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DENSITY OF POWER-FREE VALUES OF POLYNOMIALS II

KOSTADINKA LAPKOVA AND STANLEY YAO XIAO

Abstract. In this paper we prove that polynomials F (x1, · · · , xn) ∈ Z[x1, · · · , xn]
of degree d ≥ 3, satisfying certain hypotheses, take on the expected density of (d−1)-
free values. This extends the authors’ earlier result in [13] where a different method
implied the similar statement for polynomials of degree d ≥ 5.

1. Introduction

Let F ∈ Z[x1, · · · , xn] be a polynomial of degree d. We say that F is k-admissible
if for any prime p, there exists xp ∈ Zn for which F (xp) is not divisible by pk and that
F is not divisible over C by the square of a non-constant polynomial. In this paper
we address the problem of finding the density of integer tuples x ∈ Zn for which F (x)
is indivisible by the (d − 1)-th power of any positive integer greater than one. In
particular, we show that the number of such tuples of box height up to B satisfies
an asymptotic formula provided that F is (d − 1)-admissible; this is the statement
of Theorem 1.1. When d ≥ 5 we have previously obtained the statement of Theorem
1.1 in [13].

We briefly recount the history of the problem of finding, for a given k-admissible
polynomial F in n variables, the density of n-tuples for which F (x) is k-free. The
case of n = 1 is by far the most well-known. Using a simple sieving device it is not
difficult to obtain the correct density of square-free values of linear polynomials, but
already for the case k = d some innovation is needed. This was first accomplished
by Estermann [4], who dealt with the density of square-free values of the polynomial
f(x) = x2 + 1. Estermann’s argument was then shown to apply to all k-admissible
polynomials in a single variable whenever k ≥ d by Ricci [16].

The k = d− 1 case was first addressed by Erdös [3], who showed that the number
of integers 1 ≤ m ≤ B for which an admissible polynomial in one variable of degree
d ≥ 3 takes on (d−1)-free values tends to infinity as B does. However, he was unable
to produce an asymptotic formula using his arguments. The expected asymptotic
formula was settled by Hooley in [9] in the special case of f(x) = x3 + k, k ∈ Z and
in general in [10].

Various authors have worked on the case of k-free values of polynomials of a single
variable, see [13] and [18] for a summary. In [6], A. Granville demonstrated that the
question of square-free values of polynomials is intimately related to the well-known
abc-conjecture. He showed that the analogous asymptotic relation given in (1.3) holds
for square-free values for all admissible polynomials, provided that the abc-conjecture
holds. Poonen in [15] then vastly generalized Granville’s result to show that the same
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holds for admissible polynomials in arbitrarily many variables. However, Poonen’s
argument, similarly to the method of Erdös, does not allow one to obtain the expected
asymptotic formula (1.3). He further showed that, without the abc-conjecture, one
can still unconditionally obtain k-free values of polynomials provided that the degree
of the polynomial F is sufficiently small. In other words, if k, d are related in a way
that allows one to conclude that admissible degree d polynomials in Z[x] take on in-
finitely many k-free values, then the same holds for admissible degree d polynomials
in Z[x1, · · · , xn] for any n ≥ 2.

This aspect of Poonen’s paper is confirmed in our previous paper [13], where a
relatively straightforward reduction to the single-variable case is possible because of
the uniformity produced by the determinant method. For the k = d − 1 case more
care is necessary. Indeed, we shall adopt a sieve argument introduced by Hooley in
[11]. For the middle range we use the sieving technique of Ekedahl in the same way
as in our previous paper [13].

Put

(1.1) NF (B) = #{x ∈ Zn : |x| ≤ B,F (x) is (d− 1)-free}

and

(1.2) ρF (m) = #{x ∈ (Z/mZ)n : F (x) ≡ 0 (mod m)}.

We have the following theorem:

Theorem 1.1. Let F (x) ∈ Z[x1, · · · , xn] be a square-free polynomial of degree d ≥ 3
such that for all primes p, there exists y ∈ Zn satisfying pd−1 ∤ F (y). Then for all
B ∈ R>0 we have the asymptotic relation

(1.3) NF (B) = CFB
n + oF (Bn) ,

where the positive constant CF is defined by

CF =
∏

p

(

1−
ρF (p

d−1)

pn(d−1)

)

.

