and upsampled with bilinear interpo-
lation to their original size afterwards. The size of the input patch I(x) is chosen to
be 101×101 pixels, such that sufficient contextual information is available to classify
the center pixel.

The majority of training images (79) have a size of 775× 522 pixels, and resizing
reduces them to 387×261 pixels. If we just considered the valid part without border
extension for sampling the patches for the training dataset, we would actually lose
approximately 46% of the labeled pixels when using a patch size of 101× 101 pixels.
On the other hand, we would introduce a significant number of boundary artifacts by
artificially extending the border to make use of all labeled pixels. Fortunately, most
images are tiles of a bigger image and can thus be stitched seamlessly to obtain a total
of 19 images3 (Fig. 5), where we can sample enough patches without heavily relying
on artificial border extension.

In principle, we pursued the same sampling strategy for the Separator-Net, but
were required to create the ground truth labels manually. We annotated all pixels
that belong to a structure very close to two or more gland borders. The green lines in
Fig. 5 illustrate the additional manual annotation of the separating structures. Due to
the low number of foreground samples when compared to the Object-Net, the number
of foreground samples for the Separator-Net was artificially increased by exploiting
the problem’s requirement for rotation-invariance and adding nine additional rotated
versions of the patch, i.e. every 36◦.

Fig. 5: Manual ground truth annotations for gland-separating structures. Stitched
images from four tiles (numbers in red boxes), red lines denote the tile borders. Manual
annotations of pixels belonging to gland-separating structures are shown as green lines, the
thickness of lines is increased for better illustration.

2.4.2 CNN Training

Both CNNs were trained on a balanced training set of 125,000 image patches per class.
Patches in the training sets were sampled at random from the available pool of training

3In one case, stitching was not possible, since only 3 tiles were available. These 3 tiles, and the
remaining 6 images, that were not part of a bigger image, were treated as individual images.
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Fig. 6: CNN training progress. Classification error over epochs on a subset of the training
data (training error), and on the held-out test set. The Object-Net reaches below 4.9% test
error after 43 epochs, the Seperator-Net reaches 6.2% test error after 119 epochs.

images. Training and test sets reflect approximately the same distribution of samples
over images. The size of the minibatches in the MBSGD was set to 200 samples and the
networks were trained until the stopping criterion was met: no further improvement
of the error rate on a held-out test set over 20 epochs. We set the initial learning rate
η0 = 0.0025, with a linear decay saturating at 0.2η0 after 100 epochs. For all layers,
a weight decay was chosen to be 0.005 and the dropout rate was set to 0.5. We used
an adaptive momentum term starting at 0.8 and increasing to 0.99 after 50 epochs,
such that with progressing training the updates are influenced by a larger number of
samples than at the beginning.

Fig. 6 shows the classification error rate as a function of the training duration in
epochs. Each class was represented with 5,000 samples in the test set for the Object-
Net, and 10,000 for the Separator-Net, respectively. The training error is actually
estimated on a fixed subset of the training data (20,000 samples), to get an intu-
ition when overfitting starts. The Object-Net achieves the best performance after 43
epochs, with a minimum training error of 0.0475 and a minimum test error of 0.0492.
Training of the Separator-Net continued until the lowest training error of 0.0231 and
test error of 0.0624 was reached after 119 epochs. Fig. 7 shows the learned filters of
the first convolutional layer in both networks. The CNN models were implemented in
Pylearn2 [23], a machine learning library built on top of Theano [24, 25].

3 Results

3.1 Colon Gland Segmentation

The grid search resulted in α= 10, β = 0.95 and λ= 0.1 as parameters optimizing the
TV segmentation based on the Dice score. The confidence threshold for foreground and
background was determined empirically and fixed to τ = 0.65. Separator predictions
were fully considered for refining the Object-Net predictions (ρ= 1).

In Table 1, we report performance metrics4 for detection (precision, recall, F1-
4The evaluation scripts were kindly provided by the contest organizers and are avail-
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(a) (b)

Fig. 7: CNN training results. (a) 80 11×11 filters of the first layer in Object-Net and (b)
64 9×9 filters in the Separator-Net.

Table 1: Segmentation performance metrics for the Warwick-QU dataset used in
the GlaS@MICCAI2015 challenge.

