
Extending simple drawings with one edge is hard

Alan Arroyo∗1, Fabian Klute†2, Irene Parada‡3, Raimund Seidel§4, Birgit
Vogtenhuber¶3, and Tilo Wiedera‖5

1IST Austria, Austria
2TU Wien, Austria

3Graz University of Technology, Austria
4Universität des Saarlandes, Germany

5Osnabrück University, Germany

September 17, 2019

Abstract

A simple drawing D(G) of a graph G = (V,E) is a drawing in which two edges have at most one
point in common that is either an endpoint or a proper crossing. An edge e from the complement of
G can be inserted into D(G) if there exists a simple drawing of G′ = (V,E ∪ {e}) containing D(G)
as a subdrawing. We show that it is NP-complete to decide whether a given edge can be inserted
into a simple drawing, by this solving an open question by Arroyo, Derka, and Parada.

1 Introduction

A simple drawing of a graph G (also known as good drawing or as simple topological graph in the
literature) is a drawing D(G) of G in the plane such that every pair of edges share at most one point
that is either a proper crossing (no tangent edges allowed) or a common endpoint. Moreover, no three
edges intersect in the same point and edges must not contain other vertices in their relative interior.
Simple drawings have received a great deal of attention in various areas of graph drawing, especially in
connection with two long-standing open problems: the crossing number of the complete graph [22] and
Conway’s thrackle conjecture.

The complement of a graph G = (V,E) is the simple graph G with the same vertex set as G and
where two distinct vertices in G are adjacent if and only if they are not adjacent in G. Given a simple
drawing D(G) of a graph G = (V,E) and an edge e from the complement G of G, we say that e can
be inserted into D(G) if there exists a simple drawing of G′ = (V,E ∪ {e}) that contains D(G) as a
subdrawing. In that case, we say that D(G) can be extended with e.

Recently, Arroyo, Derka, and Parada [2] showed that it is NP-complete to decide if a simple drawing
D(G) of a graph G can be extended with a set of edges from the complement of G. A central question
arising from their paper asks if it is possible to decide in polynomial time whether a given edge from the
complement of G can be inserted into D(G). Under the assumption that P 6= NP, we give a negative
answer to this question by showing that deciding whether one given edge can be inserted into a simple
drawing is already NP-complete.

∗Email: alanmarcelo.arroyoguevara@ist.ac.at. This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 754411.
†Email: fklute@ac.tuwien.ac.at.
‡Email: iparada@ist.tugraz.at. Partially supported by the Austrian Science Fund (FWF): W1230 and also within the

collaborative DACH project Arrangements and Drawings as FWF project I 3340-N35.
§Email: rseidel@cs.uni-saarland.de.
¶Email: bvogt@ist.tugraz.at. Partially supported by Austrian Science Fund within the collaborative DACH project

Arrangements and Drawings as FWF project I 3340-N35.
‖Email: tilo.wiedera@uos.de. Supported by the German Research Foundation (DFG) grant CH 897/2-2.

1

ar
X

iv
:1

90
9.

07
34

7v
1

 [
cs

.C
G

]
 1

6
Se

p
20

19

One of the implications of the results presented in this paper concerns so-called saturated drawings.
A simple drawing D(G) of a graph G is called saturated if no edge e from G can be inserted into D(G).
It is known that there are saturated simple drawings with a linear number of edges [11, 17]. However, no
polynomial-time algorithm for deciding whether a simple drawing is saturated is known. Our hardness
result implies that the straight-forward idea of testing if D(G) is saturated by checking for every edge
in G whether it can be inserted into D(G) is not feasible unless P = NP.

Several questions concerning the number of crossings in planar graphs with one additional edge have
been studied [5, 10, 21]. Furthermore, the question considered in this paper is strongly related to work
on extending partial representations (not necessarily drawings) of graphs. Here, we are usually given a
representation of a part of the graph G and are asked to extend it into a full representation of G such
that the partial representation is a sub-representation of the full one. Recent years have seen a plethora
of results in this area [1, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 19, 20].