The error term in the theorem is too weak for us to confirm the analogous relation
for prime inputs, as we could do in [13].

The proof of the theorem is divided in three sections. The first one recreates the
setting of the simple sieve and the preliminary work similar to the one in [13]. In
section §3 we formulate the sieve of Ekedahl and apply it once for estimating the
middle range of primes and another time in order to reduce our task to dealing with
polynomials which are geometrically irreducible. This will simplify the argument in
the last section §4 where at a certain point we apply the Lang-Weil bound for geo-
metrically irreducible polynomials. The technique in the last range follows ideas from
Hooley’s work [11] in the simpler setting k = d − 1. In particular, we will avoid use
of the Prime Ideal Theorem (e.g. Lemma 3 and Lemma 4 in [11]) and elementary
arguments would suffice.
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We remark that for the middle range one could also apply the stratification result
with upper bounds of exponential sums modulo p2 that we proved in [14], if we insert
the latter result in Hooley’s argument from [11]. However, at present this only applies
to homogeneous polynomials, so in the current paper we apply the Ekedahl sieve in
line with our argument in [13].

2. Preliminaries

We will show that NF (B) (recall (1.1)) satisfies an inequality of the form

(2.1) N1(B)−N2(B)−N3(B) ≤ NF (B) ≤ N1(B).

Our goal will be to demonstrate that for any ε > 0, we have

N1(B) = Bn
∏

p≤ξ1

(

1−
ρF (p

d−1)

pn(d−1)

)

+OF,ε

(

Bn−1+ε
)

,

and for some δn > 0 and some slowly growing function ξ1 = ξ1(B) tending to infinity
as the parameter B tends to infinity, one has

N2(B) = OF

(

Bn
(

ξ−1
1 + (logB)−δn

))

and
N3(B) = oF (B

n).

Let us define the iterated logarithm function for positive B by log1(B) = max{1, logB}
and logsB = log1 logs−1B for s ≥ 2. We now suppose that ξ1(B) satisfies

(2.2) ξ1 = ξ1(B) = O(log3B/ log4B),

and

(2.3) ξ2 = ξ2(B) = B(logB)δn ,

where δn depends on n only and δn > 0 for all n.

We then put

(2.4) N1(B) = #{x ∈ Zn : |x| ≤ B, pd−1|F (x) =⇒ p > ξ1},

(2.5) N2(B) = #{x ∈ Zn : |x| ≤ B, pd−1|F (x) =⇒ p > ξ1,

∃ξ1 < p ≤ ξ2 s.t. p2|F (x)},

and

(2.6) N3(B) = #{x ∈ Zn : |x| ≤ B, pd−1|F (x) =⇒ p > ξ1,

p2 ∤ F (x) for ξ1 < p ≤ ξ2 and ∃p > ξ2 s.t. pd−1|F (x)}}.

Before we proceed with estimating N1(B), let us state some facts about the function
ρF as defined in (1.2). We need the following lemma:

Lemma 2.1. Let F be a square-free polynomial in n variables with integer coefficients,
and such that for all primes p, pk does not divide F identically. Then for any k ≥ 2
we have ρF (p

k) = OF

(

pnk−2
)

.

Proof. This is Lemma 2.1 from [13]. �
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We remark that Lemma 2.1 implies that the infinite product

∏

p

(

1−
ρF (p

d−1)

pn(d−1)

)

converges. This is because

ρF (p
d−1)

pn(d−1)
= O

(

1

p2

)

,

by Lemma 2.1.

We give an estimate for N1(B). Define, for a positive integer b, the quantity

N(b, B) = #{x ∈ Zn ∩ [−B,B]n : bd−1|F (x)}.

Then from the familiar property of the Möbius function µ, we have

N1(B) =
∑

b∈N
p|b⇒p≤ξ1

µ(b)N(b, B)

=
∑

b∈N
p|b⇒p≤ξ1

µ(b)ρF (b
d−1)

(

Bn

bn(d−1)
+ O

(

Bn−1

b(n−1)(d−1)
+ 1

))

= Bn
∏

p≤ξ1

(

1−
ρF (p

d−1)

pn(d−1)

)

+O









∑

b∈N
p|b⇒p≤ξ1

ρF (b
d−1)

(

Bn−1

b(n−1)(d−1)
+ 1

)









.