Dataset Precision Recall F1-score Object-Dice Hausdorff

without separator refinement

Training 0.97(0.09) 0.67(0.21) 0.78(0.17) 0.81(0.16) 116.89(115.18)
Test A 0.83(0.22) 0.60(0.24) 0.67(0.20) 0.70(0.15) 137.44(78.53)
Test B 0.70(0.35) 0.48(0.30) 0.50(0.26) 0.58(0.19) 249.37(114.69)

with separator refinement

Training 0.91(0.15) 0.85(0.14) 0.87(0.12) 0.88(0.09) 61.36(61.36)
Test A 0.67(0.24) 0.77(0.22) 0.68(0.20) 0.75(0.13) 103.49(72.38)
Test B 0.51(0.30) 0.70(0.32) 0.55(0.28) 0.61(0.22) 213.58(119.15)

Metrics are reported as mean and standard deviation, best results are printed in bold.
Performance on the training set is reported on all 85 training images. Test set A consists of
60 images, test set B of 16 images. Except for values of the Hausdorff distance, higher values
are superior.

score), segmentation (object-level Dice), and shape (Hausdorff distance) on the training
set, as well as test set A and B as mean and standard deviation (SD). Blobs with an
area less than 500 pixels were removed and all remaining blobs were labeled with
unique identifiers before computing the measures.

Compared to using predictions only from the Object-Net, the segmentation perfor-
mance improved with separator refinement. Malignant cases are harder to segment
due to their irregular shape and pathological variations in the tissue. Fig. 8 illustrates
some qualitative example segmentation results on the training data set, Fig. 9 and
Fig. 10 show results on test set A and B, respectively.

able from http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/research/bic/glascontest/
evaluation/.
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The average total runtime for segmenting a 577×522 image is 5 minutes using an
NVidia GeForce Titan Black 6GB GPU.

(a) benign (b) malignant (c) benign

(d) malignant (e) malignant (f) benign

Fig. 8: Qualitative segmentation results on images of the training dataset. Even
rows show the outline of ground truth in green and the segmentation result in blue. The
numbers refer to the unique objects within the image. Odd rows show the segmentation
difference: false negative pixels are colored in cyan, and false positives are colored in yellow.
(a-c) show examples, where our segmentation algorithm works well, (d-f) show different types
of segmentation errors.

3.2 Benignity and Malignancy Classification

In the proposed approach, the Object-Net inherently learns a discrimination of benign
(c = 0) and malignant (c = 1) tissue, since the labels for benign and malignant are
available in the training dataset and we defined a four-class classification problem.
Instead of combining the probability maps for glands and background as done for
segmentation, we combine the maps for benignity and malignancy. Subsequently, the
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(a) benign (b) malignant (c) benign

(d) benign (e) benign (f) malignant

Fig. 9: Qualitative segmentation results on images of test dataset A. Even rows
show the segmentation (blue outline) and ground truth (green outline), odd rows show the
differences, where false negative pixels are cyan, and false positive pixels are yellow. (a-c) show
reasonable segmentation results, in (d-f) different segmentation errors are shown.

average probabilities for a benign case can be computed as

P(c= 0|IC0 , IC1) = 1
|Ω|

∑
x∈Ω

IC0(x) + IC1(x), (7)

and for a malignant case as

P(c= 1|IC2 , IC3) = 1
|Ω|

∑
x∈Ω

IC2(x) + IC3(x), (8)

where |Ω| is the number of pixels in the image domain Ω. The maximum of both values
finally indicates the prediction:

c∗ = argmax
c

{
P(c|·, ·)

}
. (9)

We evaluated the classification performance for benign and malignant tissue on the
two test sets A and B and achieved an accuracy of 98.33% and 93.75%. The average
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(a) malignant (b) benign (c) malignant

(d) benign (e) malignant (f) malignant

Fig. 10: Qualitative segmentation results on images of test dataset B. Even rows
show the segmentation (blue outline) and ground truth (green outline), odd rows show the
differences, where false negative pixels are cyan, and false positive pixels are yellow. (a-c) show
reasonable segmentation results, in (d-f) different segmentation errors are shown.

(SD) decision confidence in test set A was 0.84(0.13) for benign and 0.81(0.11) for
malignant, and in test set B 0.74(0.11) and 0.86(0.15), respectively.

4 Discussion and Conclusions

This paper presented a method to segment glands in H&E stained histopathologi-
cal images of colorectal cancer using deep convolutional neural networks and total
variation segmentation. As our main contribution, we showed that segmentation re-
sults can be greatly improved when the predictions of the Object-Net are refined with
the learned gland-separating structures of the Separator-Net. Adding the separators
does not only regulate the trade-off between precision and recall, but generally im-
proves the performance scores for detection (F1-score), segmentation (Dice) and shape
(Hausdorff). The final ranking as well as the test set performance results of other
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algorithms participating in this challenge are available online at the contest website5,
which is continuously being updated by algorithms from new participating groups.

Our approach inherently allows to very accurately discriminate benign and malig-
nant cases, because the Object-Net was trained on labels for both cases. The average
confidence for a decision towards benignity and malignancy is acceptable. Nevertheless,
we cannot distinguish more detailed histologic grades among these cases, since there
was no information (e.g. high- or low-grade) available in addition to the segmentation
ground truth.
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