Complementing our hardness result in Section 2, we show in Section 3 that, if the number of crossings
in a simple drawing D(G) of a graph G is bounded by a constant k, it is fixed-parameter-tractable with
respect to k to decide if an edge e from the complement of G can be inserted into D(G).

2 Inserting one edge is hard

Theorem 1. Given a simple drawing D(G) of a graph G = (V,E) and an edge uv of the complement
of G, it is NP-complete to decide if uv can be inserted into D(G), even if V \ {u, v} induces a matching
in G and u and v are isolated vertices.

The problem is in NP since it can be described combinatorially. See Arroyo et al. [2] for details.
We show NP-hardness via a reduction from 3SAT. Let φ(x1, . . . xn) be a 3SAT-formula with variables

x1, . . . , xn and set of clauses C = {C1, . . . , Cm}. An occurence of a variable xi in a clause Cj ∈ C is
called a literal. For convenience, we assume that in φ(x1, . . . , xn) each clause has three literals (possibly
with duplicated literals). First, in a preprocessing step, we transform φ(x1, . . . , xn) into an equivalent
formula, in which no clause has three positive or three negative literals.

Claim 1. The following transformation of the clauses in a formula preserves satisfiability of the formula:

xi ∨ xj ∨ xk ⇒

{
xk ∨ y ∨ false (i)

xi ∨ xj ∨ ¬y (ii)
¬xi ∨ ¬xj ∨ ¬xk ⇒

{
¬xi ∨ ¬xj ∨ y (iii)

¬xk ∨ ¬y ∨ false (iv)

where y is a new variable for each transformed clause and false is the constant truth value false.

Proof. We prove the statement for the case in which the original clause has three positive literals, the
other case is analogous. Assume xi or xj satisfies the original clause. Then it also satisfies Clause (ii) and
y can be set to true to satisfy Clause (i). If xk satisfies the original clause, then it also satisfies Clause
(i) and y can be set to false to satisfy Clause (ii). If none of xi, xj , and xk satisfies the original clause,
then to satisfy Clause (ii) we have to set y to false, which implies that Clause (i) is not satisfied.

Note that after transforming a formula, the clauses are of four types depending on the number of
positive and negative literals (and false constants). Clauses (i)–(iv) in Claim 1 are each of one of these
types. Consequently, we denote these types as Type (i)–(iv). This means that clauses of Type (i) have
two positive literals and one constant false, clauses of Type (ii) have two positive and one negative
literal, Type (iii) clauses contain two negative and one positive literal, and finally, a Type (iv) clause has
two negative literals and one constant false.

Given a transformed 3SAT-formula φ(x1, . . . , xn) with set of clauses C = {C1, . . . , Cm}, the reduc-
tion uses gadgets consisting of simple drawings to represent the variables and clauses. Satisfiability
of φ(x1, . . . , xn) will correspond to being able to insert a given edge uv into a simple drawing D of a
matching constructed from the formula φ. The main idea of the reduction is that the variable and clause
gadgets act as barriers inside a simple closed region R of D, in which we need to insert an arc γ from
one side to the other to complete the connection between u and v.

To simplify the description, we first restrict our attention to the inside of the simple closed region R.
We assume that γ cannot cross the boundary of R. In the following we use two lines, named λ and µ,
to describe the variable and clause gadget. Later, these will be identified with opposite segments on the
boundary of R.

2

u

v

κ

µλ

PN

(a) Variable gadget. The orange arcs belong to N , the
green ones to P .

u

v

c

b

a
d

g

µλ

γa

γc

γb

(b) Clause gadget.

Figure 1: The two main gadgets of the reduction.

Variable gadget. A variable gadget W includes two sets of arcs (parts of later-defined edges), P
and N , that correspond to positive and negative appearances of a variable, respectively. The gadget is
bounded on the left by a line λ and on the right by a line µ. Arcs in P and N have one endpoint on a
horizontal line κ such that the endpoints of arcs in P are to the left of the endpoints of arcs in N and
for both sets lie between λ and µ. The other endpoint of arcs in P and N lies below κ and on µ and
λ, respectively. Notice that an arc in P intersects every arc in N , and vice versa; see Figure 1a for an
illustration. Finally, we choose two points u and v such that u is below all arcs in W and v is above
them.