By the theorem of Rosser and Schoenfeld [17], it follows that for all ε > 0 and some
C ′ > 0 we have

∏

p≤ξ1

p ≤ e2ξ1 = O

(

(log2B)
C′

log4 B

)

= Oε(B
ε),

by (2.2). Hence, we obtain via Lemma 2.1 that, for any ε > 0,

N1(B) = Bn
∏

p≤ξ1

(

1−
ρF (p

d−1)

pn(d−1)

)

+O

(

∑

b≪εBε

Bn−1+ε + bn(d−1)−2+ε

)

.

We then see that

(2.7) N1(B) = Bn
∏

p≤ξ1

(

1−
ρF (p

d−1)

pn(d−1)

)

+Oε

(

Bn−1+ε
)

.

As B → ∞, the partial product in (2.7) tends to the convergent product in Theorem
1.1, thus it suffices to show that N2(B), N3(B) are error terms.

3. The Ekedahl sieve and the estimation of N2(B)

In this section, we use a result of Ekedahl [2] to handle several situations. As a
consequence, we also give an acceptable estimate for N2(B). The version below is
formulated by Bhargava and Shankar in [1]:
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Lemma 3.1 (Ekedahl sieve). Let B be a compact region in Rn having finite measure,
and let Y be any closed subscheme of An

Z of co-dimension s ≥ 2. Let r and M be
positive real numbers. Then we have

#{x ∈ rB ∩ Zn : x (mod p) ∈ Y (Fp) for some prime p > M}

= O

(

rn

Ms−1 logM
+ rn−s+1

)

.

Our first application of Lemma 3.1 is to reduce to the case when F is irreducible
over Q. Suppose that F is reducible over Q, say

F (x1, · · · , xn) = F1(x) · · · Fr(x),

where each Fi is irreducible over Q for i = 1, · · · , r. We put d′ = max1≤j≤r degFj.
Let us write

(3.1) N
(j)
3 (B) = #{x ∈ Zn : |xi| ≤ B, pk|Fj(x) =⇒ p > ξ1,

p2 ∤ Fj(x) for ξ1 < p ≤ ξ2, and ∃p > ξ2 s.t. pk|Fj(x)}.

If x is counted by N3(B) but not by N
(j)
3 (B), then x must vanish mod p for two of

the Fi’s. Put Vi for the variety defined by the vanishing of Fi; note that Vi is defined
over Z for i = 1, · · · , r. We claim that the scheme-theoretic intersection Vi,j = Vi∩Vj

for i 6= j must be co-dimension 2 in An(Z). Indeed, if Vi,j does not have co-dimension
2 then Vi, Vj must share a top dimensional component. Therefore Fi,Fj must share

a geometrically integral factor G defined over Q. However Fi,Fj are defined over Q,
so this implies that they must share a factor G defined over Q. But then G2|F , which
contradicts our hypothesis that F is square-free over C. This confirms the claim that
Vi,j has co-dimension 2.

Ekedahl’s sieve then gives the same bound as in (3.7) for the number of such points
in [−B,B]n∩Zn. It therefore suffices to deal with the case when F is irreducible over
Q and d = degF .

We now address the situation when F is not geometrically integral. We will show
that we can reduce our analysis over Fp to points belonging to only one geometrically
irreducible component definable over Fp. This will be useful later when we apply the
Lang-Weil bounds. Since we may now assume that F is irreducible over Q, it follows
that over Q, F must admit a factorization as

(3.2) F (x) =
k
∏

j=1

Fj(x)

where Fj are absolutely irreducible conjugate polynomials defined over Q having the
same degree d′, and k = d/d′. For a given prime p, let τ(p) be the number of Fi’s
defined over Qp. Then (3.2) turns into

(3.3) F (x) = F ∗
p (x)

τ(p)
∏

j=1

G
(p)
j (x)
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where F ∗
p ∈ Zp[x1, · · · , xn] and G

(p)
j = Fkj for some kj, such that G

(p)
j have Zp-

coefficients. Now, if x ∈ Zn is counted by N2(B), N3(B) then F (x) ≡ 0 (mod p2) for
some p > ξ1. The solutions to the congruence F (x) ≡ 0 (mod p2) then must satisfy
one of the situations below:

(a) There exist 1 ≤ i < j ≤ τ(p) such that G
(p)
i (x) ≡ G

(p)
j (x) ≡ 0 (mod p),

(b) There exists uniquely an index 1 ≤ i ≤ τ(p) such that G
(p)
j (x) ≡ 0 (mod p2),

or
(c) F ∗

p (x) ≡ 0 (mod p).

