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DEPENDENCE AND ALGEBRAICITY OVER SUBGROUPS OF

FREE GROUPS

AMNON ROSENMANN AND ENRIC VENTURA CAPELL

Abstract. An element g of a free group F depends on a subgroup H < F , or is

algebraic over H , if it satisfies a univariate equation over H . Equivalently, when

H is finitely-generated, the rank of 〈H, g〉 is at most the rank of H . We study the

elements that depend on subgroups of F , the subgroups they generate and the

equations that they satisfy.

1. Introduction

Given a subgroup H of a free group F and an element g ∈ F , we say that g

depends on H , or that g is algebraic over H , if it satisfies a univariate equation over

H . Equivalently, when H is finitely-generated, the rank of 〈H, g〉 is at most the rank

of H . When H is finitely generated then the set of elements that depend on H is

a union of finitely-many double cosets. The subgroup generated by these elements

is of rank at most the rank of H and a set of generators for this subgroup can

be effectively computed. We also show that a dependence sequence of subgroups,

i.e. when each subgroup is generated by the elements that depend on the previous

subgroup, stabilizes after finitely-many steps in a subgroup which is dependence-

closed.

When g depends on H < F then the set of equations over H satisfied by g is a

normal subgroup of the free product H ∗ 〈x〉, and we show how one can compute

a set of normal generators for this subgroup. We conclude by showing that there

is a bound n, which can be effectively computed, such that every element g that

depends on H satisfies an equation of degrees at most n over H .

2. The dependent subgroup

2.1. Notation and definitions. Throughout the paper, F denotes a free group.

The free group on a set of free generators (a basis) A = {a1, . . . , an} is denoted

F = F (A) or F = F (a1, . . . , an). For a subgroup H < F we write H = 〈h1, . . . , hr〉

when H is generated (not necessarily freely) by h1, . . . , hr. The rank of H < K,

that is, the cardinality of a basis of H , is denoted by rkH .

Key words and phrases: dependence on a subgroup of a free group, algebraic extension, depen-
dence closure, equations over free groups.
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2 AMNON ROSENMANN AND ENRIC VENTURA CAPELL

When H < F = F (A) then we denote by ΓA(H) the Schreier coset graph of

H with respect to the basis A = {a1, . . . , an} of F , or just by Γ(H) (see [MKS66]).

Each vertex v ∈ V (ΓA(H)) represents a right coset of H and is adjacent to 2n

directed edges labelled a±1
1 , . . . , a±1

n going out of v. A directed edge e with initial

vertex v and terminal vertex w that is labelled by aj is labelled by a−1
j in the

opposite direction from w to v. The vertex labelled with 1 represents the coset H1

(1 being the trivial element of F ) and is designated as the root of the graph. A

vertex v ∈ V (ΓA(H)) may be labelled with respect to the minimal path from the

root to v, where ”minimal” means of minimal length and with some lexical ordering

on the letters of A∪A−1 as a tiebreaker. We also treat v according to its label as a

group element of F (the minimal group element in its coset). If γ is a path starting

at the root of ΓA(H) then the word w = a±1
i1

· · ·a±1
is

that is read off along the path

represents an element of H if and only if γ is a closed path (a cycle) that terminates

at the root. In general, two right cosets Hg and Hg′ are equal if and only if the two

paths in ΓA(H) that start at the root and with edge labels that form the two words

g and g′ end at the same vertex of ΓA(H).

The core of the graph ΓA(H) (or Stallings subgroup graph [Sta83]), denoted

CA(H) or just C(H), is the minimal connected subgraph containing the root and

all non-trivial reduced cycles (the infinite hanging trees are chopped). As is known,

rkH = b1(ΓA(H)), the first Betti number, or the cyclomatic number (number of

cycles), of ΓA(H) (or, equivalently, of CA(H)). Note that rkH < ∞ if and only if

CA(H) is finite.

In [Ros01] the following notion was introduced.

Definition 2.1 (Dependence on a subgroup). An element g ∈ F depends on H if

the following equivalent conditions hold:

(1) g satisfies a univariate equation w(x) = 1, where w(x) ∈ H ∗ F (x).