Lemma 1. Let W be a variable gadget. Any arc between the vertical lines λ and µ that connects u and
v crosses either all arcs in P or all arcs in N .

Proof. Assume that there is an arc connecting u and v neither crossing all the arcs in P nor all the arcs
in N . Hence, there are two arcs p ∈ P and n ∈ N such that this arc neither crosses p nor n. By the
construction of the gadget, p and n cross. Thus, their union together with λ and µ separates u from v.
It follows that the arc has to cross either p or n, a contradiction.

Clause gadget. A clause gadget K includes three arcs γa, γb, and γc (parts of later-defined edges)
incident to three points a, b, and c, respectively, and an arc (edge) dg incident to two other points d and
g. As in the variable gadget, the clause gadget is bounded on the left by a line λ and on the right by
a line µ. The arcs γa and γb have their other endpoint on λ and γc has its other endpoint on µ. None
of these three arcs intersect. The arc dg is placed such that it crosses γa, γc, and γb in that order as
we traverse it from d to g; see Figure 1b for an illustration. Notice that we do not require any specific
rotation of the crossings of dg with γa and γb (where the rotation is the clockwise order of the endpoints
of the crossing arcs). Finally, we choose two points u and v such that u is below all arcs in K and v is
above them.

Lemma 2. Let K be a clause gadget. Any arc uv between the vertical lines λ and µ that connects u and
v crosses either dg twice or at least one of the arcs γa, γb, and γc.

Proof. Let × be the crossing point of γc and dg. This point splits the arc dg into two arcs d× and g×.
Assume that the arc uv does not cross the arcs γa, γb, and γc. The union of γa and γc together with d×
and the lines λ and µ separates u from v. Since the arcs γa and γc are not crossed by uv, uv must cross
d× in a point that is not ×. Analogously, the union of γb, γc, together with g× and the lines λ and µ
separates u from v. Thus, uv has to cross g× in a point that is not ×. This implies that uv crosses dg
twice.

The reduction. Let φ(x1, . . . , xn) be a 3SAT-formula transformed as described in Claim 1 and with
clause set C = {C1, . . . , Cm} (each clause being of one of the four types described above). To build our

3

X

A1

A2

A3

B1

B2

B3

Y

b2

b3

b1

a2

a3
a1

(a) The simple drawing ©� presented by Kynčl [18]. It
is impossible to insert an edge between a point in X
and one in Y .

u

v

κF

r1

r2

`1

`2
RrR`

R

b∗2

A1

A2

B3
b3

a2

a1

b2

A3

B1

b1

a3

(b) A schematic overview of the edges in F (red and
orange) and how they are combined with ©� .

Figure 2: Last gadget for the reduction acting as a frame.

reduction we need one more gadget. First, we introduce the following simple drawing described by Kynčl
et al. [18, Figure 11] and depicted in Figure 2a. Here, we denote this drawing with ©� . Following the
notation by Kynčl et al., we denote its six arcs with a1, a2, a3, b1, b2, and b3 and its eight cells with
X, A1, A2, A3, B1, B2, B3, and Y ; see Figure 2a. The core property P of ©� is that it is not possible
to insert an edge between a point in cell X and another point in cell Y such that the result is a simple
drawing [18, Lemma 15].

For our reduction we first choose two arbitrary points u and v in the cells X and B2 and insert them
as vertices to©� . Let©� ′ be the simple drawing in which we inserted vertices u and v into©� . Finally, let
b∗2 be the part of the arc b2 between the crossing point of b2 and a2 and the crossing point of b2 and b3.

Lemma 3. The edge uv cannot be inserted into ©� ′ without crossing b∗2.