We remark that condition (c) is a mod p condition rather than a mod p2 condition.
That this suffices will be made clear in the proof of Lemma 3.2.

We put

(3.4) Sp = {x ∈ (Z/pZ)n : x satisfies (a) or (c)}.

Next put
(3.5)
N ‡(B) = #{x ∈ Zn ∩ [−B,B]n : pk|F (x) ⇒ p > ξ1, ∃p > ξ1 s.t. x (mod p) ∈ Sp}.

Another application of Ekedahl’s sieve then gives the following estimate:

Lemma 3.2. We have

N ‡(B) = O

(

Bn

ξ1 log ξ1
+Bn−1

)

.

Proof. We show that points considered in (a) and (c) lie on a uniformly bounded
number of co-dimension 2 sub-schemes of An(Z) (see also the proof of Lemma 3.1 in

[19]). This claim is clear for (a), since G
(p)
i , G

(p)
j are equal to Fki, Fkj in (3.2) for some

ki 6= kj, and these are not proportional since we assumed that F is square-free as a
polynomial.

Now suppose that x is such that F ∗
p (x) ≡ 0 (mod p) for some prime p > ξ1. Then

there exists a factor G of F ∗
p defined and irreducible over Fp such that G(x) ≡ 0

(mod p). Since by assumption G is irreducible over Fp but has non-trivial factors
over Fp, the absolute Galois group Gal(Fp/Fp) acts non-trivially on the factors of G.
Since x ∈ Zn implies that x (mod p) ∈ Fn

p , it follows that x (mod p) remains fixed
by this action. Hence x (mod p) must satisfy

H1(x) ≡ H2(x) ≡ 0 (mod p)

for some distinct conjugate factors H1, H2 of F ∗
p defined over Fp. Therefore, x again

lies on a uniformly bounded collection of co-dimension 2 sub-schemes.

The necessary estimate in the lemma then follows from Lemma 3.1. �

Our next application of Ekedahl’s sieve follows the same argument as in [13]. Let
G(x) = ∂F

∂x1
(x). Define the variety VF,G to be

(3.6) VF,G = {x ∈ Cn : F (x) = G(x) = 0}.
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Observe that VF,G is of co-dimension two and is defined over Z. Put

N∗(p;B) = {x ∈ Zn : ‖x‖ ≤ B,x (mod p) ∈ VF,G(Fp)}.

It follows from Lemma 3.1 that

(3.7) N∗(B) = #
⋃

p>ξ1

N∗(p;B) = O

(

Bn

ξ1 log ξ1
+Bn−1

)

.

3.1. Estimating N2(B). Put

N †(p;B) = #{x ∈ Zn : ‖x‖ ≤ B, p2|F (x), p ∤ G(x)}.

It then follows that

N2(B) ≤
∑

ξ1<p≤ξ2

N †(p;B) +
∑

ξ1<p≤ξ2

N∗(p;B),

and since we have already estimated the second sum by N∗(B), it suffices to estimate
the former.

Let us now define the function, for a polynomial f in a single variable x, by

ρf (m) = #{s ∈ Z/mZ : f(s) ≡ 0 (mod m)}.

It is clear from the Chinese Remainder Theorem that ρf is multiplicative. Observe
that ρf (p) ≤ d if p does not divide all coefficients of f and in this case the bound
is independent of p. Moreover, if p ∤ ∆(f), then for any positive integer k we have
ρf (p

k) ≤ d by Hensel’s lemma and this is independent of the coefficients of f .

Now for fixed (x2, · · · , xn), the solutions to f(x) = F (x, x2, · · · , xn) ≡ 0 (mod p2)
contributing to N †

p(X) must satisfy p ∤ ∆(f); in particular, the number of solutions

in Z/p2Z is at most d. We then have that

(3.8)
∑

ξ1<p≤ξ2

N †
p(B) = Od

(

Bn−1
∑

ξ1<p≤ξ2

(

B

p2
+ 1

)

)

= Od

(

Bn

ξ1
+

Bn−1ξ2
log ξ2

)

.