(2) The group homomorphism ϕg : H ∗ F (x) → 〈H, g〉, h 7→ h for h ∈ H and

x 7→ g, is not injective.

(3) There exists a finitely-generated H ′ < H such that rk 〈H ′, g〉 ≤ rkH ′.

We denote by depH the set of elements of F that depend on H . Note that depH

does not necessarily form a subgroup, e.g. when H = 〈a10, b10〉 then a, b ∈ depH

but ab /∈ depH . We then denote by DepH = 〈depH〉 the dependent subgroup of

H , i.e. the subgroup generated by the elements that depend on H . When H,G < F

then DepG H is the subgroup generated by all the elements of G that depend on H .

We have DepGH < (DepH) ∩G and the inclusion may be strict.

Example 2.2. When 1 6= H⊳F or when H is of finite index in F then DepH = F .

When H,G < F then Dep (H ∩G) < DepH ∩ DepG, and the inclusion may be

strict, as shown in the following example.
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Example 2.3. Let F = F (a, b, c), H = 〈aba−1, b〉, G = 〈aca−1, c〉. Then DepH =

〈a, b〉, DepG = 〈a, c〉. Thus, H ∩G = Dep (H ∩G) = 1 but DepH ∩DepG = 〈a〉.

In [KM02] the term algebraic extension was introduced (see also [MVW07]):

when H < G < F then G is an algebraic extension of H if there is no K such that

H < K < G and K is a (proper) free factor of G. Since g depends on H if and only

if 〈H, g〉 is algebraic over H , we may say that an element g that depends on H is

algebraic over H . In fact, when g depends on H then g is G-algebraic over H (i.e.

every free factor of G that contains H contains also g) for every extension G of H ,

but the other way round does not necessarily hold. For example, when H = 〈a2b2〉

and F = F (a, b) then F is an algebraic extension of H but DepH = H .

In [OHV16] the term algebraic closure is used in the more traditional sense

to denote the set of all group elements that depend on H , similar to what we call

depH according to Definition 2.1 (1), but with the restriction that the corresponding

equations should have only finitely-many solutions. Note, however, that when g is

algebraic over H according to [OHV16] then the fact that it satisfies an equation over

H with finitely-many solutions does not imply that |〈H, g〉 : H| < ∞, in contrast

to the analogous simple algebraic extension in field theory, which is always a finite

extension.

2.2. The rank of the dependent subgroup.

Lemma 2.4. Let (Hi)i≥0 be a sequence of finitely-generated subgroups of of a free

group satisfying Hi < Hi+1 and rkHi ≥ rkHi+1, for each i. Let H = ∪iHi. Then

rkH = limi→∞ rkHi and furthermore, there exists m, such that H = Hi for i ≥ m.

Proof. Let ri = rkHi, for each i, and let rH = rkH . The sequence (ri) is monotone

decreasing and bounded, thus having a limit r. If rH > r there exists a free factor

K of H of rank r+1. It follows that there exists l, such that for each i ≥ l, K < Hi

and, moreover, K is a free factor of Hi. But then ri > r, for i ≥ l, in contradiction

to r = limi→∞ ri. Thus, rH ≤ r, and if S is a finite set of free generators of H , there

exists m, such that S ⊂ Hi for each i ≥ m. Hence H = Hi for each i ≥ m and

rH = r. �

For the next proposition we refer also to [Ros01].

Proposition 2.5. Let H < F be finitely-generated. Then rkDepH ≤ rkH.

Proof. There are countably-many elements (gi)i≥1 that depend on H . Let (Hi)i≥0 be

the sequence of subgroups satisfying H0 = H and Hi+1 = 〈Hi, gi+1〉, for i > 0. Since

gi+1 ∈ depH then gi+1 ∈ depHi, hence rkHi+1 ≤ rkHi, for each i. That is, the

sequence (Hi)i≥0 is non-decreasing while the sequence (rkHi)i≥0 is non-increasing.