Proof. Assume for contradiction that uv can be inserted not crossing b∗2 and let γuv be such an arc.
If γuv did not cross b2, then we would be able to prolong it and cross b2 to reach Y , a contradiction to
property P. Thus, γuv crosses b2. Further, we may assume w.l.o.g. that γuv does not cross b2 inside A2

or B1, as otherwise it would be possible to modify γuv to not cross b2. Thus, γuv intersects B2 on one
side of the crossing with b2. Since γuv cannot intersect Y , this crossing must be on b∗2.

The final piece we need for our a reduction is a set F of mI +mIV + 4 arcs that we insert into ©� ′,
where mI is the number of clauses of Type (i) and mIV the number of clauses of Type (iv). For an arc
f ∈ F we will place one of its endpoints on a vertical line κF inside A2 and the other one inside B2. The
only crossings of f with ©� ′ are with the arcs a2, a1, b3, and b2, in that order when traversing f from its
endpoint on κF to its endpoint in B2. Furthermore, f , traversed in that direction, crosses from A2 to
A1, from A1 to B3, from B3 to Y , and from Y to B2.

Consider the mI +mIV + 4 endpoints on κF sorted from top to bottom. We denote with fj the arc
in F incident to the j-th such endpoint. When traversing b2 from its endpoint in A2 to its endpoint in
B1, the crossings of arcs in F with b2 appear in the same order as their endpoints on κF . More precisely,
the crossings of b2 when traversed in that direction are with a2, a1, b3, f1, f2, . . . , f|F |, and b1.

The arcs fmI+1, fmI+2, fmI+3, and fmI+4 will behave differently than the other arcs in F . In the
following, we denote these four arcs with r2, r1, `1, and `2, respectively. There are only two crossings
between arcs in F , namely of r1 and r2, and of `1 and `2, and both these crossings are inside B2. These
four crossing arcs divide B2 into three regions. We denote the region with b∗2 on its boundary with R, the
(other) region with the crossing of r1 and r2 on its boundary with Rr, and the (other) region with the

4

crossing of `1 and `2 on its boundary with R`. Arcs r1, r2, `1, and `2 must be drawn such that the vertex
v lies in R; see Figure 2b for an illustration. The precise endpoints of the edges in F \ {r1, r2, `1, `2} will
be fixed when we insert the clause gadgets.

Lemma 4. The edge uv cannot be inserted into ©� ′ without crossing every arc in F inside A1 or B3.

Proof. Assume for contradiction that there is an arc f ∈ F such that uv does not cross f . From Lemma 3
we know that uv has to cross b∗2. Consider the region bounded by b∗2, b3, f , and a2. Observe that, since
b∗2 is fully contained on the boundary of this region, uv has to cross at least one of the three other arcs
as well. By assumption, uv does not cross f . Crossing b3 is impossible by property P, as the part
contained on this region’s boundary separates B3 from Y . Finally, crossing the arc which is part of a2
is not possible, since this would imply the existence of a point v′ in A2 such that uv passes through v′

without having crossed a2. Hence, we could prolong the arc uv′ that is part of uv by crossing a2 such
that it reaches B2 without having crossed b∗2, a contradiction to Lemma 3. Furthermore, as we do not
allow more than two arcs to cross in one point, the statement follows.

It remains to insert inside R the clause and variable gadgets and precisely define the endpoints of
arcs in F \{`1, `2, r1, r2}. For simplicity, we first insert the variable gadgets and then the clause gadgets.
The idea is that each clause and variable gadget is inserted in R separating b∗2 from v. This is done
by identifying the endpoints that were lying on λ or µ with points on `1, `2, r1, r2, or b2. As a result,
Lemmas 1 and 2 can be applied to the arc that we aim to insert connecting u and v in the final simple
drawing, since it has to cross b∗2 by Lemma 3.