We recall that ξ2 = B(logB)δn and we can choose δn = 1/n, and ξ1 = ξ1(B) is
a function which tends to infinity, so that (3.8) gives an acceptable contribution to
N2(B).

4. Estimating N3(B): completing the proof of Theorem 1.1

In this section we show that N3(B) = o(Bn) and thus finish the proof of Theorem
1.1. For convenience we sometimes write k = d − 1 in analogy of the problem for
k-free values treated in [13].

In view of Lemma 3.2, it suffices to consider the set
(4.1)

N †
3 (B) = {x ∈ Zn : |x| ≤ B,F (x) = uqk for a prime q > ξ2 and pk|u =⇒ p > ξ1,

p2 ∤ F (x) for ξ1 < p ≤ ξ2, and x (mod p) /∈ Sp ∀p | u such that p > ξ1}



8 KOSTADINKA LAPKOVA AND STANLEY YAO XIAO

and put N †
3(B) = #N †

3 (B). Observe that

(4.2) N3(B) ≤ N †
3(B) +N ‡(B),

therefore it is enough to estimate N †
3(B). We shall establish the following preliminary

result:

Lemma 4.1. Let x ∈ N †
3 (B) and u, q be as in (4.1). Then we have

u = O
(

B(logB)−(d−1)δn
)

.

Furthermore, for B large enough u can be written as u = u1u2, where u1 divides

C(ξ1) =
∏

p≤ξ1

pd−2,

and u2 is square-free with each prime divisor p of u2 satisfying ξ1 < p ≤ ξ2.

Proof. Observe that from F (x) = uqd−1 and our assumptions on q, we have

u = O
(

Bdξ
−(d−1)
2

)

.

By (4.1) and (2.3), there exists an absolute positive constant C1 such that

|u| < C1B
d−(d−1)(logB)−(d−1)δn

= C1B(logB)−(d−1)δn .

We now factor u into two factors u1 and u2, where u1 consists of only prime factors
less than ξ1. We observe that since we have accounted for small prime powers via
our treatment of N1(B), we have that u1 divides

∏

p≤ξ1
pk−1. The factor u2, then, will

be composed of prime factors larger than ξ1. Further, it must be square-free. This
is because, by definition, the prime factors of u between ξ1 and ξ2 divide u exactly
once, and u cannot have a prime factor exceeding ξ2 for otherwise

uqd−1 ≥ Bd (logB)dδn ,

which contradicts x ∈ [−B,B]n for B sufficiently large. �

For each square-free integer u2 such that each prime divisor p of u2 satisfies ξ1 <
p ≤ ξ2, put

(4.3) D(u2) =
∏

ξ1<p≤ 1
12

log(Bu−1
2 )

p∤u2

p≡1 (mod k)

p

and put D(u2) = 1 if the product is empty. We then have the following lemma:

Lemma 4.2. Let u2 be a square-free integer such that all of its prime divisors are
between ξ1 and ξ2. Let ω(m) denote the number of distinct prime divisors of m. Let
D(u2) be as in (4.3). If q > ξ2 is a prime, then there exists exactly kω(D) residue
classes {d1, · · · , dkω(D)} such that

dkj ≡ qk (mod D)

for j = 1, · · · , kω(D).
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Proof. Since all prime divisors of D are O(logB), it follows that qk is a proper k-th
power residue modulo D. Now consider the family of all k-th power residues modulo
D. By our choice of D, we have that k|ϕ(D), so that the family of k-th power residues
is not the set of all residues modulo D. For each p|D, qk has k pre-images modulo
p, meaning there exist k distinct elements q1, · · · , qk in {0, 1, · · · , p − 1} such that
qkj ≡ qk (mod Q). For a positive integer l let us write ω(l) for the number of distinct
prime divisors of l. Then it follows from the Chinese Remainder Theorem that there
exist kω(D) residue classes {d1, · · · , dkω(D)} modulo D such that dkj ≡ qk (mod D). �

Let C1 be as in Lemma 4.1, and put

(4.4) ξ3 = C1B(logB)−(d−1)δn .