The result then follows by Lemma 2.4. �
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2.3. Computing a generating set for the dependent subgroup.

Theorem 2.6. Let H < F be finitely-generated. One can effectively compute a

finite set of generators for DepH.

Proof. Since H is finitely-generated then it is a subgroup of a finitely-generated

factor subgroup K of F and DepH < K. Thus, we may assume that F is also

finitely-generated on some set A = {a1, . . . , an}.

Given g ∈ F , we want to check whether rk 〈H, g〉 ≤ rkH . One way to do it

is through Nielsen-Schreier transformations [LS01]. Another way is in a graph-

theoretic setting. We add to the root of the (finite) core C(H) = CA(H) of ΓA(H) a

g-cycle. We then fold the graph by identifying edges of the same label that emerge

from the same vertex, and finally we count the number of cycles in the resulting

graph.

A necessary and sufficient condition for g to be in H is that the g-cycle maps

into C(H), possibly while forming loops. Otherwise, we check whether there exists

a decomposition of g as g = g1g
−1
2 in reduced form (where g1 or g2 may be 1), such

that both the g1-path and the g2-path start at the root and stay within C(H). In

order to find such a decomposition we first form the g1-path by starting at the root

and extending the path according to the letters of g as long as we can within C(H).

Suppose we end at the vertex u. We then form in a similar way the g2-path where

g2 = g−1g1. Now there are two possible cases. If the g2-path cannot stay within

C(H) then we know that a cycle labelled g that starts and ends at the root must

stand out of C(H), implying that b1(Γ(〈H, g〉) = b1(Γ(〈H〉)) + 1 and g does not

depend on H . Otherwise, the g2-path ends at a vertex v ∈ C(H). What is left to do

is to form a loop by identifying u with v, perform the necessary folding, and check

whether the resulting graph C(H))/(u = v), the induced quotient graph of C(H), is

of rank at most the rank of C(H), and then g depends on H , or the rank increases,

implying that g does not depend on H .

Let now

(2.1) P = {(u, v) ∈ V (C(H))× V (C(H)) : b1(C(H)/(u = v)) ≤ b1(C(H))}.

In fact, we may be satisfied with a smaller set P since identifying u with v is the

same as identifying uaεi with vaεi , ε ∈ {1,−1}, as long as uaεi and vaεi are in C(H).

We claim that

(2.2) DepH = 〈H, {uv−1 : (u, v) ∈ P}〉.

Indeed, if g is associated with the pair (u, v) as above then by the definition of a coset

graph there exist h1, h2 ∈ H such that g = h1u(h2v)
−1 = h1uv

−1h−1
2 , an element of

the double coset Huv−1H , which is included in the above generated subgroup. �
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As we have seen, we can write the set of elements that depend on H < F as a

finite union of double cosets

(2.3) depH =
⋃

(u,v)∈P

Huv−1H,

where P is defined in (2.1). For example, the pair (1, 1) represents the double coset

H1H = H and gives all the members of H as dependent on H .

The next proposition is about free products.

Proposition 2.7. Let the free group F be factored as F = F1 ∗ F2 and let H =

H1 ∗H2, where Hi < Fi, for i = 1, 2. Let also

depHi =
⋃

(ui,vi)∈Pi

Hiuiv
−1
i Hi,

for i = 1, 2. Then

depH =
⋃

(u,v)∈P1∪P2

Huv−1H.

Proof. Since F = F1 ∗ F2 and H1 < F1, H2 < F2 then C(H), the core of Γ(H), is

C(H) = C(H1) ∧ C(H2), the wedge of the core graphs C(H1) and C(H2) with a

common root 1. By (2.3), depH =
⋃

(u,v)∈P Huv−1H , where P is as in (2.1). Clearly

P1 ∪ P2 ⊆ P . On the other hand, when u and v do not belong to the same core

C(H1) or C(H2), e.g. 1 6= u ∈ C(H1) and 1 6= v ∈ C(H2), then by identifying u and

v we form a cycle and since the edges in C(H1) and C(H2) are of disjoint labels,

no edges are identified and no folding occurs, so that the rank of the corresponding

subgroup is greater than the rank of H . �

2.4. Echelon subgroups. In [DV96] the notion of an inert subgroup was intro-

duced. A subgroup H < F is inert if, for every G < F , rk (G ∩H) ≤ rk (G). When

this property holds for every G that contains H then H is called compressed (see

[DV96]). Of course, when H is inert then it is also compressed. An example of a

subgroup which is inert is the fixed subgroup of an automorphism of a free group

[DV96]. This subgroup is in an echelon form [Ros13]. Let A = {a1, . . . , an}, let