We insert now the variable gadgets into R. Let W (i) be the variable gadget corresponding to variable
xi. For a gadget W (i), the arcs in N are drawn such that the endpoints on λ, lie on the part of `1 that
bounds R. The arcs in P are drawn similarly, but with the endpoints on µ lying on the part of r1 that
bounds R. Moreover, we identify vertex v in the gadget with vertex v in ©� ′. Gadgets corresponding
to different variables are inserted without crossing each other. We now specify how they are inserted
relative to each other. As we traverse `1 from its endpoint on κF to its endpoint in R we encounter the
endpoints of arcs in W (i) before the endpoints of arcs in W (i+1). Analogously, as we traverse r1 from its
endpoint on κF to its endpoint in R we encounter the endpoints of arcs in W (i) before the endpoints of
arcs in W (i+1). An illustration is presented in Figure 3.

The clause gadgets are inserted in a similar way. Let K(j) be the clause gadget corresponding to
clause Cj . If Cj is of Type (i), K(j) is inserted such that the endpoints on λ lie on the part of `2 that
bounds R. If Cj is the j′-th clause of Type (i), we identify c with the endpoint of the arc fj′ . Similarly,
if Cj is of Type (iv), K(j) is inserted such that the endpoints on λ lie on the part of r2 that bounds R. If
Cj is the j′-th clause of Type (iv), we identify c with the endpoint of the arc fmI+4+j′ . If Cj is of Type

(ii), K(j) is inserted such that the endpoints on λ lie on the part of `2 that bounds R and the endpoint
on µ lies on the part of r2 that bounds R. Similarly, if Cj is of Type (iii), K(j) is inserted such that the
endpoint on µ lies on the part of `2 that bounds R and the endpoints on λ lie on the part of r2 that
bounds R. The crossings in R of arcs from different clause gadgets are of arcs with an endpoint in r2
with arcs in {fj : 1 ≤ j ≤ mI}.

We now specify how different clause gadgets are inserted relative to each other. As we traverse `2 from
its endpoint on κF to its endpoint in R we encounter the endpoints of arcs corresponding to clauses of
Type (iii) before the ones corresponding to clauses of Type (ii), and those before the ones corresponding
to clauses of Type (i). Analogously, as we traverse r2 from its endpoint on κF to its endpoint in R we
encounter the endpoints of arcs corresponding to clauses of Type (iv) before the ones corresponding to
clauses of Type (iii), and those before the ones corresponding to clauses of Type (ii). Moreover, as we
traverse `2 and r2 in the specified directions, the endpoints of arcs corresponding to the j′-th clause of
a certain type are encountered before the endpoints of arcs corresponding to the j′ − 1-st clause of this
type. An illustration is presented in Figure 3.

Finally, we connect arcs from variable and clause gadgets inside the regions R` and Rr. This is
done such that if a literal in a clause is xk then the corresponding arc in the clause gadget, that has an
endpoint on `2, is connected with an arc in N of the gadget W (k), that has an endpoint on `1. Thus,
these connections can lie in R`. Analogously, if a literal in a clause is ¬xk then the corresponding arc in
the clause gadget, that has an endpoint on r2, is connected with an arc in P of the gadget W (k), that
has an endpoint on r1. Thus, these connections can lie in Rr. Since, without loss of generality, we can
assume that R` and Rr are convex regions and the endpoints we want to connect are in general position

5

(no three on the same line), the connections can be drawn as straight-line segments. (For clarity, in
Figure 3 these connections have one bend per arc.) Therefore, there is at most one crossing between
each pair of connecting arcs.

u

v

A1

A2

B3
b3

a2

a1

b2

A3

B1

b1

a3

b∗2

R

R` Rr

Type (i)

Type (ii)

Type (iii)

Type (iv)

Figure 3: Illustration of the reduction.

6

Each connecting arc can be concatenated with the arcs in a variable and in a clause gadget that it
joins. These concatenated arcs are edges in our drawing that have one endpoint in a variable gadget and
the other in a clause gadget. By construction, each of them corresponds to a literal in the formula φ and
each pair of these edges crosses at most once. Similarly, the arcs in F \ {`1, `2, r1, r2} have one endpoint
in a clause gadget and also define a set of edges in our final drawing that we denote with the same name
as the corresponding arcs.