Lemmas 4.1 and 4.2 have the following consequence, which is crucial for the estimation
of N3(B):

Lemma 4.3. Let u1 be a divisor of C(ξ1) and let u2 ≤ ξ3 be a square-free integer
whose prime divisors p satisfy ξ1 < p ≤ ξ2. Let Hu1,u2(B) be the number of solutions
(m1, · · · , mn) ∈ Zn ∩ [−B,B]n to the following three congruences:

(4.5) F (m1, · · · , mn) ≡ 0 (mod u1),

(4.6) F (m1, · · · , mn) ≡ 0 (mod u2),

and for 0 ≤ s < D, the solutions to the congruences

(4.7) F (m1, · · · , mn) ≡ u1u2s
d−1 (mod D).

such that (m1, · · · , mn) (mod p) ∈ (Z/pZ)n \ Sp for p|u2. Then we have

(4.8) N †
3(B) ≤

∑

u1|C(ξ1)
u2≤ξ3

Hu1,u2(B)

(d− 1)ω(D)
.

Proof. (4.8) follows from the fact that the solutions to (4.7) can be partitioned into
sets of cardinality (d− 1)ω(D) by Lemma 4.2. �

We can directly estimate the quantity

N4(B) =
∑

u1|C(ξ1)
u2≤ξ3

Hu1,u2(B)

(d− 1)ω(D)
.

For comparison, the analogous quantity in [11] and [19] is estimated using the Selberg
sieve. However, in the current case the modulus u1u2D, due to our restriction on u2, or
rather, the size of ξ3, is smaller than B, and we can make do without the Selberg sieve.

We write H(u1, u2) for the number of solutions modulo u1u2D to the congruences
(4.5), (4.6), and (4.7). Then plainly we have

Hu1,u2(B) = O

(

H(u1, u2)

(

B

u1u2D
+ 1

)n)

.

With the choice of our parameters, e.g. (2.2), (2.3) and (4.4), we have u1u2D ≪ B.

Indeed, u1 ≤ C(ξ1) ≪ log2(B)O((d−2)/ log4(B)),D ≪ e2
1
12

log(B/u2) ≪ (B/u2)
1/6. We
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have u2 ≤ ξ3 = C1B(logB)−(d−1)δn , so u2D ≪ u
5/6
2 B1/6 ≪ B(logB)−

5
6
(d−1)δn and

therefore u1u2D ≪ B. Thus we can ignore the constant term and conclude that

(4.9) Hu1,u2(B) = O

(

H(u1, u2)

(

B

u1u2D

)n)

.

Note that in [11] and [19] the modulus u1u2D ≫ B and the constant term is not
absorbed by the fraction B/(u1u2D). In our case since u1u2D ≪ B, the solutions
counted by H(u1, u2) are bounded trivially by Bn while in [19], say, they are close to
B2n, and the latter requires more subtle sieving with Selberg weights and exponential
sums estimates. In our case a direct application of Lang-Weil bound suffices to get
the necessary saving from the main term (2.7).

Let us now evaluate the quantity H(u1, u2) by first estimating trivially the number
of solutions of (4.5). We use the Lang-Weil theorem for estimating the number of
solutions of (4.6), and (4.7). Note that in both cases we have geometrically irreducible
varieties, in the case of (4.6) it follows from the condition m (mod p) /∈ Sp for p | u2.
Something more, if F defines a geometrically irreducible hypersurface over Fn

p then
Lang-Weil yields

ρF (p) = pn−1 +OF (p
n−3/2).

From the multiplicativity of the function ρF for square-free m we then have

ρF (m) =
∏

p|m

(

pn−1 +OF (p
n−3/2)

)

= mn−1
∏

p|m

(

1 +OF (p
−1/2)

)

= OF (m
n−1σ−1/4(m)),

where we write

σα(m) =
∑

s|m

sα

for a positive integer m and a real number α.