F = F (A), and let Fi = 〈a1, . . . , ai〉, i = 0, . . . , n, where F0 = 〈1〉. For H < F , let

Hi = H ∩ Fi, for each i. Then H is in echelon form with respect to (the ordered

basis) A if for every i, i = 1, . . . , n, we have rkHi − rkHi−1 ≤ 1.

Proposition 2.8. If H < F is in echelon form then so is DepH.

Proof. Let F be freely generated by the ordered basis A = {a1, . . . , an} and let Fi

and Hi be as above. Let also Di = (DepH) ∩ Fi, for every i. Since H < DepH

then, as in the proof of Proposition 3.8 in [Ros13], for each i, rkHi ≤ rkDi. But by

Proposition 2.5, rkDepH ≤ rkH , hence, for every i, rkHi = rkDi. It implies that

rkDi − rkDi−1 ≤ 1 for every i, which means that DepH is in echelon form. �
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3. Dependence closure

The notion of dependence closure appears in [Ros01] and it equals the elementary

algebraic closure of [MVW07].

Definition 3.1 (Dependence closure). A subgroup H is dependence-closed, if

H = DepH . Given G < F , we say that HG is dependence-closed if no element of

the set difference G \H depends on H .

Example 3.2. When H is a free factor of G then HG is dependence-closed.

Example 3.3. Let F = F (a, b). Then the subgroups H = 〈a2b2〉, and G = 〈[a, b]〉

are dependence-closed. However, since there is no proper factor of F which contains

H or G then the algebraic closure (according to [MVW07]) of these subgroups is F

itself.

The following three propositions are straightforward and the proofs are left to the

reader.

Proposition 3.4. Let H < G < K. If HG is dependence-closed and GK is

dependence-closed then HK is dependence-closed.

Proposition 3.5. If HK is dependence-closed and GL is dependence-closed then

(H ∩G)K∩L is dependence-closed.

Proposition 3.6. Let DC = DC(F ) be the set of dependence-closed subgroups of F .

The following statements hold.

(1) If H ∈ DC then H is malnormal: Hg ∩H = 1 for every g ∈ F \H.

(2) If H ∈ DC then H is pure (root-closed, radical-closed): if gn ∈ H, n 6= 0,

then g ∈ H.

(3) If H ∈ DC and H � G, then |G : H| = ∞.

(4) If H ∈ DC and K is a free factor of H then K ∈ DC.

(5) If H,G ∈ DC then H ∩G ∈ DC.

The next proposition follows from Proposition 2.7.

Proposition 3.7. For i = 1, 2, let Fi be a free group, let Hi < Fi and let DC(Fi)

be the set of dependence-closed subgroups of Fi. If Hi ∈ DC(Fi), i = 1, 2, then

H1 ∗H2 ∈ DC(F1 ∗ F2).

Let H0 = H and let (Hi)i≥0 be the dependence sequence of subgroups Hi+1 =

DepHi = Depi+1(H). Let D̂epH = ∪iHi be the dependence closure of H .

Proposition 3.8. Let H < F be finitely generated.

(1) There exists a computable minimal m ≥ 0, the dependence length of H,

such that D̂epH = Depm(H).

(2) rk D̂epH ≤ rkH and one can compute effectively a basis for D̂epH.
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Proof. The result follows from Lemma 2.4, Proposition 2.5 and Theorem 2.6. In

fact, since the core graph C(H) is finite and we form a sequence of quotient graphs

by identifying vertices, as long as the number of cycles does not increase, then clearly

this process is finite. �

Remark 3.9. The dependence closure D̂epH is exactly the elementary algebraic

extension closure of [MVW07].