We now have all the pieces that constitute our final drawing. It consists of (i) the simple drawing©� ′;
(ii) the edges fi ∈ F drawn as the described arcs (with their endpoints as vertices); (iii) the edges
corresponding to literals (with their endpoints as vertices); and (iv) the edges dg in each clause gadget
(with d and g as vertices). Observe that the constructed drawing is a simple drawing, as it is the drawing
of a matching (plus the vertices u and v) and, by construction, two edges cross at most once.

Correctness. It is now straight-forward to show that the presented construction is a valid reduction.

Lemma 5. The above construction is a polynomial-time reduction from 3SATto the problem of deciding
if an edge can be inserted into a simple drawing.

Proof. Given a 3SAT formula φ(x1, . . . , xn) with clauses C1, . . . , Cm we construct a simple drawing D as
above and aim to insert the edge uv into it. This construction can clearly be computed in polyonmial
time and space, specially since only the combinatorial description of the drawing is needed.

Assume uv can be inserted into D and let uv be the resulting arc. By Lemmas 3 and 4 we know that
uv has to cross b∗2 and every arc in F . Let u∗ be the point where uv crosses b∗2. Each clause and variable
gadget separates u∗ from v and thus, Lemmas 1 and 2 can be applied. This means that in a variable
gadget W (i) either all arcs in P or all arcs in N are crossed. In the former case we assign to variable
xi the value true, and otherwise the value false. Assume that this truth assignment does not satisfy
φ(x1, . . . , xn). Then there exists a clause Cj for which all three literals evaluate to false. Consider
the clause gadget K(j). By Lemma 2 we must cross in it an edge corresponding to one of its literals.
However, by Lemma 4 an edge corresponding to the constant value false cannot be crossed (again) in
a clause gadget. By construction and the truth assignment of the variables, the edges corresponding to
the other literals of Cj cannot be crossed either.

Conversely, assume we are given a satisfying assignment of φ(x1, . . . , xn). We then can insert uv into
D as follows. Starting from u, edge uv crosses a1 to enter region A1, then crosses all arcs in F , and
crosses b∗2 to enter R; see also the dotted line in Figure 3. In each clause gadget, edge uv crosses one edge
corresponding to a literal evaluating to true, none corresponding to a literal evaluating to false, and
the edge dg in the gadget if necessary. By construction, this leaves in each variable gadget all arcs either
in P or in N free to be crossed by uv. Moreover, this allows us to connect u and v without crossing any
edge twice.

Remarks. The presented reduction from 3SAT constructs a simple drawing of a matching, and thus,
the problem remains NP-hard when G is as sparse as possible (isolated vertices that are not the starting
or ending vertices of the edge that we aim to insert can be disregarded for our problem, and thus we
can restrict our attention to graphs without such vertices). We remark that if we don’t require G to be
a matching, our variable gadget can be simplified by identifying all the vertices on κ and removing the
crossings between edges in N and P . Moreover, the disconnectedness of the produced instance is not a
restriction. If an instance D(G) is a simple drawing of a disconnected graph G we can transform it to
an equivalent instance consisting of a simple drawing of a connected graph by inserting an apex vertex
into any cell of the drawing and subdividing its incident edges that connect to all the vertices of D(G).

3 FPT-algorithm for bounded number of crossings

In this section we show that for drawings with a bounded number of crossings it can be decided in
FPT-time if an edge can be inserted.

Theorem 2. Given a simple drawing D(G) of a graph G = (V,E) and an edge uv of the complement
of G, there is an FPT-algorithm in the number k of crossings in D(G) for deciding whether uv can be
inserted into D(G).

7

u

v

e

u

v

e

Figure 4: Rerouting uv when it crosses an edge uncrossed in D(G) more than once.