Then for the number of solutions of (4.6) we have ρF (u2) = OF (u
n−1
2 σ−1/4(u2)) and

for the number of solutions of (4.7) we have ρF,s(D) = OF (Dn−1σ−1/4(D)) for each
integer s ∈ [0,D). Also note that the dependence on F in the Lang-Weil theorem is
on geometric characteristics of the hypersurface considered and uniform in s. Thus
we obtain

H(u1, u2) = O
(

un
1u

n−1
2 σ−1/4(u2)D

nσ−1/4(D)
)

.
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Therefore we have

N4(B) = O









∑

u1|C(ξ1)
u2≤ξ3

Bnun−1
2 σ−1/4(u2)Dnσ−1/4(D)

(u2D)n(d− 1)ω(D)









= O









Bn
∑

u1|C(ξ1)
u2≤ξ3

σ−1/4(u2)σ−1/4(D)

u2(d− 1)ω(D)









.

Observe that

σ−1/4(D) =
∏

p|D

(1 + p−1/4)

= O

(

(

2(d− 1)

3

)ω(D)
)

.

It follows that

N4(B) = O









Bn
∑

u1|C(ξ1)
u2≤ξ3

σ−1/4(u2)

u2(3/2)ω(D)









.

Let us write

(4.10) ξ4 = ξ4(u2) =
1

12
log(Bu−1

2 ),

and
D′ = D′(u2) =

∏

p≤ξ4
p≡1(k)

p.

For a square-free number ℓ we have

σ0(ℓ) =
∏

p|l

(1 + 1) = 2ω(ℓ).

Then from the definitions of D and D′ it follows that

(3/2)ω(D
′) < (3/2)ω(D)C(ξ1)(3/2)

gcd(D′,u2) < (3/2)ω(D)C(ξ1)σ0(gcd(D
′, u2).

Hence, there exists a positive number C2 such that

1

(3/2)ω(D)
<

C2

(3/2)ω(D′)
σ0(gcd(D

′, u2)) exp(2(d− 2)ξ1).

From here we obtain the estimate

(4.11) N4(B) = O

(

exp((2d− 3)ξ1)B
n
∑

u2≤ξ3

σ−1/4(u2)σ0(gcd(D′, u2))

(3/2)ω(D′)u2

)

,

where we used that the number of the divisors u1|C(ξ1) is O(exp(ξ1)). We now
estimate the sum

S(t) =
∑

u2≤t

σ−1/4(u2)σ0(gcd(D
′, u2)).
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We proceed as follows.

S(t) ≤
∑

h|D′

µ2(h)σ0(h)
∑

u2≤t
u2≡0 (mod h)

σ−1/4(u2)(4.12)

=
∑

h|D′

µ2(h)σ0(h)
∑

u′

2h≤t
gcd(u′

2,h)=1

σ−1/4(hu
′
2)

≤
∑

h|D′

µ2(h)σ0(h)σ−1/4(h)
∑

u′

2≤t/h

σ−1/4(u
′
2)

= O



t
∑

h|D′

µ2(h)σ0(h)σ−1/4(h)

h





= O









t
∏

p≤ξ4
p≡1(k)

(

1 +
4

p

)









= O
(

t(log ξ4)
4
)

= O
(

t(log logB)4
)

.

Next, we have

ω(D′) = π(ξ4; k, 1) ∼
ξ4

ϕ(k) log ξ4
,

where π(B; q, a) is the counting function of primes p satisfying p ≡ a (mod q) up to
B, and the above asymptotic follows from the prime number theorem for arithmetic
progressions. Therefore we may find a constant C3 such that

ω(D′) >
C3ξ4
log ξ4

for all B sufficiently large.

Next, we cut the range of the summation in (4.11) into sub-ranges of the type
(e−α−1ξ3, e

−αξ3] for non-negative integer values of α. In each of these sub-ranges we
have by (4.10) that

1

12
log

(

Beα

ξ3

)

≤ ξ4 ≤
1

12
log

(

Beα+1

ξ3

)

.

We proceed by following Hooley’s treatment of the term N (6)(X) from [11, §8]. In
each sub-range we bound the factor (3/2)ω(D

′) from (4.11) and also using (4.12), we
can easily see that, just like in [11, §8], there exist some positive number C4 such that

(4.13) N4(B) = O

(

Bn exp((2d− 3)ξ1)

(logB)C4/ log3 B

)

.

Recalling that after (2.2) we have exp((2k−1)ξ1) ≪ (log2B)C5/ log4 B for some constant
C5, we get N4(B) = o(Bn) and this suffices for the proof of Theorem 1.1.
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