Proposition 3.10. For every m ≥ 0 there exists a subgroup H < F = F (a, b) with

dependence length m.

Proof. Let α1 be the sequence of the first 10100 positive digits of π, ignoring the

decimal point and the zeros, and let n1 be the positive integer consisting of these

digits:

α1 = (3, 1, 4, 1, 5, 9, ...).

n1 = 314159 . . .

For i ≥ 2, let αi be the sequence of the next 10ni−1 positive digits of π and let ni be

the integer consisting of the digits of αi. Similarly, for i ≥ 0, let the sequences βi

and the numbers li be formed from the positive digits of Euler’s number e.

Given a sequence of positive integers α = (a1, a2, a3, . . . , a2r), we define a word in

the variables y, z

wα(y, z) = ya1za2ya3za4 · · · ya2r−1za2r .

Let us now form a sequence of elements hi and gi of F . Let

h0 = g0 = wβ0
(a, b) = a2b7a1b8a2b8 · · · .

For i = 1, . . . , m, let

gi = wαi
(a, b),

that is,

g1 = wα1
(a, b) = a3b1a4b1a5b9 · · · ,

and so on. For i = 1, . . . , m, let

hi = wβi
(gi, gi−1).

Note that the gi, i = 1, . . . , m, satisfy the equations

(3.1) wβi
(x, gi−1)h

−1
i = 1.

Let now

H = 〈h0, . . . , hm〉.

Clearly, g1 ∈ depH since it solves the equation wβ1
(x, h0)h

−1
1 = 1. Moreover, for

i = 1, . . . , m, by (3.1), by the lengths of the words and the randomness of the

sequences that are used to build the group elements and by induction,

gi ∈ Depi(H) \Depi−1(H).
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For example, for i = 2,

g2 = wα2
(a, b),

h2 = wβ2
(g2, g1),

and so g1 ∈ DepH \H and g2 ∈ Dep2(H) \ DepH . It follows that the dependence

length of H is m. �

4. Equations for the dependent elements

Let Z = F (x) be the free abelian group of rank 1 generated by x. An equation

in the variable x over a subgroup H < F is an expression of the form w(x) = 1,

where w(x) ∈ H ∗Z (see e.g. [Lyn60]). An element g ∈ F is a solution of w(x) = 1

if w(g) = 1. A complicated algorithm for solving equations in free groups was

developed by Makanin [Mak82] and Razborov [Raz87, Raz95].

For g ∈ depH , let Eqn(H, g) be the set of equations w(x) ∈ H ∗ Z for which g is

a solution. It is easy to see that Eqn(H, g) forms a normal subgroup of H ∗ Z.

When w(x) = h1x
i1h2x

i2 · · ·hmx
imhm+1, where hj ∈ H for j = 1, . . . , m + 1,

hj 6= 1 for j = 2, . . . , m, and ij ∈ Z \ {0} for j = 1, . . . , m, then the degree of w(x)

(or of w(x) = 1) is
∑m

j=1 |ij|.

Theorem 4.1. Given H < F of rank r and an element g ∈ depH, one can effec-

tively compute a normal basis of size s ≤ r for Eqn(H, g).

Proof. Let {h1, . . . , hr} be a set of free generators for H and consider the group ho-

momorphism ϕg : H ∗Z → 〈H, g〉 defined by hi 7→ hi, i = 1, . . . , r and x 7→ g. Then

apply Nielsen-Schreier transformations to the elements h1, . . . , hr, g to compute a

set {b1, . . . , bs} of size 1 ≤ s ≤ r of free generators for the subgroup 〈H, g〉. Assume

also, without loss of generality, that h1, . . . , hs are transformed to b1, . . . , bs, respec-

tively, while hs+1, . . . , hr, g are reduced to 1. Now apply the same transformations to

h1, . . . , hr, x, where x replaces g, to compute a basis {w1(x), . . . , wr+1(x)} of H ∗Z.