Proof. Let n = |V | and m = |E| be the number of vertices and edges of G, respectively. We consider a
subdrawing D′(G′) of D(G) consisting of the edges incident to u and v, the (at most 2k) edges which are
crossed, and the vertices incident to all these edges together with u and v if they are isolated (and thus,
not yet included). We first show that we can decide in FPT-time in k whether uv can be inserted into
D′(G′). We then argue that uv can be inserted into D′(G′) if and only if it can be inserted into D(G).

As in [2], we reformulate the problem of inserting an edge into a simple drawing as a problem in the
dual graph of its planarization, in which crossings are replaced by vertices resulting in a plane drawing.
Given a simple drawing D(G) of a graph G, the dual graph G∗(D) is the plane dual of the planarization of
D(G). Thus, every vertex in G∗(D) corresponds to a cell in D(G) and every edge in G∗(D) corresponds
to a segment of an edge in D(G). We assign to each edge in D(G) a different color (label) and define
a coloring χ of the edges of G∗(D), where every edge in G∗(D) inherits the color of the edge in D(G)
containing the segment to which it corresponds. Given two vertices u, v ∈ V , let G∗(D, {u, v}) be the
subgraph of G∗(D) obtained by removing from it the edges corresponding to segments of edges incident
to u or to v. We denote with χ′ the coloring of the edges of G∗(D, {u, v}) that coincides with χ in every
edge. The problem of extending D(G) with one edge uv is then equivalent to the existence of a path in
G∗(D, {u, v}) between a vertex corresponding to a cell incident to u and a vertex corresponding to a cell
incident to v in which no color given by χ is repeated (that is, it is heterochromatic).

The number of segments of crossed edges in D′(G′) is at most 4k. Thus, G∗(D′, {u, v}) has at most
4k edges (but the number of vertices might not be bounded by a function of k). There are O(n) cells
with u on their boundary, and we consider the vertices of G∗(D′, {u, v}) corresponding to them all as
the possible starting cells of a valid heterochromatic path. Thus, the algorithm checking whether uv can
be inserted into D′(G′) runs in O(nk24k) time.

We now argue that uv can be inserted into D′(G′) if and only if it can be inserted into D(G). Since
D′(G′) is a subdrawing of D(G), it is clear that if uv cannot be inserted into D′(G′) then it cannot be
inserted into D(G). Suppose that uv can be inserted into D′(G′) and let γ be a valid drawing of uv in
D′(G′) resulting in a simple drawing. We orient γ from u to v. If γ is not a valid drawing of uv in D(G)
then it must cross more than once an edge e uncrossed in D(G). We can modify γ such that it is routed
close to e between its first and last crossings with e, producing at most one intersection; see Figure 4 for
an illustration. Repeating this process for every edge uncrossed in D(G) and crossed by γ more than
once we obtain a valid drawing of uv in D(G).

4 Conclusions

In this paper we showed that given a simple drawing D(G) of a graph G it is NP-hard to decide if a
particular edge from the complement of G can be inserted into D(G) such that the result is a simple
drawing. On the positive side, we proved that the problem is FPT with respect to the number of crossings
of D(G).

In the light of our results, checking whether a simple drawing D(G) is saturated by trying to insert
every edge of the complement of G is hopeless (unless P = NP). Thus, it is an interesting open problem
whether there is a polynomial algorithm for deciding if a simple drawing is saturated.

8

References

[1] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vı́t Jeĺınek, Jan Kratochv́ıl, Maurizio Pa-
trignani, and Ignaz Rutter. Testing planarity of partially embedded graphs. ACM Transactions on
Algorithms, 11(4):32:1–32:42, 2015.

[2] Alan Arroyo, Martin Derka, and Irene Parada. Extending simple drawings. In Proceedings of the
27th International Symposium on Graph Drawing and Network Visualization (GD’19), 2019. To
appear.

[3] Alireza Bagheri and Mohammadreza Razzazi. Planar straight-line point-set embedding of trees with
partial embeddings. Information Processing Letters, 110(12-13):521–523, 2010.

[4] Guido Brückner and Ignaz Rutter. Partial and constrained level planarity. In Proceedings of the
28th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA’17), pages 2000–2011, 2017.

[5] Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number and
1-planarity hard. SIAM Journal on Computing, 42(5):1803–1829, 2013.

[6] Steven Chaplick, Paul Dorbec, Jan Kratochv́ıl, Mickaël Montassier, and Juraj Stacho. Contact
representations of planar graphs: extending a partial representation is hard. In Proceedings of the
40th International Workshop on Graph-Theoretic Concepts in Computer Science (WG’14), pages
139–151. Springer, 2014.

[7] Steven Chaplick, Radoslav Fulek, and Pavel Klav́ık. Extending partial representations of circle
graphs. Journal of Graph Theory, 91(4):365–394, 2019.

[8] Steven Chaplick, Grzegorz Guśpiel, Grzegorz Gutowski, Tomasz Krawczyk, and Giuseppe Liotta.
The partial visibility representation extension problem. Algorithmica, 80(8):2286–2323, 2018.

[9] Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Extending upward planar graph
drawings. In Proceedings of the 16th International Symposium on Algorithms and Data Structures
(WADS’19), pages 339–352, 2019.

[10] Carsten Gutwenger, Petra Mutzel, and René Weiskircher. Inserting an edge into a planar graph.
Algorithmica, 41(4):289–308, 2005.

[11] Péter Hajnal, Alexander Igamberdiev, Günter Rote, and André Schulz. Saturated simple and 2-
simple topological graphs with few edges. Journal of Graph Algorithms and Applications, 22(1):117–
138, 2018.

[12] Vı́t Jeĺınek, Jan Kratochv́ıl, and Ignaz Rutter. A Kuratowski-type theorem for planarity of partially
embedded graphs. Computational Geometry: Theory and Applications, 46(4):466–492, 2013. Special
Issue on the 27th Annual Symposium on Computational Geometry (SoCG’11).

[13] Pavel Klav́ık, Jan Kratochv́ıl, Tomasz Krawczyk, and Bartosz Walczak. Extending partial represen-
tations of function graphs and permutation graphs. In Proceedings of the 20th European Symposium
on Algorithms (ESA’12), pages 671–682, 2012.

[14] Pavel Klav́ık, Jan Kratochv́ıl, Yota Otachi, Ignaz Rutter, Toshiki Saitoh, Maria Saumell, and Tomás
Vyskocil. Extending partial representations of proper and unit interval graphs. Algorithmica,
77(4):1071–1104, 2017.

[15] Pavel Klav́ık, Jan Kratochv́ıl, Yota Otachi, and Toshiki Saitoh. Extending partial representations
of subclasses of chordal graphs. Theoretical Computer Science, 576:85–101, 2015.

[16] Pavel Klav́ık, Jan Kratochv́ıl, Yota Otachi, Toshiki Saitoh, and Tomás Vyskocil. Extending partial
representations of interval graphs. Algorithmica, 78(3):945–967, 2017.

[17] Jan Kyncl. Improved enumeration of simple topological graphs. Discrete & Computational Geom-
etry, 50(3):727–770, 2013.

9

[18] Jan Kynčl, János Pach, Rados Radoicic, and Géza Tóth. Saturated simple and k-simple topological
graphs. Computational Geometry: Theory and Application, 48(4):295–310, 2015.

[19] Tamara Mchedlidze, Martin Nöllenburg, and Ignaz Rutter. Extending convex partial drawings of
graphs. Algorithmica, 76(1):47–67, 2015.

[20] Maurizio Patrignani. On extending a partial straight-line drawing. International Journal of Foun-
dations of Computer Science, 17(5):1061–1070, 2006.

[21] Adrian Riskin. The crossing number of a cubic plane polyhedral map plus an edge. Studia Scien-
tiarum Mathematicarum Hungarica, 31(4):405–414, 1996.

[22] Marcus Schaefer. Crossing numbers of graphs. CRC Press, 2018.

10

	1 Introduction
	2 Inserting one edge is hard
	3 FPT-algorithm for bounded number of crossings
	4 Conclusions