The map ϕg applied to this basis is given by

w1(x) 7→ b1,

...

ws(x) 7→ bs,

ws+1(x) 7→ 1,

...

wr+1(x) 7→ 1.

Since the restriction of ϕg to 〈w1(x), . . . , ws(x)〉 is injective, the kernel of ϕg is

kerϕg = 〈〈ws+1(x), . . . , wr+1(x)〉〉,

the normal subgroup of H ∗ Z generated by ws+1(x), . . . , wr+1(x).

It follows that {ws+1(x), . . . , wr+1(x)} is a normal basis for Eqn(H, g). �
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Remark 4.2. When g1, g2 are two solutions of the same equation w(x) = 1 over

H there is not necessarily an automorphism of 〈H, g1, g2〉 which sends g1 to g2 and

fixes H . For example, let F = F (a), H = 〈a3〉 and w(x) = axa−1x−1. Then every

element of F is a solution of w(x) = 1 but every automorphism that fixes H fixes

the whole of F .

Theorem 4.3. Given H < F one can effectively compute an integer n, such that

each g ∈ F that depends on H satisfies an equation over H of degree at most n.

Proof. One can compute a finite set of generators of DepH by Theorem 2.6 and then

an equation for each such generator by Theorem 4.1. Suppose now that u, v ∈ P as

in (2.1) and w(x) = 1 is an equation obtained for the element uv−1 ∈ F that depends

on H . If g = h1uv
−1h−1

2 , where h1, h2 ∈ H , is another element that depends on H

and is obtained by identifying the same u and v then, as seen in (4.1), g satisfies an

equation of the same degree as the degree of w(x). It follows that we only need to

consider the finitely-many elements uv−1 for u, v ∈ P and the result follows. �

We give now a description of all the equations over H which are satisfied by the

elements that depend on H . We know how to construct a normal basis for the

normal subgroup of all the equations for each of the generators of DepH of the

form uv−1, where u, v ∈ P as in (2.1). Let S be the finite union of these normal

subgroups of H ∗ Z. Then, the equations for all the dependent elements on H are

obtained as the union of the images of S by all the automorphisms of H ∗Z that fix

H , because then x is mapped to an element of HxH ∪Hx−1H and when w(x) = 1

is an equation for uv−1 then w(h−1
1 xh2) = 1 is an equation for h1uv

−1h−1
2 .

4.1. Computing the equations using Stallings folding. As in the proof of

Theorem 2.6, one can compute an equation for g over H also in the graph-theoretic

setting. We begin with the core C(H) of H and add to it a g-cycle. Since every

cycle that starts and terminates at the root represents an element of H , it suffices

to consider g = g1g
−1
2 with both g1 and g2 forming a simple path within C(H)

that terminates at the vertex u, respectively v. Indeed, if g = h1uv
−1h−1

2 , where

h1, h2 ∈ H , then if uv−1 is a solution of w(x) = 1 then

(4.1) w′(x) = w(h−1
1 xh2) = 1

is an equation satisfying w′(g) = 1 and of the same degree as the degree of w(x).

Next we identify the vertices u and v. Then we start folding the graph whenever

edges of the same label emerge from the same vertex. Since g depends on H , at

some point some cycle waa−1w−1 collapses when identifying the two a-edges. We

then lift waa−1w−1 all the way back to the starting graph. At the last step the cycle

gets cut at all the places where the vertices u and v are separated. At this stage we

reconnect the broken cycle by inserting g−1
1 gg2 at all the places where the jump is

from u to v, and inserting g−1
2 g−1g1 at all the places where the jump is from v to u.

In this way, the words between consecutive appearances of g±1 start and end at the
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root and so are elements of H . Finally, replacing g by x and g−1 by x−1 gives an

equation w(x) = 1 for which g is a solution.

5. Open problems

Problem 5.1. Is it possible to find an equation of minimal degree for an element g

that depends on H?

Problem 5.2. When H is compressed then DepH is also compressed (with rkH =

rkDepH). Is it also true when H is inert? As shown in Proposition 2.8, it holds for

echelon subgroups.
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